

Simpleware 多孔介质建模

泡沫的模型创建及网格生成

基于图像的建模技术由于其低成本、操作简单、逼真性高等优点,在 地质研究、无损检测(NDE)、多孔介质流动、地形测绘、医疗、材料、自然 科学等领域有着广泛的应用。 Simpleware 软件基于其创新的算法,为图像 转换为三维 CAD 模型、快速成型、CFD 模型以及有限元模型提供世界领先 的解决方案。

简单的工作流程

本文以泡沫模型为例,演示对于多孔介质问题、结构大变形问题、或 者流体流动问题,如何将高分辨率的扫描数据进行转换、去除噪声、分 割、生成网格并导出计算模型。本文给出三类模型的操作步骤,包括:STL 模型、FE 模型和 CFD 模型。

膨胀的泡沫具有负泊松比——不同于传统的材料,如果受到拉伸,它们将垂直 于应力方向伸展,被挤压时平行收缩。这一特殊的力学现象可以由以下网址提供的 动画清晰展现 <u>http://simpleware.cntech.com.cn/index.html</u>,它展示了通过 Abaqus[™] 对泡沫实施的大形变分析。本章的图像数据由华盛顿大学的 G.Selder 教授友情提 供。

1.1 学习内容

图值	象处理	网格划分和输出
	递归高斯滤波器	□表面网格,保留和去除材料特性的 FE 和
	交互阈值	CFD 网格生成
	种子填充	□平滑额外的表面层
	预平滑处理	

1.2 数据

本案例的数据文件名为 auxetic1_50.hdr, 可以在路径 C:\Program Files\ Simple ware\Data\ 下的 AuxeticFoam 文件夹中找到。

1.3 ScanIP 图像处理模块中的图像处理步骤

1.3.1 输入数据

打开文件:

1、运行 ScanlP 图像处理模块.

2、选择菜单栏 File →打开 auxetic1_50.hdr(或者从 Welcome 欢迎界面,选择 Open...,打开路径 Simpleware\Data\AuxeticFoam 下的 auxetic1_50.hdr 文件)

图 1-1 导入数据后的屏幕显示

3. 关闭立体渲染。我们注意到,如图 1-1 所示,图像自动在 3D 视图中呈现。关于立体渲染的更多信息请参考《Reference Guide》第 11.4.1 章节"背景立体渲染"。立体渲染是一种快速有效的方法,无需分割即可完成灰度数据的三维可视化。在本案例中,无需开启立体渲染。关闭方法:单击 View->3D background->Ren der 图标,取消高亮(图 1-2).

图 1-2 关闭立体渲染

4. 关闭立体渲染后,软件界面如图 1-3 所示。

图 1-3 关闭立体渲染后的背景图

1.3.2 消除图像噪声

通过检查图像,我们注意到数据中存在一定能级的噪声.选择适当的滤波器可以将其去除。递归高斯滤波器(Recursive Gaussian filter)是一种典型的滤波器。在某些简单的情况下,如图像中噪声的频率处在高于特征频率的一定范围之内,递归高斯滤波器就可以有效地将噪声过滤掉。当高斯滤波不合适时,它的使用将会导致特征信息的丢失,这种情况下运用噪声衰减滤波器(Noise reduction filter)就显得十分必要了。本例中,我们将使用高斯滤波器。当然,高斯滤波的结果是否可接受,还是取决于潜在特征的选择。

运用递归高斯滤波器:

1. 点击 Image processing \rightarrow Smoothing \rightarrow Recursive Gaussian \blacksquare

2. 在递归高斯滤波器(Recursive Gaussian)窗口(图 1-4)

a) 在 Apply...窗口中选择 on active background. 滤波器将应用到背景中。

b) 在 Gaussian sigma 参数中,输入 x sigma(pxiels)的值为 1.0,如图 1-4 所示。并 勾选 Cubic values,以保证 Gaussian sigma 的值在 Y 和 Z 方向保持一致。

c) 按下 Apply 按钮,应用滤波器

Recursive Gaussian	-
Target volume: auxetic1_50.hdr	
Apply	
on active background	
Oon active mask	
Mask smoothing operations	
Binarise	
Gaussian sigma	
X Sigma (pixels):	1.0
Y Sigma (pixels):	1.0
Z Sigma (pixels):	1.0
	Cubic values
Apply	

图 1-4 递归高斯滤波器窗口

注释 Sigma 参数会应用到背景上,在这里每个方向使用等于或略大于1个像素,会产生比较好的效果.

