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Abstract
Physically realistic simulations for large breast deformation are of great
interest for many medical applications such as cancer diagnosis, image
registration, surgical planning and image-guided surgery. To support fast,
large deformation simulations of breasts in clinical settings, we proposed
a patient-specific biomechanical modelling framework for breasts, based on
an open-source graphics processing unit-based, explicit, dynamic, nonlinear
finite element (FE) solver. A semi-automatic segmentation method for tissue
classification, integrated with a fully automated FE mesh generation approach,
was implemented for quick patient-specific FE model generation. To solve
the difficulty in determining material parameters of soft tissues in vivo for FE
simulations, a novel method for breast modelling, with a simultaneous material
model parameter optimization for soft tissues in vivo, was also proposed. The
optimized deformation prediction was obtained through iteratively updating
material model parameters to maximize the image similarity between the
FE-predicted MR image and the experimentally acquired MR image of
a breast. The proposed method was validated and tested by simulating
and analysing breast deformation experiments under plate compression. Its
prediction accuracy was evaluated by calculating landmark displacement errors.
The results showed that both the heterogeneity and the anisotropy of soft tissues
were essential in predicting large breast deformations under plate compression.
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As a generalized method, the proposed process can be used for fast deformation
analyses of soft tissues in medical image analyses and surgical simulations.

(Some figures may appear in colour only in the online journal)

1. Introduction

Physically realistic modelling of breasts has great potentials in medical applications such
as cancer diagnosis, image registration, surgical planning and image-guided surgery. A
common requirement for these applications is to provide the estimation of large deformation.
Biomechanical models using finite element (FE) methods have been employed for this aim
in assisting breast cancer diagnosis (Ruiter et al 2002), MR image-guided biopsy (Azar
et al 2001), image registration (Han et al 2011, Rajagopal et al 2010, Ruiter et al 2006) and
surgical simulations (del Palomar et al 2008, Lapuebla-Ferri et al 2011). Typically two kinds of
breast deformations were investigated: compression deformation by plates and gravity loading
deformation. Plate compression simulations were used to build the spatial correspondence
between the 2D projection and the 3D volume of the breast in multimodality image registration
(Chung et al 2008, Kellner et al 2007, Ruiter et al 2006), or between undeformed and deformed
3D volumes in MR image-guided biopsy (Azar et al 2001). Deformation simulations of breasts
under gravity were used to estimate the breast shape change with the patient’s position change
in breast surgical planning and image-guided surgery (Carter et al 2006, Han et al 2011, Ruiter
et al 2006).

In previous studies, breast tissues were simulated with linear elastic or nonlinear
hyperelastic models and a wide range of material properties for breast tissues were used,
mainly from ex vivo experimental data. Some studies on breast compression showed that
the deformation of breasts depended very weakly on the material model and mechanical
properties of breast tissues (Azar et al 2001, Tanner et al 2006). This was due to the fact that
in these studies the plate compression was modelled with the so-called displacement loading,
i.e. by applying displacement constraints to the surface of a breast. To investigate the real
effects of material properties and material models on breast deformation in a physically based
biomechanical model, the interaction between the compression plate and the breast tissues
should be explicitly modelled, e.g. with a contact model.

Both the accuracy and the computation time of patient-specific modelling are important
in clinical applications. Although commercial FE packages (e.g. ABAQUS, ANSYS, LS-
DYNA and MSC/MARC) are very powerful tools for large deformation simulations,
longer computational time will limit their applications in clinical settings. To perform real-
time computations on large soft tissue deformation, we developed a nonlinear FE solver,
implemented on graphics processing units (GPUs) for parallel execution (Taylor et al 2008,
2009). More recently, a frictionless contact model was implemented to facilitate interaction
simulations such as the contact between compression plates and breast tissues during x-ray
mammogram (Tzu-Ching et al 2010), and the sliding between tissues and the chest wall (Han
et al 2011).

The original contributions presented in this paper include the following: (1) to support
fast, large deformation simulation of breasts for clinical applications, we propose a patient-
specific biomechanical modelling framework based on a fast, open-source, nonlinear FE
solver implemented in our group; (2) to solve the difficulty in determining the material
parameters of soft tissues in vivo for FE simulations, we develop a novel material parameter
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Table 1. Breast volume, maximum compression and tissue types in the compression experiment.

