两硬条件下综放开采矿压显现规律研究

卢国梁,闫志义,胡守平

(大同矿务局忻州窑矿,山西大同 037021)

【摘 要】 从现场测试、数值计算两个方面,研究了两硬条件下矿压显现和 顶煤、顶板活动的一般规律。研究结果显示:两硬条件下综放开采的矿压显现具有 明显的周期性,支架荷载频率分布一般为双正态泼加型,支架的初撑力与工作阻力 成线性关系。顶板预处理可以明显改善矿压的冲击性。

【关键词】 坚硬厚煤层;综放开采;矿压 中图分类母:TD323 文献标识码:B 文章编号:1006-6225(1999)03-0032-04

大同矿务局所采的侏罗纪煤层,顶板完整 坚硬难于冒落,煤体完整坚硬难于破碎,是典 型的"两硬"煤层。大同矿务局联合中国矿业 大学北京校区、太原理工大学、煤科院太原分 院组成攻关研究组,对两硬条件下厚煤层综放 开采,从顶煤、顶板活动规律、提高回收率技 术和关键设备3个方面进行系统的研究,使大 同矿务局忻州窑矿8911低位放顶煤试验工作 面达到了年产100万t,回收率80%的水平, 成功实现了两硬条件下放顶煤开采。

1 现场概况

大同矿务局忻州窑矿从 1996 年开始在

8916、8914 和 8911 三个工作面实施综放开采, 对矿压显现,顶煤、顶板活动情况进行了系统 的观测。3 个综放工作面均位于忻州窑矿的西 二盘区,其中 8916 和 8914 两工作面相邻,位 于西二盘区 309 盘区上山的南翼,8911 工作面 位于 309 盘区的北翼 901 集中巷的东侧。8916 工作面处于两侧采空,8914 工作面处于三侧 采空,而 8911 工作面是西二盘区北翼的首采 面,处于实体煤中,具体条件如表1。

3 个工作面地质条件基本相同,均有 NE 和 NW 两组裂隙,其中 N300 W 的一组为较发 育的主要裂隙,8911 工作面与 NW 主裂隙呈大 角度斜交,而 8916 和 8914 工作面与 NW 主裂

工作面 编 号	采深/ m	煤厚/ m	倾角/ °	工作面 长度/ m	推进长 度/m	四周回采 状 况	巷首布置	支架形式	
8916	300	8.29	1~6	135	820	二侧采空	四巷式	改装型低位支架	
8914	295	7.9	1~7	136	560	三侧采空	四巷式	改装型低位支架	
8911	330	7.5	1~7	150	522	实体煤	四巷式	ZFS 支架	

表1 试验工作面的基本条件

图 1 8911 工作面巷道布置

隙呈小角度斜交。8911 面具体布置见图 1。

8916 和 8914 工作面的装备相同,均采用 ZFSg6000 型改装低位放顶煤支架,工作面前部 输送机为 SCZB —764/400 型,后部输送机改用 SCZ —764/630G型。两工作面设备的主要差异 为:后者支架的支撑高度和顶梁长度加大,后 梁的过煤高度和放煤口尺寸加大,更加有利于 1999年第3期(总第36期)

顶煤的放落。

2 现场测试结果分析

2.1 煤体强度测试

在 8914 工作面中间 1 巷测试结果:煤体 的平均单轴抗压强度为 37.43MPa,单轴抗拉 强度为 1.2476MPa。现场点载荷试验表明忻州 窑矿 11 与 12 号合并层煤体具有很好的连续 性,强度相关距离达 210m,煤体强度均匀, 局部强度可反映整个煤层强度特点;煤体的强 度高,波动范围较小,属典型的坚硬煤层。

2.2 支架荷载观测

对 3 个工作面支架载荷连续观测,其结果 见表 2。通过 3 个综放面的矿压观测,两硬条 件下综放开采的矿压显现有以下基本规律:

表 2 综放面矿压湿现特征

工作面周期来压		动载系	支架荷载	$P_0 \subseteq P$	来压时最大平均	支架最大冲击	前柱与后柱_	支架运行特征	
编号	步距/m	数 k	频率分布	的关系	支架荷载/kN架-1	荷载/ kN 架 1	阻力之比	增阻/ %	降阻/%
8916	35.7	1.28	双正态迭加 带冲击点	幂函数	3658.2	5624	0.94	80	1.3
8916	15.5	1.52	正态分布 带冲击点	线性	3376.6	5472	0.91	74	24
8914	24.5	1.37	反双正态迭 加带冲击点	线性	4674	5885	1.41	84.3	11.1
8911	20.6	1.32	双正态 迭 加	线性	3914.8	_	1.11	50.5	16.1

(1) 有明显的周期来压显现,动载系数1.3~1.5,来压步距与顶板预处理效果有关。

(2) 支架荷载频率分布一般为双正态迭 加型,如图 2。仍保留有坚硬顶板带冲击点的 特征,当预处理效果较好时,可消除冲击荷 载,是典型的 级顶板矿压显现特征。

(3)支架初撑力与工作阻力成线性关系, 有别于普通综采的对数关系,也有别于坚硬顶 板下的幂函数关系,这一特征为确定支架的初 撑力提供了科学依据。

(4) 支架荷载较普通综采低,最大冲击荷 载接近额定工作阻力。未处理顶板时,前柱阻 力小于后柱,具有坚硬顶板特征;顶板处理 后,一般前柱阻力大于后柱阻力 10%~15%。

(5)支架运行特性以增阻型为主,占 75%以上,降阻型仅占10%左右。当顶板、 顶煤处理效果好时,增阻型降为50%,而降 阻型超过30%,表明顶煤冒放性改善。

2.3 支承压力分布

通过测定工作面前方顺槽煤壁裂隙的分形 值和支承压力大小,进行反演支承压力的分布 及其显现规律。测定结果如图 3,图 4。

图中实测数据表明:采场支承压力与煤壁 裂隙分布的分维值沿工作面推进方向变化趋势 具有同步一致性,并且同时取得极大值,支承

图 3 工作面支承压力分布

图 4 煤壁裂隙分布分维值

压力的峰值位置也就是煤壁裂隙分维值最大位 置。支承压力峰值位置前方是顶煤的弹性变形 区,这个区域内的顶煤裂隙随着支承压力的不 断增加主要处于腐坐、扩展状态,裂隙分布越 来越复杂,因此裂隙分布的分维值也随之增 加。但从支承压力峰值位置到煤壁,顶煤处于 塑性变形阶段,在支承压力的作用下顶煤裂隙 开始逐渐贯通而形成宏观裂纹,裂隙方向也逐 渐趋于单一化,因而裂隙的分形维数逐渐减 小。基于这一特性,我们就可以通过测定巷道 裂隙分布的分维值来预测支承压力的分布状 态。

3 数值计算

顶煤和顶板在变形破裂过程中是一种介于 连续介质和松散介质之间的拟连续介质。因 此,单纯利用力学解析方法求解顶煤变形破裂 过程难度较大。本文利用 HLAC^{3D} 有限差分软 件对 8911 面综放开采过程采场的三维应力分 布和顶煤的破裂规律进行了岩石力学数学分 析,试图得到顶煤从开切眼开始直至末采整个 过程在采动影响下,沿走向和倾向方向上顶煤 的破坏区域和破坏程度分布,顶煤与顶板相互 作用形成的支承压力的分布范围和形态。以期 为提高顶煤的回收率提供必要的理论依据。

为了消除边界效应,三维计算模型的长、 宽、高设置为 300m、300m 和 150m。由于计算 模型主要考察顶煤和顶板的变形和破坏及计算 模型的单元所限,对计算模型单元采用不等划 分。计算模型共划分有 60500 个立方体单元, 模型侧面限制水平移动,底面限制垂直移动, 模型的上部施加上覆岩层的自重应力。支架采 用弹性锚杆单元模拟,刚度为 30MN/m。

据现场观测和实验验证,开采过程中周期 来压并不明显,其主要原因在于顶煤作为塑性 垫层吸收了大部分老顶传来的动载能和静载 能,因此本模型只对顶煤破裂特性、范围及应 力应变分布进行分析,略去周期来压对顶煤和 直接顶破裂的影响。随着工作面的不断向前推 进,直接顶和顶煤逐渐垮落,垮落单元的强度 符合虎克—布朗(Hoek - Brown)强度准则, 即单元破裂后承载能力降低许多。

