建筑物下厚煤层特殊开采的三维数值分析

王金安¹ 谢和平² M.A. Kwasniewski³ 王广南⁴

(¹北京科技大学 北京 100083) (²中国矿业大学 北京 100083) (³波兰西里西亚工业大学) (⁴鹤壁四矿 鹤壁 456600)

摘要 为解决建筑物下厚煤层开采技术难题,提出中央条带两冀长壁特殊开采方法,通过三维有限差分数值计算 (FLAC^{3D}),对该开采方法造成的地表变形和破坏进行了预测分析和探讨,阐述了保护地面建筑的合理开采措施。 关键词 厚煤层,建筑物保护,中央条带两冀长壁开采,地表移动变形 分类号 TD822

1 引 言

据统计,我国目前的"三下"(建筑物下、水体下、 铁路下)压煤量多达137.9×10⁶t,其中建筑物下压 煤为87.6×10⁶t。"三下"压煤量的开采量只有7× 10⁶t,仅占5%。工业广场、村庄等建筑物下的大量 压煤造成煤炭资源的巨大浪费,并且严重制约着矿 井正常生产和接续^[1,3]。为安全、合理、最大限度地 开采被占压煤炭,特别是在一些老矿区要稳定生产 规模、解决矿井储量不足和缓解生产接替紧张等问 题,研究以开采方法优选、地表沉陷变形预计和根据 建筑物破坏程度的不同,有针对性地采取预先加固 或采后维修措施,具有重要意义。

在波兰、德国和前苏联等先进采煤国家,基本上 采用充填开采方法来减少地表变形和保护地面建筑。 然而,由于充填设备昂贵和充填费用较高,在我国一 直未推广应用。特别是建筑物下厚煤层开采,常规的 长壁垮落开采方法难免导致地面建筑物的严重变形 和破坏。近年来,一些矿区采用条带法开采减少地表 下沉和变形^[4,5]。但是,条带法开采掘进工程量大, 生产管理复杂。在大采深和厚煤层条件下,为有效控 制地表下沉和变形,必须加大留设条带的宽度,这势 必造成资源的巨大浪费。本文针对鹤壁四矿村庄下 厚煤层开采的具体条件,对应用中央条带两冀长壁 特殊开采技术的地表变形和破坏进行了三维岩石力 学数值分析,探讨了应用该项技术保护地面建筑物 的合理开采措施。

2 计算模型及开采设计

2.1 研究对象及开采条件

本项研究的现场为鹤壁矿务局四矿。全矿井共 有3层可采煤层,其中二水平六采区将在杨吕寨下 进行开采(图1),现采用分层长壁全部垮落法。研究 区域内煤层倾角0°30°,平均埋深420m,煤层平均 厚度8.18m。顶底板岩石主要为砂岩、泥岩、灰岩、 页岩等,表土层厚度101.5m。研究区域有4条断 层,这些断层皆为压型断层,断层张开距很小,仅为 几个厘米,充填物的厚度很小。断层倾角50°60°。 4F204断层和4F206断层的落差皆为10m,4F105 断层落差为13m,F7断层落差为100m。

2.2 中央条带两冀长壁垮落法开采方案

在一般情况下,地面最大水平变形和最大倾斜 变形位于采空区边缘附近。为使地面村庄避开地表 最大水平和倾斜变形区,应尽量使村庄在煤层开采 后位于开采下沉盆地中央。然而,现有开采技术条件 下,单一工作面的开采宽度难以达到这种要求。中央 条带加两冀长壁开采是在考虑上述要求的前提下提 出的保护地面村庄的一种特殊开采方法。基本要点 是:首先,在村庄下布置一个分层条带工作面,条带 工作面宽度为 80~120 m,条带开采后应保证地面不 发生明显的变形和破坏;然后,在两冀布置两个同时 推进的长壁工作面,每个工作面宽为 150 m,以保证