Breast Maximum
Patient volume (cm3) compression (%) Tissue types

Case 1 1364 31.9 fat, fibroglandular tissue, muscle, tumour
Case 2 865 38.9 fat, fibroglandular tissue, muscle
Case 3 464 40.0 fat, fibroglandular tissue, muscle
Case 4 1064 50.4 fat, fibroglandular tissue, muscle
Case 5 716 19.4 fat, fibroglandular tissue, muscle

optimization procedure for breast tissues in vivo; and (3) we describe our implementation
of a semi-automatic process for quick generation of patient-specific FE models from MR
volume images, which includes tissue classification, surface extraction, FE volumetric mesh
generation and material parameter assignment. Using breast compression experiments and
MR breast images before and after compression, specifically acquired for plate compression
studies, we have evaluated the prediction accuracy of the proposed method and investigated
the effect of material models on the deformation prediction.

2. Materials and methods

2.1. MR image data of breasts

To present and evaluate the method for patient-specific biomechanical modelling of breasts
subject to large deformation, we simulated and analysed a group of five breast compression
experiments. In the compression experiments, a specially designed experimental rig (Tanner
et al 2011), consisting of a support structure, a fixed plate and a movable plate, was used
to compress breasts, similar to the compression process occurring during x-ray mammogram
or MR image-guided biopsy. MR image data were acquired for both uncompressed and
compressed breasts in prone position. Uncompressed MR images were acquired when the
breast of a patient was placed between the two parallel plates without any applied force from
the movable plate, while compressed MR images were acquired after the movable plate was
moved manually towards the fixed plate as much as the patient could comfortably tolerate.
The MR images had a voxel size of 1.0 × 1.0 × 2.5 mm3. As listed in table 1, the maximum
compressions on breasts were within the range of 19–50% of initial breast thickness. For
each case, 17 landmarks, including 12 internal landmarks, 4 fiducial markers on the breast
surface and the nipple, were selected in the uncompressed MR image, and their corresponding
positions in the compressed MR image were also identified.

2.2. Patient-specific FE model of breasts

To generate a patient-specific FE model from magnetic resonance images (MRI), we follow
four steps. These are as follows: (1) tissue classification/segmentation, (2) tissue surface
reconstruction, (3) FE volumetric mesh generation and (4) FE model construction. Both
the tissue segmentation and the FE mesh generation often require manual intervention. In
this study, a semi-automatic segmentation approach and a fully automated mesh generation
method were implemented in order to minimize manual intervention and reduce the time for
FE model construction.



458 L Han et al

(a) (b) (c)

Figure 1. Breast MR segmentation and material assignment: (a) original, axial MR slice, (b) after
segmentation and (c) after tissue assignment to FE elements.

2.2.1. Tissue classification. A female breast is essentially composed of glandular lobules,
milk ducts, fat and Cooper’s ligaments, surrounded by muscle and skin (Netter 2010). Cooper’s
ligaments, running from the pectoral fascia through and around breast tissues to the dermis
of the skin, are connective tissues to support the breast. Figure 1(a) shows an example of MR
breast images. In this image, fibroglandular tissues (dark gray), fatty tissues (light gray), skin
(light gray), tumour (dark) and muscle (dark gray) are visible in the MR image, while Cooper’s
ligaments are invisible. Considering that the skin has little influence on breast deformation
in compression experiments (Azar 2001, Ruiter et al 2006, Tanner et al 2006), we treat
skin and fat as a single material (labelled fat for convenience). All MR volume images were
therefore segmented into fat, fibroglandular tissue, pectoral muscle and tumour (if present).
The pectoral muscle was first segmented from the rest of the breast volume, manually, using
an interactive tool in ANALYZE (www.analyzedirect.com). Once the pectoral muscle was
segmented, an automated method, integrating an intensity model, a spatial regularization
scheme and bias field inhomogeneity correction, was used to segment fat and fibroglandular
tissue from the pre-contrast breast MR image (Mertzanidou et al 2010, Cardoso et al 2011).
The method consists of an expectation-maximization algorithm with Markov random field
regularization, which has been implemented as an open-source program called NiftySeg
(http://niftyseg.sourceforge.net). Compared to thresholding methods, this method gives a more
detailed description of the fibroglandular tissue by calculating a probability of each tissue type
being present in each voxel. This is the partial volume effect in which a voxel may represent
more than one kind of tissues. We then assume that a voxel has a specified tissue type if its
probability value is more than 0.5 for this tissue type. Tumour was also segmented manually
using ANALYZE. Thus, the tissue type was fully determined for every voxel in an MR
image. Figure 1 shows the tissue structure of a breast in the 2D image slice before and after
segmentation.