1.3.3 目标区域的分割

这一图像适合阈值分割,可使用诸如 Threshold 或 Floodfill 工具.

阈值分割首先需要确定合适的阈值界限。Interactive Threshold 函数通过高亮显示图像中落于用户定义界限间的图像区域,从而简化了这一过程。交互阈值需要在蒙板内产生作用,因此首先要创建蒙版。

创建一个新的蒙板:

- 1. 在 Data browser 中, 右键点击 Mask (ON),建立新蒙版
- 2. 选择 Create new mask 如图 1-5

现在我们可以使用交互阀值 Interactive threshold 功能了。

使用图像阀值分割:

- 1. 点击 : Image processing→Segmentation→Threshold 🕌
- 2. 在 Threshold 窗框中(图 1-6):

a. 勾选 Interactive threshold 里面的 **Enable** 和 **Apply on slider release** 两个 选项。

b. 移动阈值滑动条来更新当前的活动视图。它能帮您找到分割数据组的正确 值。在这个例子中,40 的较低值(Lower value)、255 的较高值(Upper value)看起来比较合适。

c. 在蒙板操作(Mask Operation)列表中,选择 **Replace with mask**,它将 会使当前值替换以前的分割。

- d. 在 Perform on 列表中,选择 All slices.
- e. 按下 Apply 按钮。

Interactive threshold	
V Enable	Preview
Apply on slider release	
Range	
Lower value: 40 🚔 4	40
Upper value: 255 A	255
Calibration	
None Mistogram	n Profile line
Mark assertion	Defermen
Mask operation	Perform on
Create new mask	 Active slice
Merge with mask	Selection
Replace with mask	All slices

图 1-6 阀值设置窗框

如图 1-7,现在您已经分割出了目标区域,它的灰度值在 40 和 255 之间, 而且处在这 个范围内的点都被高亮红色显示。

图 1-7 在阀值工具处理后的屏幕

阈值算法所缺少的一个特别的性质就是连通区域的保留,即像素的选择完全基于灰度值,而并没有在图像中寻找相连的区域。但这一特点并不符合真正的 Floodfill 工具,它运用了基于阈值的区域生长算法。种子填充算法需要阈值,例如 在先前定义的,或者在现有的蒙板(40-225)内应用。

运用 Floodfill (种子填充) 工具做图像分割:

- 1. 右击 Mask 1,并选择 Toggle visibility (或使用快捷键 Ctral+T)
- 2. 点击 Image processing→Segmentation→FloodFill 🔌.
- 3. 在 FloodFill 面板中 (如图 1-8):
 - a. 在 Apply...列表, 选择...from active background.
 - b. 将下限和上限(Lower and Upper)阈值调整到 40-255。
 - c. 在 Mode 列表,选择 3D (local).
 - d. 在 Mask operation 列表中, 选择 Create new mask.
 - e. 在 Perform on 列表中,选择 All slices.

oodFill			
Apply	124		
from active backgrou	ind		
 trom active mask 			
Parameters			
Values specify			
Lower and upper three	shold		
O +/- DELTA			
Lower value: 40	40		
Unnervaluer 255	255		
oppervalue 200 💽	200		0
			ų
Mode			
🔿 2D 💿 3D			Bd
Mask operation		Perform on	-
		Active slice	
Create new mask			
Create new mask Merge with mask		Selection	

图 1-8 Floodfill 面板

4. 运用种子填充, 左键点击属于泡沫的一个像素点, 注意不要选中空气(例如,像 素点 **13,36,0**) 如图 **1-9**

图 1-9 应用 Floodfill (蓝色蒙版) 的泡沫

注释

因为较低值和较高值一直实时更新,所以有时更容易先键入较高值,再写入较低值。

创建分割蒙板的三维预视图:

1. 可视化 Mask 1, 将显示两个蒙版。

2. 点击 **3D** preview → General → Model preview [●]来建立 **3D** 预览。创建预览 后,界面如图如图 **1-10** 所示。我们可以看到现在有两个不同颜色的蒙板。Mask2 包含包含了一个整体连通的立体空间(通过种子填充得到), Mask1 仍旧包含所 有的"岛屿"(由阈值得到)。

图 1-10 在建立 3D 预览图后的 3D 模型预览

1.4 网格剖分和导出(使用 Scan IP 图像处理模块和+FE 有限 元模块)

这一节将描述准备和输出模型的三个方法;首先是输出 STL,然后是 FE,最后 是 CFD。

1.4.1 输出用于快速原型的表面模型

在这一小节,我们要创建适用于快速原型的 STL 文件。

创建表面模型:

1. 在 Home 标签中的 Model 组里, 点击 new surface model (图 1-11);

图 1-11 建立一个新的表面模型

2. 在 Dataset browser, 拖曳 Mask2 到 Model1 (Surface, active)

3. 新模型会在 Working dataset 中改变。检查 working dataset 是否转变为 Models 模式, 如图 1-12 所示

Working dataset:	🖱 Masks 🔘 Models
Background images	
auxetic1_50.hdr (vi	isible, active)
 Masks (OFF) 	
Mark 2	
 Identified 	
Models (ON)	
Models (ON)	active)

图 1-12 从 Masks 开关变为 Models 模式

设置模型并划分网格:

 右键单击当前活动模型(Mask 2)并选择模型配置(Model configuration...)如 图 1-13。

Working dataset:	Masks Models
Background images	9-15 - 9-1-1-20
auxetic1_50.hdr (visil	ble, active)
 Masks (OFF) 	
O Mask 2	
Mask 1	
Models (ON)	
Models (ON)	• •
Models (ON) Model 2 (Surface, Mask 2 (visible	Duplicate
Models (ON) Model 2 (Surface, Mask 2 (visible	Duplicate Delete
Models (ON) Model 2 (Surface, Mask 2 (visible)	Duplicate Delete Rename

图 1-13 打开配置模型对话框

注释

你也可以打开 Model configuration 对话框,在 Dataset browser 中双击模型名称;或者通过点击 Surface model→ Model setup → Setup model Note 或通过使用快捷键[Ctrl]+[M]

2. 设置 Model configuration (图 1-14):

a. 将输出格式(Export type)选为 STL(RP);

b. 在 General 标签中勾选 Use smart mask smoothing,并留下其他默认设置。这将在生成网格之前保证几何和拓扑结构保持平滑。

odel confi	guration			
Model:	Model 1	Model type	Surface	Export type STL (RP)
General	Surface settings			
Smart	mask smoothing (pre-processing)			Export options
Mode	:			Coordinate system:
	Use greyscale values			Local
() E	Binarise before smoothing			Global
V Us	e smart mask smoothing			Export length unit:
Numb	20			Millimetres (mm) Factor (from mm): 1.0
V All	low part change			

图 1-14 在配置模型对话框中的一般标签

c. 在表面设置(Surface setting)标签页中(图 1-15),勾选批量衰减
(Decimate)并选择 Reduction in %,设置其值为 10。这个设置将使表面三角面片减少 10%。保留 Use triangle smoothing 的默认值 10。

Iodel: Model 1	Model type Surface	Export type STL (RP)
ieneral Surface settings		
Triangle smoothing		Decimation
Use triangle smoothing		V Decimate
Number of iterations		Target
10		Reduction in %
		Max triangles (global)
		Max triangles (per part)

图 1-15 表面设置标签

d.点击 Close 继续

注释

smart mask smoothing 将对体素运用拓扑和容积保持的平滑。triangle smoothing 对表面的 三角面片运用平滑算法来改善质量。

3. 在三维视图工具栏中,选择模型界面(Models)并切换到全模型(Full model),如图 1-16。

File	Home Imag	ge proces	sing	Measu	rements	Surface	model	View
Setup model	General	Fast preview	Model preview	Full model	Clear	Fast preview settings	Export	Quality inspection
Contraction of	Model setup	Paracessa:		Gi	eneral			Inspection

图 1-16 在表面模型窗口的全模型命令

4. 网格操作选项应用后与图 1-17 应该相类似。

图 1-17 表面的上的顶点视图

输出 STL 模型:

1. 输出三维视图中可见模型的 STL 文件,在三维视图工具栏里点击 Surface model → General Export 输出 (Export) 键 .