计算的第一步,首先在模型中形成切眼和 顺槽,就是在相应空间把实单元变为空单元。 单支柱支架用弹性的锚杆单元代表。由于工作 面的不断推进,采空区和垮落区始终处于运动 和变化之中,致使计算过程中需要不断变换垮 落区材料单元的力学参数和垮落区域。采空区 垮落的矸石用一种弹模和强度较小的弹性材料 单元替代。图 5 为工作面正常推进时各个剖面

图 5 工作面正常推进时模型计算结果

的应力、位移和单元破坏情况图。从主应力的 等值图分析可知:顶煤中支承压力分布具有明 显的分区特征,即支承压力的峰值不是位于煤 壁,而是在煤壁前方大约 5~7m 处(图 5a), 也就是在顶煤始动点附近。这是由于在煤壁附 近的顶煤受到峰值支承压力作用后,内部裂隙 扩展、贯通,承受不了高应力所至。在顶煤始 动点附近由于顶煤裂隙尚未扩展,因此具有较 高的强度和承载能力,应力也明显集中,达到 支承压力的峰值。随着距煤壁距离的增加,应 力逐渐减小至原始岩应力。顶煤中支承压力的 峰值位置随着采深、煤岩性质的变化而变化, 从图中可看出支承压力作用范围较大。

从位移矢量图可得到放顶煤开采具有以下 规律和特点:当老顶初次垮落以后,煤壁前方 5~7m处节点水平位移方向发生改变,5~7m 以内水平位移指向煤壁,而5~7m以外的节 点水平位移背离煤壁,说明顶煤运移在 6m 左 右位置。顶煤的水平位移最大值发生在顶煤的 中部附近,并沿工作面推进方向逐渐减小至位 移始动点;而垂直位移随顶煤高度的增加而增 加。

从顶煤及围岩破坏情况来看,放顶煤开采 顶煤、顶板破坏具有以下规律:在工作面推进 过程中顶煤的破坏区域都不大,只限于工作面 上方顶煤的2~3m,这从侧面说明了大同忻州 窑矿的煤岩强度较高,单纯在支承压力作用下 不易压裂破碎,因此如果不对顶煤加以弱化处 理(如进行煤层注水、预爆破等),上位顶煤 很难破碎而被放落下来。

把图 5a 的数值计算数据和现场数据进行 比较(见表 3),可以看出两者比较相近(除 煤壁最近一个测点外),特别是支承压力峰值 位置都接近于煤壁前 6m 处。

表 3 数值计算结果与现场实测数据比较

	距煤壁距离/m								
	1	3	5	7	9	15	23	35	44
数值计算结果/ MPa	9.4	12.3	15.6	14.5	12.4	11.7	9.5	8.7	8.2
现场实测结果/ MPa	5.7	13.5	16.4	15.4	13.3	12.5	10.3	8.9	8.6

4 结论

通过对忻州窑矿3个综放工作面的现场观 测、试验研究和数值计算,初步得到坚硬厚煤 层综放开采矿压显现的一般规律。即开采过程 中具有明显的周期来压;巷道表面裂隙的分维 值与支承压力分布具有同步一致性,数值计算 的支承压力分布和实际测量基本一致。

【参考文献】

- [1] 煤炭部"九五"重点科技攻关项目《坚硬厚煤层综放开 采关键技术研究》鉴定材料 (R].1998
- 2〕陈炎光,陆士良主编.中国煤矿巷道围岩控制 [M].徐

州:中国矿业大学出版社,1994

- (3) 钱鸣高,刘听成主编. 矿山压力及其控制 (M). 北京: 煤炭工业出版社、1991
- (4) 宋振骐主编. 实用矿山压力控制 (M). 徐州:中国矿业 大学出版社,1988
- (5)谢和平,陈忠辉,王家臣等.综放开采顶煤变形破坏的 三维数值模拟,第六届全国岩土力学数值分析与解析方 法研讨会 (C).广州,1998
- (6)谢和平,陈忠辉,王家臣.放顶煤开采巷道裂隙的分形研究 (1).煤炭学报,1998 (3)

作者简介:卢国梁,1959年1月生,籍贯山西忻州,大 学文化,工程师。现任忻州窑矿矿长。

(收稿日期: 1999 - 0705 - 05; 责任编辑: 邹正立)