1997年11月10日收到初稿, 1998年1月19日收到修改稿。

作者 王金安 简介 : 男 , 40 岁 , 博士 , 毕业于波兰西里西亚工业大学采矿与地质系地下工程专业 , 现任副教授 , 主要从事岩土工程方面的研究工 作 。

图 1 鹤壁四矿二水平采区平面与立体简图 Fig. 1 Plane and steroview of the second level extraction in Hebi Coal Mine No.4

开采后地面形成宽阔平缓的盆地,并使村庄处于地 表下沉盆地中央(图 2(a))。鉴于杨吕寨村下特殊的 地质构造条件,中央条带和两冀长壁工作面的划分 如图 2(b)所示,即以 2610 区段为中央条带,以 2608 和 2612 区段作为两冀长壁工作面,实行分层开采厚 煤层,分层厚度分别是 2.2,2.0,2.0 和 2.18 m。

根据鹤壁矿务局四矿制定的开采计划,六采区 可分为以下三个开采阶段:

第一阶段是目前开采的 2602 区段 ~ 分层 (图 2);

第二阶段的开采区域和顺序是 2604() 2608 () 2604();

第三阶段开采将主要在杨吕寨村庄下方进行, 开采顺序是以 2610 作为中央条带(宽 80~100 m), 2608 和 2612 作为两翼长壁工作面(分别宽 150 m)开 采 ~ 分层。

为研究上述不同阶段煤层开采对杨吕寨村所在 区域地表变形的空间影响,特别是在前两个阶段煤 层开采的基础上,进行厚煤层中央条带两冀长壁开 采的效果,建立了三维数值计算模型进行计算分 析^[6]。

图 2 中央条带两翼长壁开采方案

Fig. 2 Scheme of central strip & side longwall mining

2.3 数值计算模型

本研究应用三维 FLAC^{3D} (1.10) 连续介质有限 差分程序^[11]进行计算分析。FLAC(Fast Lagrangian Analysis of Continua) 是由美国 Itasca Consulting Group, Inc. 为地质工程应用而开发的,程序建立在 拉格朗日算法基础上,主要适用模拟计算岩土类工 程地质材料的力学行为,特别适合模拟材料大变形 和扭曲。FLAC程序设有多种材料本构模型。另外, 程序设有界面单元,可以模拟断层、节理和摩擦边 界的滑动、张开和闭合行为。支护结构,如砌衬、锚 杆、可缩性支架或板壳等与围岩的相互作用也可以 在 FLAC 中进行模拟。用户还可根据需要创建自己 的本构模型,进行各种特殊修正和补充。

FLAC采用显式算法来获得模型全部运动方程 (包括内变量)的时间步长解,从而可以追踪材料的 的渐进破坏和垮落,这对研究采矿设计是非常重要 的。此外,程序允许输入多种材料类型,亦可在计算 过程中改变某个局部的材料参数,增强了程序使用 的灵活性,极大地方便了开采过程在计算上的处理。

本文所建立的三维计算模型的长、宽、高分别 是1500m,1800m和650m。模型范围包括二水平 六采区的2602,2604,2608,2610,2612,2614七个 区段工作面和四条主要断层(图1(b))。计算模型共 划分有64175个六面立方体单元和10940个节理面 单元,模型侧面限制水平移动,模型底面限制垂直 移动,模型上部为自由面。杨吕寨位于 2608,2610 和 2612 工作面的上方以及这三个工作面停采线附近 (参阅图 1)。

根据鹤壁四矿的地质资料^[6], 六采区从地表到 750 m 深度的岩体共有 175 层岩层, 归并为 35 种岩 土类型。此外, 模拟计算还涉及一些附加材料类型, 如采空区垮落矸石、断层等。根据材料力学特征, 分 别采用以下不同的力学模型:

(1) 表土层(黄土、土砾岩、砾岩)采用莫尔-库仑(Mohr-Coulomb)屈服准则^[8]。

(2) 岩石和煤采用应变软化模型和虎克-布朗 (Hoek-Brown)强度准则^[11],当材料发生屈服破坏 后,按照三维应力路径进行软化处理。此外,当拉应 力超过材料的抗拉强度时,材料按拉破坏处理。