- 2. 将会出现 STL 输出对话框 (图 1-18):
 - a. 视您的需要选择 ASCII 或是 Binary 的 STL 文件类型;
 - **b**. 点击输出(Export)。

图 1-18 STL 输出对话框

- 3. 输出 STL (RP) 的 对话框将出现:
 - a. 选择保存的位置和文件名,例如 auxetic1_50.stl;
 - b. 点击保存 (Save) 输出 STL 文件。

现在我们已经获得 STL 文件,如果想得到 FE 和 CFD 的模型请继续教程。

1.4.2 输出用于 FEA 的模型

在本例中,我们将创建一个用于在 LS-DYNA[®]中进行有限元分析的网格。目标是建立一个具有节点组和表面的网格,以便能够导入至仿真软件进行分析。

创建新的 FE 模型:

 在 Dataset browser, 右击 Models 并选择 Create a new FE model (图 1-19) 或者 点击 Home → Models → New FE ▲.

图 1-19 建一个新的 FE 模型

- 2. 确保新的 FE 模型为 active 状态, 在 Dataset browser 中左击模型名称 Model 2 (FE).
- 3. 拖曳 Mask 2 到 Model 2 (FE, active)

设置和网格模型

- 1. 右键点击 Model 2 , 打开 Model Configuration 对话框。
- 2. 在 Model configuration 对话框中,选择模型类型 Model type 为 FE,输出格式 Export type 为 LS-Dyna volume (solid/shells)
- 3. 在 General 标签页中(图 1-20), 勾选 Use smart mask smoothing, 其他保留默 认值。

Model:	Model 2		M	odel type	FE		Export type	LS-Dyna vo	lume (solid/shells)		3
General	Volume meshing	Materials	Contacts	Node sets	Shells	Mesh	efinement				
Smart Mode @ L © F	t mask smoothing (j s Use greyscale values Binarise before smo	pre-processi s othing	ng)			Ð.	iport options oordinate syst C Local Global	tem:			
V Us Numi	e smart mask smoo ber of iterations: 20 + ew part change	thing				Đ	wort length u	mit: mm) 🔻	Factor (from mr): 10	

图 1-20 模型设置的 Geleral 选项卡

- 4. 在 Volume meshing 标签页中(图 1-21):
 - a. 在 Mesh creation algorithm 下拉菜单中,保留默认值。基于+FE Grid 算法建 立网格,提供高质量的六面体和四面体单元的网格模型 Mixed Hexahedra/tetr ahdra(linear)。如需改为全四面体网格,可在单元类型 Elements type 的设置 框中进行选择。
 - b. 在 Other options 中选择 Also Export Surface model (STL),这将输出一个基于 FE 模型扩展的 STL 模型. (Other Options 在 Show advanced paraments 处于 收起状态时可见)

Model	Model 2		Model t	ype [FE	•	Export type	LS-Dyna volume (solid/shells)	1
General	Volume meshing	Materials	Contacts Nod	e sets	Shells	Mesh n	efinement		
Mesh cre	sation algorithm	+FE Grid	•						
Meshing	algorithm settings								-
Element	ts type Mixed here	ahedra/tetrah	edra (linear)				•	Avoid guad/tet mismatch at interfaces betwe	een parts
	27 (mm)							Convert all tetrahedra to hesahedra	99000000
Other of	ptions								
Other of	ptions								
Other of Red V Also	ptions uced integration o export surface mo	odel (STL)							
Other op Red V Also	ptions . uced integration b export surface mo	odel (STL)							
Other oj Red Snaj Allo	ptions uced integration b export surface mo p to parent surface w gaps at n-part ju	odel (STL) : unctions							

图 1-21 在模型配置对话框中的体网格页

- 5. 在 Materials 标签页中(图 1-22):
 - a. 把 Material type 设置为 Homogeneous (均质)
 - b. 现在我们能输入一些值来建立一个线性经典材料模型(如图 1-22)