2.2.2. Surface reconstruction of breast tissues. To generate the volume mesh of a breast,
the surface of each tissue type was first determined from segmented MR images using a
marching cube algorithm (Lorensen and Cline 1987). The tissue segmentation eliminated
surface ambiguities in the marching cube process. The surface generation process was very
fast due to direct triangulation from a look-up-table of properties for the marching cube routine.
To obtain the computational efficiency for FE analyses, smoothing and decimation processes
were employed. Figure 2(a) shows the surfaces of four different tissues extracted from the
segmented MR image shown in figure 1(b). The surface reconstruction process was completed
in less than 10 s.

http://www.analyzedirect.com
http://niftyseg.sourceforge.net
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(a) (b)

Figure 2. Example tissue model: (a) 3D surfaces of four tissue types and (b) 3D FE volumetric
mesh representing these tissue types.

2.2.3. FE mesh generation. Mesh generation is often the most time consuming component
of FE analyses. It is still a challenging task to mesh arbitrary, multiple material domains for
good-quality meshes. Although commercial software, such as HypermeshTM, ANSYS/ICEM
CFD and SimplewareTM, can be used for multi-domain meshing, these require time-consuming
manual intervention and repair (Wittek et al 2010). To facilitate the automation of FE meshing,
we used a single-domain tetrahedral meshing algorithm to automatically generate a patient-
specific, 3D volumetric mesh based on the tissue surfaces extracted from segmented MR
images. The automatic process of tetrahedral meshing consisted of two steps: a coarse meshing
process followed by a refining process. A coarse mesh was generated from the whole surface
of a breast with Tetgen (http://tetgen.berlios.de/), an open-source mesh generator for 3D
tetrahedron meshing. To generate an FE mesh accurately representing the geometry of each
tissue type, the coarse mesh was refined by using the sparse points on the surfaces of each
tissue type as additional insert points in Tetgen. Figure 2(b) illustrates a 3D FE mesh generated
from the surfaces of the whole breast and from the surfaces of four tissue types shown in
figure 2(a). For this example, the whole breast was meshed into 29 307 nodes and 161 997
four-node tetrahedral elements. The mesh quality was checked by ABAQUS/CAE using three
default element failure criteria: shape factor (<0.001), face corner angle (<5 or >150) and
aspect ratio (>10). The shape factor is defined as the ratio of element volume and optimal
element volume, where optimal element volume is the volume of an equilateral tetrahedron
with the same circumradius as that of the element (the circumradius is the radius of the sphere
passing through the four vertices of the tetrahedron). The face corner angle is the angle between
the two edges of a surface in a tetrahedral element. The aspect ratio is the ratio between the
longest and the shortest edge of an element. Breast tissues are highly incompressible; therefore,
a four-node linear tetrahedral element type with an improved average nodal pressure (ANP)
formulation (Joldes et al 2009) was employed in order to prevent over-stiffening and volumetric
locking in the tetrahedral elements.