(3) 采空区冒落的矸石是一种松散介质。宏观 上,它对顶板支撑的力学作用可近似地用弹性支撑 体表述,垮落带的高度是采高的 6~8 倍。需要考虑 的是,随着工作面的推进,矸石在覆岩作用下逐步 被压实,材料的密度 、弹性模量 *E*和泊松比 随时 间而增加。已有研究表明⁽⁹⁾, *E*和 变化规律可 由以下经验公式表述:

$= 1\ 600\ +\ 800\ (1\ -\ e^{-1.25t})$	kg/ m ³	(1)
$E = 15 + 175(1 - e^{-1.25t})$	MPa	(2)
$= 0.05 + 0.2(1 - e^{-1.25t})$		(3)

式中:时间 t的单位为年。式(1) ~ (3) 反映出 , E和 随时间呈指数变化关系,最终达到恒值。

(4) 断层的存在将在很大程度上影响岩层移动的规律和特征。在采动影响下,断层将产生滑移和张开与闭合。模拟断层的模型用弹簧元件描述断层在法向和切向的变形;摩擦块描述断层的剪切滑移; 用低抗拉元件表述断层的抗拉特性。

3 计算结果分析

在考虑第一、第二阶段开采影响的基础上,本 文重点研究第三阶段中央条带两冀长壁开采后的地 表移动变形。限于篇幅,这里将主要计算结果归纳 如下:

(1) 第一阶段开采过程中,由于受到 F7 断层的 诱导,2602 三个分层工作面开采后形成的地表下沉 盆地顺 F7 断层倾斜方向朝杨吕寨村一侧平移了大 约 80 m,且该侧的地表下沉梯度也明显大于另一侧; 地表水平变形和倾斜没有构成对杨吕寨村的影响, 地表岩层拉、压高应力区和岩层破坏区主要集中在 采空区边缘。实地考察证实 2602 三分层工作面开采 后该处民房建筑遭到破坏。

(2) 第二阶段的三个工作面开采后,地表岩层 破坏范围没有明显扩大,但地表移动和变形波及到 杨吕寨村的左上角的部分区域,使该局部地表岩层 移动变形值达到混砖结构建筑物 级破坏的标准。

(3) 第三阶段第一分层开采后,杨吕寨大部分 区域受到梯度缓和的下沉影响,地面主要变形和破 坏区仍集中在 2602,2604 和 2608 工作面上方的边 缘地带,杨吕寨村大部分处于平缓低变形区。

(4) 二分层中央条带工作面开采后,地表移动 变形和岩层破坏没有明显变化。当二分层两翼长壁 工作面开采后,除采空区范围地表下沉值普遍增加 外,在开切眼和停采线附近处地表沿 *x* 轴方向的水 平变形有较大程度的增加,该处的地表岩层在水平 拉应力作用下出现新的破坏区。

由于杨吕寨村位于 2608, 2610 和 2612 三个回 采工作面的停采线上方, 此处的岩层在 *x* 方向的水 平变形和倾斜值已达到混砖建筑物 级破坏标准。

(5) 第三分层开采后与第二分层开采的情况类 (4),采空区两端的地表水平拉应力和地表破坏区进 一步在扩展,杨吕寨村所在区域受沿 *x* 方向为主的 水平压缩变形和倾斜。

(6) 图 3 是第四分层中央条带和两冀长壁工作 面开采后地表下沉及岩层破坏特征。开采结束后, 地表岩层破坏得到充分发展,在采空区边缘处汇合 成两闭合的破坏带,其中杨吕寨村则位于下侧破坏 带的内缘,该处地表沿 *x* 方向的水平压缩变形和向 采空区一侧的倾斜值超过混砖建筑物 级破坏标准。