Model	Model 2	Model type	FE	÷	Export type	LS-Dyna volume (solid/	shells)
General	Volume meshing Materials	Contacts Node se	ts Shells	Mesh n	efinement		
Material	type Homogeneous		▼ N	ame MA	SK 2_HMG		Load material from library
Mas	s density	Young	's modulu			Poisson's ratio	
7.85	e-6	2.1e8				2e-1	

图 1-22 材料标签页

 在 Contacts 标签页中,选择 From Mask 2 To Mask2 并且点击 Add contact Pair ,如图 1-23 所示。这将建立一个自接触的条件。在 Summary 选框中,将 会显示所连接的部件。

Aodel:	Model 2		Model type	FE	• Exp	ort type	LS-Dyna volume (solid/shells)
Seneral	Volume meshir	ng Materials Co	intacts Node set	ts Shells	Mesh refine	ment	
From					То		
Mask 2					Bounda Bounda Bounda Bounda Bounda Mask 2	ry_Xmin ry_Xmax ry_Ymin ry_Ymax ry_Zmin ry_Zmax	
Add s Summi	urface Ad rry 2 <-> Mesk 2	d contact pair	Add all possible	contact pai	rs		Add/manage mesh selection volumes
	and the second se	Paracus all cost	-				
Rem	THE CONTRACT	PLATE AND AND A STREET					

图 1-23 连接标签页(模型配置对话框)

- 7. 在 Node Sets 标签页中, (图 1-24)
 - a. 选择 From Mask2 to Boundary_Zmin, 并点击 Add Node set
 - b. 重复 From Mask2 to Boundary_Zmax.
 - c. 这样就会建立一个节点集,来约束底部泡沫并且允许应用到顶部的边界位移 条件。
- 8. 点击 Close 关闭 Model configuration

Indels				
iourei.	Model 2	M	lodel type FE	Export type LS-Dyna volume (solid/shells)
ieneral	Volume meshing	Materials Contacts	Node sets Shell	ells Mesh refinement
From				То
Mask 2	2			Boundary, Xmin Boundary, Ymin Boundary, Ymax Boundary, Zmin Boundary, Zmin Boundary, Zmax Mask 2
Add r Summ Mask	ande set Add a ary 2 - Boundary Zmin	Il possible node sets		Add/manage selection volumes
Rem	ove node set	emove all node sets		

图 1-24 Node set 标签页

9. 在 FE model → General 选项卡中,点击 Full model [●],来创建新的体网格。将 出现 Meshing process 进度条,在完成计算之后, Scan IP 的体网格如图 1-25 所 示。

图 1-25 完成 FE 网格

查看网格质量信息

点击 Home→Toolboxes→Log , 或者在工作区直接切换 Log 标签, 在此 查看已生成的单元质量和数量(图 1-26)。

Document Model statistics Mask statistics Log Scripting Welcome Load more Load all 2013-06-05 16:13:58 - New Mesh Model: Model 1 Duration : 4s Number of volume elements: Tetrahedral elements: 94392 Hexahedral elements: 4316 Total number of volume elements: 98708 Volume of elements: Tetrahedral elements: 0.000269209 Hexahedral elements: 0.00011943 Total volume of elements: 0.000388639 Number of nodes: 30660 In-out aspect ratio - Mean: 0.676547 n-out aspect ratio - Min: 0.200053 n-out aspect ratio - Number of elements with ratio worse than 10.00: 0 (0.0000%) Edge length aspect ratio - Mean: 1.92132 Edge length aspect ratio - Max: 11.7156 Edge length aspect ratio - Number of elements with ratio greater than 10.00: 1 (0.0010%) Angular skew - Mean: 0.427151 Angular skew - Max: 0.913613 Angular skew - Number of elements with skew greater than 0.95: 0 (0.0000%) Tet volume skew - Mean: 0.478505 Tet volume skew - Max: 0.974277 Tet volume skew - Number of elements with skew greater than 0.9999: 0 (0.0000%) Shape factor - Mean: 0.521495 Shape factor - Min: 1.0301e-008 Shape factor - Number of elements worse than 0.0001: 0 (0.0000%) Tet dihedral angle - Min: 7.85197 Tet dihedral angle - Max: 171.737 Tet dihedral angle - Number of tetrahedra with angle less than 5: 0 (0.0000%) Tet dihedral angle - Number of tetrahedra with angle more than 170: 14 (0.0148%) Jacobian - Mean: 0.546657 Jacobian - Min: 0.0433784 Jacobian - Number of elements worse than 0.05: 1 (0.0010%) 2013-06-05 16:13:59 - Mesh generation