2.2.4. Tissue type assignment for FE mesh. The tissue type was automatically assigned to
each 3D element in the FE mesh based on tissue classification results in the MR image. First,
we found all the voxels within an element by determining whether the centre of a voxel was
inside or outside of the element; then we counted the number of the voxels belonging to each

http://tetgen.berlios.de/
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tissue type from these voxels, based on tissue classification. The tissue type corresponding to
the highest number of voxels was assigned to this element. Repeating the process above, we
assigned each element with a unique tissue type. For the case shown in figure 2(b), 134 314
elements were assigned to fat, 11 250 elements to fibroglandular tissue, 16 334 elements to
muscle and 99 elements to tumour. The final tissue distribution within the FE mesh was
shown in figure 1(c). Compared to the tissue distribution in the segmented MR, as shown in
figure 1(b), the tissue assignment to the FE mesh demonstrates a good approximation to the
tissue representation. Obviously, the finer the mesh, the more precise the assignment of tissue
type will be. However, a finer mesh also means more computation time in the FE analyses.
There is a balance, therefore, between the accuracy of the tissue type representation in an FE
model and the computational time in the FE analyses.

2.2.5. Constitutive model for breast tissues. Like most biological soft tissues, breast tissues
exhibit nonlinear, anisotropic and time (rate)-dependent responses under large deformation
(Han et al 2002). The large recoverable deformation of soft tissues is often modelled
via hyperelastic material models. The time (rate) dependence could be considered by
augmenting time-dependent material parameters with the hyperelastic formulation, forming
visco-hyperelastic constitutive models for soft tissues (Taylor et al 2009). Many hyperelastic
models (such as neo-Hookean, Mooney–Rivlin, Ogden, Arruda–Boyce models, polynomial,
etc) have been developed for soft tissues. The constitutive model of a hyperelastic material is
defined by a total stress versus total strain relationship derived from a strain energy function,
which can be expressed as

W = W (C), (1)

where C = XTX is the right Cauchy–Green deformation tensor, and X = ∂ t x/∂ 0x is the
deformation gradient tensor related to the current point, tx, and the reference configuration, 0x,
of a material particle. The stress–strain relationship is derived from (1) as

S = 2∂W/∂C, (2)

where S is the second Piola–Kirchhoff stress tensor.
If a material is isotropic, the strain energy function can be written as

W = W (I1, I2, I3), (3)

where I1, I2 and I3, are the three principal invariants of C, which are given by

I1 = tr C, I2 = 1
2 [(tr C)2 − tr(C2)], I3 = det C = J2. (4)

For an incompressible material, I3 ≡ 1.
Due to the presence of Cooper’s ligaments and connective tissues, breast tissues are

anisotropic and could be considered as fibre-reinforced materials. The simplest representation
for their anisotropy is transversely isotropic, in which the material is reinforced by a family
of fibres and has one preferred direction (i.e. the fibre direction), but the mechanical response
along the directions orthogonal to these preferred directions is isotropic. Consequently, an
independent invariant directly related to the fibre stretch, I4, could be introduced to the strain
energy function. The strain energy is written as (Taylor et al 2009)

W = W (I1, I2, I3, I4), (5)

where I4 = A · C̄A is the pseudo-invariant of C̄ = J− 2
3 C and A. A is the direction vector of

the fibres and can be defined as

A = sin γ cos α e1 + sin γ sin α e2 + cos α e3 (6)
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(a) (b)

Figure 3. FE models for breast deformation analysis: (a) before compression and (b) after
compression.

in a rectangular Cartesian coordinate system, where the unit vectors {e1, e2, e3} co-directional

with the x, y and z axes are referred to as e1 = [1
0
0

]
, e2 = [0

1
0

]
and e3 = [0

0
1

]
, and γ ∈ [

0, π
2

]
represents the angle between A and e3, and α ∈ [0, π ] shows the angle between A and e1.
For the material reinforced by a family of fibres aligned in a specific direction, the strain
energy function can be decomposed into an isotropic component and a transversely isotropic
component as

W = Wiso(I1, I2, I3) + Wtrans(I4). (7)

For the sake of simplicity, we chose the neo-Hookean (NH) strain energy function.
Then, (7) is rewritten as

Wiso(I1, I2, I3) = μ

2
(I1 − 3) + k

2
(J − 1)2, Wtrans(I4) = η

2
(I4 − 1)2, (8)

where μ is the initial small strain shear modulus, k is the bulk modulus and η defines a measure
of the strength of fibre reinforcement. Equation (8) forms the simplest anisotropic hyperelastic
model. In the model, μ and k can be determined from the other two elastic parameters, initial
Young’s modulus E and Poisson’s ratio v, through the relationships of μ = E/(2(1 + v)) and
k = E/(3(1 − 2v). If the preferred direction of a tissue can be pre-determined, e.g. if it is
much stronger in the z direction, then A = [0, 0, 1]. Thus, only three parameters, (E, v, η), are
required to completely define this anisotropic model.

