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ROCK SUPPORT DESIGN FOR SPECIAL LIGHTING CAVERNS IN HIGH
IN-SITU STRESS ROCK MASS
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(1. SINTEF Rock and Soil Mechanics Trondheim 7465 Norway
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Abstract Six caverns are designed in the world’s longest twin-tube road tunnel the Qinling Zhongnanshan
tunnel for the special lighting and driving safety purpose. The tunnel is excavated through the Qinling Mountain
Range of Shaanxi Province China where the maximum rock overburden is about 1 800 m. In-situ rock stress was
measured by overcoring method in two boreholes close to the cavern sites where overburden is 400 and 1 600 m

respectively. The measurement result indicates very high rock geostresses. To meet the lighting requirements the
spindle-shaped caverns are designed to have a length of 200 m and a maximum span of 22 m. However restricted
by the distance between the two existing tunnels the minimum width of the pillar between the caverns is left to be
only 8 m. The main features of the caverns include (1) high in-situ stress (2) generally good rock and (3) small
pillar in comparison to the cavern size which imposes great challenges to the rock support design. The support
design is based on empirical approach from rock mass classification Q-system and it is then verified by the
numerical analysis. The supporting system including both temporary support and permanent support consists of
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bolting and shotcreting. In order to ensure the cavern stability during construction and in operation a complete
construction procedure including sequence of excavation bolting and shotcreting is specially defined.
Monitoring measures are also proposed. For the caverns located in the extremely high stress region a flexible
support system is designed allowing the rock mass to partially deform before the permanent support is installed
thus ensuring cavern stability and the well-functioning of the rock bolts and shotcrete as permanent support.
Commercial codes FLAC®® and Phase 2 are used in 3D and 2D analyses respectively. The purpose of the
three-dimensional analysis is to demonstrate the 3D effect and variations of stress and deformation along the
tunnel axis while the two-dimensional analysis is to study the functioning of support elements in each excavation
stage. Numerical analysis verified the support design with controlled deformation and well functioning of the
permanent support elements of both rock bolt and shotcrete.

Key words tunnelling engineering road tunnel rock support design in-situ stress numerical analysis rock
mass classification
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Fig.2 Core disking resulting from extremely high in-situ
stress
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Table 2 Mechanical parameters of rock masses

E (pP 23 cp Cr
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EL/W1 1l 20 0.250 50 40 15 0.5

E2/W2 II* 29 0.215 57 47 1.9 0.6

E3/W3 I 20 0.250 50 40 15 0.5
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