In-out aspect ratio - Mean (各面的入出比中值)是传统 +FE 衡量标准,以最 小质量为目标。 在本例中,此数值已经达到了 0.6,一般来讲,只要超过 0.1 都可以认为是高质量的网格。

此外, Edge length aspect ratio-Mean (各面边缘长度比中值)作为比较值给出。通常允许的最大值为 10。本例中平均比值为 1.9,最差的是 7.6。

导出 FE 模型

1. 保存网格,并点击 FEmodel→General→Export

2. 在导出网格后会出现 Export Summary 对话框,如图 1-27 点击 Close 以继续。

ort Summary	
Model export (Nodes Elements Part: M Contacts Node sets Contact	to LS-Dyna volume (solid/shells = 32929 lask 2 t: Mask 2 self-contact t NodeSet: Mask 2 with ZMIN t NodeSet: Mask 2 with ZMAX

图 1-27 Export Summary 对话框

- 3. 现在将导出 STL 表面模型, 按照前面在 Model configuration 中的设置。
 - a. 如果不需要,点击 NO 取消;
 - b. 如果需要保留输出 STL 文件,则点击 YES;
 - c. 选择 ASCII 或者 Binary 决定输出的 STL 类型。

已经创建好的 FE 网格,可用于在 LS-DYNA[®]中进行有限元分析。如果您想创 建一个 CFD 网格,请继续学习下面的指导。

1.4.3 输出用于 CFD 分析的模型

这一章节,我们要创建 CFD 网格来使用 FLUENT®模拟空气通过泡沫的流动。因此,我们首先需要建立一个新的蒙板来定义空气流动的区域,通过复制和 逆向泡沫蒙板能够实现。

建立流体区域

- 1. 回到 Document 的工作区域标签。
- 2. 在 Dataset browser 的顶部切换 Models 模式为 Masks 模式。
- 3. 复制 Mask2 ,即右击 Mask 2 的名字,选择 Duplicate (如图 1-28),这将建 立一个新的蒙版,命名为: Copy of mask2 。另外,双击蒙版也能直接复制.

Working dataset:		Masks	Models
Background	images _50.hdr (visible, act	ive)	
Masses	Toggle visibility Isolate		
Mod	Add to active more Move down	del	
	Duplicate		
Show visi	Change colour Delete Rename	•	
_	Boolean operation		

图 1-28 复制蒙版

图 1-29 Mask2 的补集

- 4. 逆向复制(求补集) Mask 2, 右击 copy of mask 2, 选择 Boolean operation → Invert → on all slices
- 5. 重新命名 Copy of mask2 为 Air,选中蒙版名称之后按 F2 键,键入新名称。
- 6. 隐藏 Mask1 和 Mask2,分别右键点击两个蒙版并选择 Toggle visible.
- 7. 预览结果,点击 3D preview → General → Model preview 🔊,如图 1-29。

建立 CFD 模型

- 1. 切换为 models mode, 在 Dataset browser 的顶部选择 Models.
- 2. 在 Dataset browser 中,右击 Models (ON) 并且选择 creat a new CFD model 如图 1-30

拖拽 Air 蒙版到新的模型,这个例子是 Model3 (CFD)

3. 重命名为 Airflow volume

配置模型与剖分网格

- **1.** 打开 Model configuration 对话框,右击 Model3 (CFD) 并选择 Model configuration...
- 2. 在 Model configuration 对话框改变 Model Type 为 CFD,输出格式 Export type 为 Fluent volume
- 3. 在 General 中,选中 Use smart mask smoothing, 其他保持默认值。
- 4. 在 Volume meshing (体网格)标签页中(图 1-31):
 - a. 在 Meshing algorithm selection (网格化分算法选择)中,将算法改为 +FE-Free。
 - b. 将网格的 Compound coarseness (粗糙度) 改为 -25, 这会在维持模型细节 的情况下减少单元数量。