2.2.6. Loading and boundary conditions. Unlike previous studies where displacement
boundary constraints were applied on the surface nodes of a breast model, to simulate the
plate compression (Ruiter et al 2006, Tanner et al 2006, 2011), the interaction between tissues
and plate was modelled with a contact model in this study. Figure 3(a) represents an FE
model for breast compression simulations. As shown in figure 3(a), the movable plate will
move towards the fixed plate to compress the breast by applying a positive displacement in
the x-direction (i.e. from the outer side of the breast towards the centre of the chest). Two
contact pairs were defined, movable plate versus breast tissue and fixed plate versus breast
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tissues. The compression plates were considered as rigid bodies and the breast tissues were
defined as deformable bodies. The interaction between the breast and compression plates can
be considered as either a frictional contact problem (Chung et al 2008, Tzu-Ching et al 2010)
or a frictionless contact problem (Azar et al 2002, Pathmanathan 2006, Rajagopal et al 2010,
Ruiter et al 2006). When a frictional contact was simulated, an arbitrary friction coefficient was
always assumed (Chung et al 2008, Tzu-Ching et al 2010) due to the lack of information about
friction. To the authors’ knowledge, there is no research report on the systematic, experimental
or numerical studies of the effect of friction between the compression plate and the skin on the
prediction accuracy of breast deformation. However, an experimental observation on the MR
breast images of three patients (Azar et al 2002) showed that a sliding effect existed between
the compression plate and the skin. Therefore, in this study, we assumed that the contact
between the compression plates and breast tissues was frictionless like previous studies on
plate compression (Azar et al 2002, Pathmanathan 2006, Rajagopal et al 2010, Ruiter et al
2006). The positions and motions of the compression plates were determined based on the
surfaces of the compressed breast and the positions of the MR visible fiducial markers attached
on the compression plates. All the surface nodes of the pectoral muscle attached to the chest
wall were constrained in the z-direction (i.e. anterior–posterior direction). To prevent rigid
body displacements of the whole breast, a surface node of the pectoral muscle nearest to one
rib was constrained in the y-direction as well. Figure 3(b) shows a deformed FE mesh after
compression.

2.3. Dynamic explicit FE method for large deformation analyses of soft tissue

The breast deformation was previously considered as a static or quasi-static problem, and was
analysed using static implicit FE methods (Azar et al 2001, Pathmanathan et al 2008, Tanner
et al 2006) or dynamic explicit FE methods (Han et al 2010, Tzu-Ching et al 2010). In static
implicit FE methods, nonlinear equations are solved iteratively. In dynamic explicit methods,
partial difference equations are solved by using small time increments, without iterations
and without requiring the assembly of tangent stiffness matrices. Although dynamic explicit
methods are developed for transient dynamic analyses, they are also suitable for quasi-static
processes when inertial forces are kept at negligible levels. The dynamic explicit method is
specially favoured for nonlinear contact analyses due to its simplification for the treatment of
contact (ABAQUS 2010).

For a dynamic FE analysis, the motion equation of the discretized system is written as
(Bathe 1996)