表1给出中央条带和两翼长壁工作面开采四个 分层后杨吕寨村地表移动变形值范围。从整个开采 过程看,第一,二阶段的开采没有构成对杨吕寨村 的破坏性影响; 尽管 2604 区段工作面开采有使 4F105 断层活化的迹象, 使杨吕寨边缘局部范围的 地表岩层破坏加剧和变形量增加,但4F105 断层活 化给地面带来的影响只是局部和阶段性的。从计算 结果分析,在杨吕寨村下方开采 2608, 2610 和 2612 区段的分层工作面过程中, 4F105 断层以及 4F206 和 4F204 断层没有构成对地面移动变形的附加影 响。各分层中央条带工作面开采后,也没有引起地 表岩层移动变形和破坏明显变化;在各分层两冀长 壁工作面开采后,在采空区边缘附近的地表拉应力 和拉破坏区逐步扩展,杨吕寨村所在的区域主要受 沿 x 方向的水平压缩变形和倾斜,其变形值已超过 混砖建筑物 级破坏的标准。从另方面看,杨吕寨 村处的地表沿 Y 方向的水平变形和倾斜在开采的各 个时期都保持在一个较低水平。说明中央条带两翼 长壁开采方案沿工作面倾斜方向上的有效性。然而, 这种方法要取得成功,必须调整工作面在 *x* 方向停 采线的位置,使杨吕寨村远离采空区边界(停采线) 一段距离。

图 3 第四分层中央条带两翼长壁工作面开采后 地表下沉与岩层破坏

Fig. 3 Surface subsidence and fracture zones after extraction of the forth layer

表 1 杨吕寨村庄范围内地表移动变形

Table 1 Deformation of surface land in Yangluzhai village

层数	下沉	水平移动	水平变形	倾斜
12 30	W / mm	U / mm	/ mm •m ⁻¹	$T / \text{mm} \cdot \text{m}^{-1}$
	500 ~	U_x -150 ~ 400	<i>x</i> -3 ~ 0.5	T_x -3 ~ 1
	2 000	$U_y = 0 ~ \sim ~ 600$	$y 0 \sim 4.0$	$T_y = 0 \sim -10$
	1 500 ~	U_x -350 ~ 1 200	<i>x</i> -6.8 ~ 1.8	T_x -9 ~ 1.8
	3 500	U_y -150 ~ 400	y -1.0 ~ 1.0	T_y -6 ~ 0.0
	1 800 ~	<i>U_x</i> -425 ~ 1 850	<i>x</i> -8.8 ~ 2.4	$T_x = -12.2 \approx 2.0$
	4 700	U_y -300 ~ 750	y -4.3 ~ 0.0	T_y -6 ~ 0.5
	2 250 ~	U_x -600 ~ 2 320	<i>x</i> -11.8 ~ 3.5	T_x -16.1 ~ 2.2
	6 100	U_y -550 ~ 1 175	y -8.0 ~ -3.2	T_y -8.1 ~ 2.1

4 结论与建议

中央条带两翼长壁开采的关键是选择合理的开 采尺寸和位置。如果中央条带和两翼工作面宽度过 小,采后将难以形成大面积的充分采动区,使得该 方法的优越性难以充分发挥;反之,如果中央条带 宽度过大,采后将直接引起村庄建筑物破坏,违背 了中央条带两翼长壁工作面开采的设计意图。

本文通过三维岩石力学的数值分析,揭示出杨 吕寨村下厚煤层采用中央条带两翼长壁开采引起的 岩层移动变形过程的地表形态特征、岩层应力分布 和岩层破坏形式与发展过程。研究表明,中央条带 两翼长壁工作面开采过程中,80~100 m 宽的中央 条带开采不会带来地面移动变形和破坏的明显变化, 只有在两翼长壁工作面开采后,才出现采空区上方 岩层明显的沉降和采空区边缘地表岩层的变形及破 坏的增加。在各个分层开采过程中,采空区内部的 地表岩层基本处于均衡沉降和以较低的水平压缩变 形为主的状态,地表拉破坏区分布在采空区边缘, 有利于建筑物保护,说明中央条带两翼长壁工作面 开采的设计思路是正确的。尽管四矿的地质和开采 技术条件使这种采煤方法的优越性在一定程度上受 到限制,但在开采第三、四分层时,这种方法带来的 效果仍然比较明显。本研究认为,在现有的采矿地 质条件下,中央条带的合理宽度为 120~150 m,两 翼长壁工作面的宽度应不小于 150 m。