Adel configuration	n	
Model: Airflov	e volume Model type CFD • Export type Fluent volume	•
General Volum	ne meshing Materials Boundary conditions Mesh refinement Boundary layers	
Mesh creation a	dgorithm +FE Free *	
Meshing algorit	hm settings	
Compound cor (-50 = coarse, 0	anseness 0 = +FE Grid surface, +50 = fine)	-Z (*
Elements type	All tetrahedra (linear)	
Show advan	nced parameters >> Edit advanced parameters	
Other options	theoration.	
Also export	t surface model (STL)	
Snap to par	rent surface	
Allow gaps	; at n-part junctions	
Reset to defau	<i>k</i>	
	Close	

图 1-31 网格配置对话框

- 5. 在 Materials 标签,确认 Material type 为 Fluid
- 6. 在边界条件(Boundary Conditions)中,建立流入速度入口 velocity inlet 和压力 出口 pressure outlet,分别在 Zmin 和 Zmax 来模拟外部条件下的泡沫。执行下 列操作

- a. 选择 Form Air To boundary_Zmin , 点击 Add surface
- b. 在 Summary 中看到已建立的条件。在此可以进行编辑,点击条件 Air-Boundary-Zmin (wall),然后将 boundary condition type 从 wall 改为 velocity inlet,如图 1-32

Modet: Airflow volume	Model type CFD	Export type Fluent vi	olume	
General Volume meshing Materials	Boundary conditions Mesh or	finement Boundary layers		
From		To		
		Background Boundary,Xmin Boundary,Xmas Boundary,Ymin Boundary,Ymas		
		Boundary, Zmas Interior		
Add surface Add contact pair	Add all possible contact pe	in	Ad	ld/manage mesh clipping volumes
Air - Boundary Zmin (Velocity inlet)		Boundary condition type		
		Wall Symmetry Webschylmier Pressure inlet Indet vent Indet vent Intake fan		Note: All possible contacts (this includes contacts that are not issted in Contacts summary) are exported as "Wall" by default.
		Exhaust fan Outlet vent		

图 1-32 边界条件

c. 选择 From Air To Boundary—Zmax, 但此时将 Boundary condition type 设置 为 Pressure Outlet 如图 1-33

lar - Boundary Zmin (Velocity inlet)	Boundary condition type			
Ar - Beundury, Zmwi (Pyesurs duflit)	Wall Symmetry Velocity inlet Pessure inlet Initia vent Initia et an Densure motion Enhance motion Enhance motion Cutter vent Cutter Interfacie Perous jump		Note: All possible contacts (this includes contacts that are not listed in Correct, surmary) are exported as "Wall" by default.	

图 1-33 设定边界条件

- 7. 点击 Close 结束设置。
- 8. 在菜单栏 CFD model → General 中点击 Full model 🌑, 运行结果如图 1-34

1-34 3D 视角在完成 CFD 网格之后

查看网格质量信息,点击 Home → Toolboxes → Log ^{III},如图 1-35。

图 1-35 网格质量统计标签

输出 CFD 模型:

1. 在 CFD model →General→ Export 采保存网格;

2. 输出网格后,将出现 Summary 对话框。点击 Close 继续;

3. 选择文件名进行保存。

您现在已经创建了用于 FLUENT®中进行 CFD 分析的网格模型。

关于中仿科技

中仿科技(CnTech)是中国区领先的仿真分析软件和项目咨询解决方案的供应商。 与 Simpleware 公司达成战略合作伙伴关系,为我国的高校和企业科研用户提供最全 球最先进的图像处理及数值计算网格生成产品和服务。Simpleware 公司的技术与中 仿科技精益研发技术相辅相成,双方的合作将更加有利于精益研发技术的丰富与发 展。作为国内仿真技术行业的领跑者,中仿科技一直致力于仿真技术领域最专业的 软件系统集成与实施和项目咨询,协助用户提高产品技术附加值、提升核心竞争 力。更详细的信息请参考:www.cntech.com.cn