Mü + D_u + K(u)u = R, (9)

where u, _u and ü are the displacement, velocity and acceleration vectors of the FE assemblage;
M is the constant mass matrix, D is the constant damping matrix, K(u) is the stiffness matrix
which is a function of u, and R is the vector of externally applied loads. The three terms on
the left of (9) represent inertia forces, damping forces and internal forces, respectively. Either
explicit (e.g. the central difference operator) or implicit (e.g. the Newmark and backward
Euler operators) time integration schemes may be used to solve (9). Implicit schemes calculate
dynamic quantities at current time based not only on values at previous time, but also on these
same quantities at current time. Therefore, nonlinear equations must be solved and iterations are
required. Explicit schemes, as used in ABAQUS/Explicit and LS-DYNA, calculate dynamic
quantities at the current time based on available values at previous time. The central difference
method is the most commonly used explicit operator for stress analyses. In this study, we used
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the explicit central difference integration rule to obtain the acceleration and velocity at time t
as

t ü = 1

�t2
(t−�tu − 2 tu + t+�tu) (10)

and

t _u = 1

�t
(−t−�tu + t+�tu), (11)

where the superscript t refers to the time step.
The displacement solution for time t + �t is obtained by considering (9) at time t, i.e.

M t ü + D t _u + tK tu = tR. (12)

Substituting (10) and (11) into (11), we obtain(
1

�t2
M + 1

2�t
D

)
t+�tu = tR − tK tu + 2

�t2
M tu −

(
1

�t2
M − 1

2�t
D

)
t−�tu (13)

from which the displacement at time t + �t, t+�tu, is solved. Note that the internal force term in
(13) can be calculated by summing the contributions of each element, tKtu = tF = ∑

e
t F̃(e),

where t F̃(e) is the nodal force in element e at time t. F̃(e)may be computed from

t F̃(e) =
∫

V (e)

tBT tS dV, (14)

where tB is the strain-displacement matrix, tS is the second Piola–Kirchhoff stress tensor and
V (e) is the volume of element e. For the transversely isotropic hyperelastic model, tS can be
obtained from (2) and (8).

The mass matrix, M, could be described as a diagonal lumped matrix, which is one of
the important features making the explicit method efficient and practical. If we employ mass-
proportional damping (a special case of Rayleigh damping), D = αM is also diagonal, where
α is a constant. Thus, the ith displacement component of each node is obtained using

t+�tui =
tRi − tFi + 2mii

�t2
tui + (

αmii
2�t − mii

�t2

)
t−�tui

αmii
2�t + mii

�t2

, (15)

where tRi and tFi denote the ith components of the vectors tR and tF, respectively, mii is
the ith diagonal element of the mass matrix, and it is assumed that mii > 0. The solution
of t+�tui is based on only previous time steps, with no iteration, matrix inversion or matrix
factorization. Equation (15) shows that the use of diagonal element mass matrices is the key to
improving computational efficiency without factorizing a matrix in order to solve the system
of nonlinear equations in (13). Additionally, because there is no requirement to assemble the
global stiffness matrix, the solution can essentially be carried out on the element level and
relatively little high-speed storage is required. Using this approach, systems of equations at very
large order could be solved effectively in parallel mode. In contrast to implicit methods, which
are unconditionally stable and can have a large time step, explicit methods are conditionally
stable and generally require a relatively small time step. The time step, �t, should be smaller
than a critical value, �tcr, which can be estimated from the mass and stiffness properties of
the complete element assemblage (Bathe 1996). Generally, a smaller time step is required for
stiffer tissues. The initial conditions and the loading rate are chosen such that inertial effects
are negligible.

The dynamic explicit FE solution procedure above was implemented on the GPUs
as an open-source FE solver, called NiftySim (http://niftysim.sourceforge.net/). In the
developed GPU-based dynamic explicit nonlinear FE solver, both geometric and material
nonlinearity can be handled. Three element types are available: eight-node linear hexahedron

http://niftysim.sourceforge.net/
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element with reduced integration, four-node linear tetrahedron element and four-node
linear tetrahedral element with an improved ANP formulation for nearly incompressible
materials or incompressible materials (Bonet and Burton 1998, Joldes et al 2009). Six
nonlinear material constitutive models were implemented, including NH hyperelastic, Arruda–
Boyce hyperelastic, polynomial hyperelastic, transversely isotropic hyperelastic, NH visco-
hyperelastic and transversely isotropic visco-hyperelastic. More recently, we implemented a
kinematic-type contact algorithm (Hallquist 2005) for modelling the interaction between a
deformable object and a rigid object (e.g. between breast tissues and the rigid compression
plate used in x-ray mammography). In this algorithm, a deformable slave surface and a rigid
master surface are defined, and the slave nodes found to have penetrated the master surface are
relocated to the closest point on the latter during the simulations, approximating a frictionless
interface. Arbitrary sliding of a node over the contact surface is allowed.