从现有开采布局看,由于杨吕寨村距停采线较 近,使村庄所在地的水平变形和倾斜值均超过砖混 结构建筑物 级破坏的标准。从保护杨吕寨村庄建 筑的角度,建议再加大开采区域长度,使杨吕寨村 远离停采线。此外,应对现有开采布局和开采顺序 进行必要的调整,建议在开采第三、四分层前,考虑 先开采 2604 区段的第三分层,并适时安排开采与 2614 区段相邻的下区段(称 2616 区段)的 ~ 分 层,以便充分扩大采空区范围,进一步降低和减缓 杨吕寨村范围内地表的水平变形和倾斜。同时,在 开采过程中对地表移动变形进行系统的现场观测, 为进一步推广应用该项开采技术提供可靠依据。 **致谢** 本项研究得到鹤壁矿务局的大力支持和资助, 在此表示感谢。

参考文献

- 刘天泉. 矿山岩体采动影响与控制工程学及其应用. 煤炭学报, 1995,20(1):1~5
- 2 刘天泉."三下一上"采煤技术的现状及其展望.煤炭科学技术, 1995,14(1):5~7
- 3 黄乐亭. 国内外"三下"采煤现状与找国村庄下采煤特点. 煤炭 科学研究总院唐山分院, 1992

- 4 何国清,杨 伦,凌赓娣等编.矿山开采沉陷学.徐州:中国矿 业大学出版社,1991
- 5 中国矿业学院,阜新矿业学院,焦作矿业学院编.煤矿岩层与地 表移动.北京:煤炭工业出版社,1997
- 6 建筑物下厚煤层合理开采方法研究. 鹤壁矿务局,中国矿大北 京研究生部,波兰西里西亚工业大学,1997
- 7 鹤壁矿务局四矿煤岩物理力学参数实验研究报告.中国矿大北 京研究生部,波兰西里西亚工业大学,1996
- 8 Drucker D C, Gibson R E, Henkel D J. Soil mechanics and work bardening theories of plasticity. Trans., ASCE, 1957, 122: 338 ~ 346
- 9 Kwasniewski M A, Wang J A, Szutkowski I. PROGNOZA IBADANEIE WPLTWUNA DEFORMACJE POWIERZCHNI WKWK "STASZIC", Praca Naukowo-badawcaz NB159/ RG4/96, Politechniki Slanskiej, Gliwice, Poland, 1996
- 10 Wardle L J , Gerrard C M. The "equivalent "anisotropic properties of layered rock and soil masses. Rock Mech., 1972, 4(1): 155 ~ 175
- FLAC^{3D}(1.10) User s Manual. Itasca Consulting Group, Inc. Minnesota, USA, 1996

3-D NUMERICAL ANALYSIS ON THICK COALSEAM EXTRACTION BY SPECIAL MINING METHOD UNDER BUILDINGS

Wang Jin an¹ Xie Heping² M. A. Kwasniewski³ Wang Guangnan⁴

(¹ Beijing University of Science and Technology, Beijing 100083)
(² China University of Mining and Technology, Beijing 100083)
(³ Silesian Technical University, Poland) (⁴ Hebi Coal Mine No. 4, Hebi 456600)

Abstract To find out a solution of thick coalseam extraction under buildings, the central strip and side longwall mining method is investigated by $FLAC^{3D}$ numerical analysis. The subsidence, deformation and fracture to the surface land caused by the method are studied. The rational mining measures for protecting of the buildings are proposed.

Key words thick coalseam, protection of buildings, central strip and side longwall mining, surface subsidence and deformation