

无网格流体动力学模拟软件

XFLOW 2014

突破局限

传统 CFD 面临的挑战

在传统以网格为基础的分析方法中, 计算可靠性高度依赖于网格的质量, 工程师会耗费大量的时间进行网格离散化。

并且,在处理流体域拓扑结构发生改变这类问题时,依旧困难重重,比如存在着移动部件或是流固耦合问题等等。

XFlow 为何与其它的 CFD 解决方案不同呢?简单一基于粒子的算法将会突破传统网格方法的瓶颈。

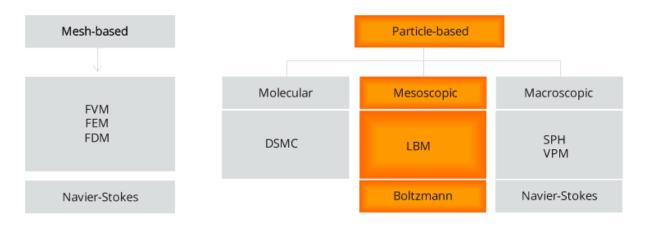
XFlow 是下一代的 CFD 软件系统,利用其专有的最先进的 Lattice Boltzmann 方法,专为精准分析流体仿真,瞬态空气动力学,水管理和流固耦合问题的工程师所设计。

XFlow 采取的 CFD 方法简化了整个分析流程,将算法参数最小化,避免了冗长复杂的网格划分过程。

独一无二的 CFD 方法

Beyond Lattice Boltzmann

在非平衡统计力学中,Boltzmann 方程描述的是介观层面上的气体状态。Boltzmann 方程不仅能超越流体动力的极限,还能够模拟应用于航空航天,微流体甚至近真空条件中的稀薄介质。



与标准平均滞留时间(MRT)相反,在 XFlow 中散度算符被应用于中心距,以提高伽利略不变性,以及数据的精确性和稳定性。

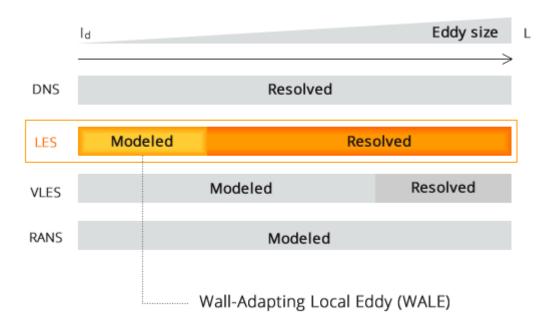
基于粒子无网格动力学求解器

XFlow 使用新颖的基于粒子的无网格动力学算法,专门为在常见配置硬件中实现快速和高效的模拟分析而设计。

XFlow 的离散方法避免了网格划分过程,且表面复杂性也不再是局限。用户能够轻松通过设定一系列的参数来控制格子的细节程度,因此该方法不受输入几何的限制,也能适应于包括各种移动部件的模拟情况。

自适应尾迹效果增强

XFlow 自动选取用户需求的解析尺度,增加近边界结果的精度,动态地适应强梯度的存在以及增强 尾迹的效果,可以更好的描述流场的发展。



湍流模型: 高保真度 WMLES

XFlow 优势在于高保真度的 Wall-Modeled 大涡模拟(WMLES)湍流模型建模。

最前沿的大涡模拟,基于 Wall-Adapting Local Eddy (WALE) 粘性模型,提供一个统一的局部涡粘性及近壁面行为。和大多数仅支持雷诺平均 N-S 分析的程序相比,XFlow 耗费的计算时长近似。

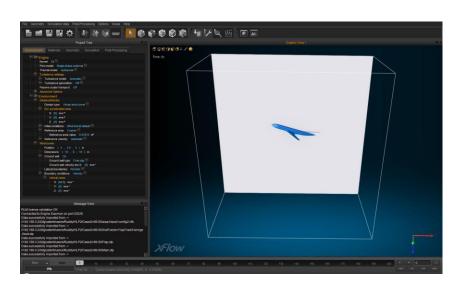
统一的壁面模型

XFlow 用统一的非平衡壁面函数来模拟边界层,适用于大多数情况。这意味着用户无需在不同模型中选择不同的 壁面条件。

高级分析能力

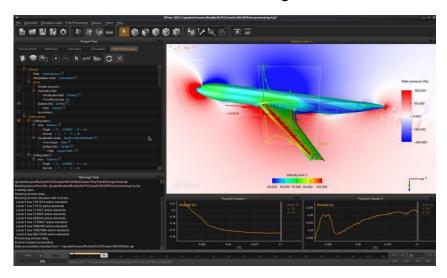
XFlow 其他功能:

- 。 热分析
- 。 多孔介质流动
- 。 非牛顿流体
- 。 共轭传热
- 。 复杂边界条件,包含风扇模型以及多孔介质边界


软件环境

前处理器、求解器、后处理器保持在统一的运行环境中

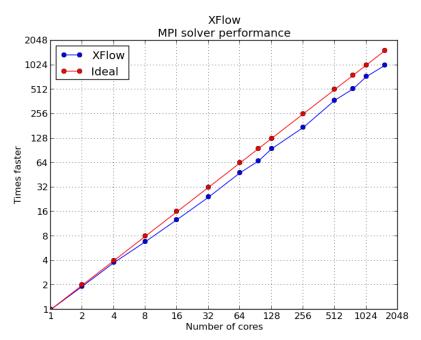
XFlow 为用户提供了一个独特和新颖的界面和工作环境。前处理器、求解器、后处理器完全集成在同一个用户界面。可以通过移动工作窗口以及选项来配置用户界面布局。


• 前处理

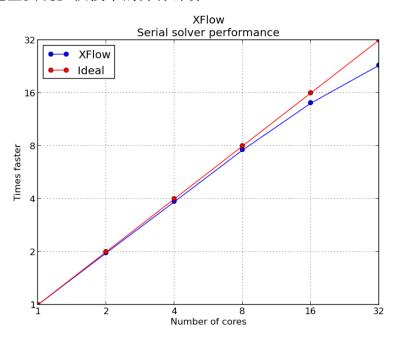
基于粒子的方法,XFlow 的算法降低了对 CAD 模型的要求,比如对外部空气动力学,一旦定义了一个连续的流体体积,软件并不关心移动或交叉的表面。因此,几何模型的复杂性不是 XFlow 的限制因素。

• 后处理

XFlow 的图形后处理能力使得求解结果交互可视化,在计算运行过程中也能分析。 通过导出到第三方应用,比如 ParaView 和 EnSight Gold,可以做更多样结果后处理。



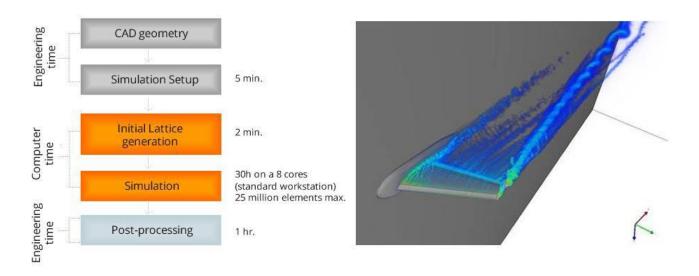
近似线性的可扩展性能


DMP

XFlow 也完美地集成到您的 HPC 环境中,它为最苛刻的计算提供更广范围的可能性。 XFlow 分布式求解器即使对大规模模型也能有效计算。

SMP

XFlow 即使在标准的台式 PC 上也能快速、高效、方便的运行。XFlow 具有近似线性可扩展性,可完全实现多核技术的并行计算。



全国统一客户服务热线: 400 888 5100 网址: www.CnTech.com.cn 邮箱:info@cntech.com.cn

仿真流程


XFlow 大幅度减少前期准备和初期模型离散时间。软件能自动优化您的计算机性能以及计算时间间的平衡。

第三方接口

XFlow 提供很多的第三方软件接口,同时也在不断添加这些接口:

- 。 几何 STEP, IGES 和 STL
- 。 用户自定义输入 函数及列表数据
- 流固耦合单向耦合至 MSC.ADAMS双向耦合至 MSC.NASTRAN
- 。 后处理 Paraview 及Ensight Gold

领域及应用

汽车

- ▶ 全几何模型的车辆气动力分析(包含引擎和车架)
- ▶ 空气声学
- ▶ 乘客舒适度,暖通空调
- > 动几何,如转动的轮胎,悬吊系统,以及超车过程
- ▶ 自由表面,如添加燃料,从水中驶过

航空

- ▶ 阻力和升力预测,包含高升力配置
- ▶ 压力及表面摩擦力分布
- ▶ 活动部位,例如起落架,螺旋桨
- ▶ 航空声学,通风及温度控制
- ▶ 准音速/超音速流动
- ▶ 光照预测

船舶

- ▶ 船体周边流动:阻力预测,尾迹分析, 螺旋桨,耐波性和机动能力
- ▶ 晃动现象
- ▶ 波浪传播

土木工程

- ▶ 建筑物、桥梁周边空气流动
- ▶ 海洋结构的自由表面分析, 水 坝 泄 洪 或 地 下 设 施 水 浸
- ▶ 加热,室内空调
- > 污染物扩散

能源

- ▶ 风力涡轮机的空气动力学分析
- ▶ 水轮机分析
- ▶ 太阳能塔的自然对流

制造

- ▶ 电气设备的热管理
- ▶ 移动设备周围的流动,如生产车间内流水线机器人
- ▶ 混合的模拟 (搅拌器,混合器)
- ▶ 复杂的流变流体(非牛顿流体模型)

关于中仿

中仿科技(CnTech)成立于 2003 年,是中国领先的仿真分析软件和系统解决方案的提供者。中仿科技依靠自主创新研发拥有自主知识产权的中仿 CAE 系列产品,同时与国际上领先的数值仿真技术公司拥有长期而紧密的合作关系,具备较强的自主研发能力和创新能力,能够为中国企业和科研机构提供世界一流的仿真技术解决方案。公司总部设在上海,目前在北京、武汉设有分公司。