2.4. Breast compression analysis with simultaneous material parameter optimization

Breast morphology varies with changing physiological conditions and age. It is also highly
variable across individuals (Van Houten et al 2003). The measured material property
parameters were also different under different constraints and loading conditions. To date,
most of the experimental work on biomechanical properties of breast tissues has been confined
to ex vivo tissue samples (Samani and Plewes 2004, Samani et al 2007) or restricted to small
strain studies (Krouskop et al 1998). These measured data are not suitable for patient-specific
in vivo modelling.

In this study, rather than arbitrarily choosing ex vivo data or using pre-optimized material
model parameters (Tanner et al 2006), we modelled the patient-specific breast deformation
under plate compression using a simultaneous material parameter optimization process.
Figure 4 presents a flowchart for patient-specific modelling of breasts, which can be described
by the following six steps.

Step 1. Create the FE model of a breast from its original undeformed MR image following the
procedure described in section 2.2, and initialize the material parameters of breast tissues
using ex vivo data reported in the literature.

Step 2. Calculate the deformation field using the GPU-based explicit FE solver introduced in
section 2.3 as a solver.

Step 3. Generate an FE-predicted deformed MR image by applying the calculated deformation
field from step 2 to the original undeformed MR image, through interpolation over
elements using element shape functions.

Step 4. Calculate the image similarity (e.g. normalized mutual information (NMI), cross
correlation) between the FE-predicted deformed MR image and the original deformed
MR breast image.

Step 5. Check whether the image similarity measure has been maximized or the maximum
iteration number has been reached. If both are not satisfied, update the material parameters
of tissues based on a global optimization algorithm (e.g. simulated annealing, SA, or
genetic algorithm), then go to step 2; or else go to step 6.

Step 6. Output the best deformation estimation for the breast.

In the deformation analyses, the best estimation of breast deformation was found by
solving a constrained optimization, i.e. by maximizing the image similarity between the
predicted MR image of a breast and its original deformed MR image. The image similarity
was measured with NMI (Studholme et al 1999), defined as

NMI (A, B) = H (A) + H(B)

H(A, B)
, (16)
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Figure 4. A diagram illustrating the patient-specific deformation simulation procedure with
simultaneous material parameter optimization.

where H(A) was the Shannon entropy of the experimentally measured original MR image,
H(B) denoted the entropy of the FE-predicted MR image and H(A, B) was the entropy of
the joint distribution of the measured MR image and the FE-predicted image. The objective
function was defined as

arg min − NMI(p) subject to lb < p < ub, (17)

where p was the material parameter vector with the lower bound constraint lb and the upper
bound constraint ub. NMI is a function of p, defined as (E, v, η) for the transversely isotropic
NH hyperelastic model. A hybrid simulated annealing algorithm was chosen for the global
optimization. The global search was performed using the MATLAB simulated annealing
function, simulannelbnd, to find parameter values near the optimum; then with these parameter
values as initial values, the local search was performed by calling the MATLAB constrained
nonlinear optimization function, fmincon,. Since a number of iterations are involved, it is very
time consuming to use a commercial FE package such as ABAQUS or ANSYS as an FE
solver, as this approach would typically require several hours CPU execution time for each 3D
FE simulation. However, the GPU-based, dynamic explicit FE solver (Han et al 2010, Taylor
et al 2008) is well suited for this application, because of its high-speed execution.

3. Result

We first evaluated the performance of our GPU-based dynamic explicit FE solver for contact
modelling. Then, the proposed method was used to analyse the breast deformation under plate
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(a) (b) (c) (d) (e)

Figure 5. Comparison of 2D slice images in the X–Z plane (y = 0) through simulated
MR compression volumes obtained with three different solvers: (a) ABAQUS/Standard,
(b) ABAQUS/Explicit and (c) NiftySim. The difference images are shown in (d) for the
difference between ABAQUS/Standard and ABAQUS/Explicit and (e) for the difference between
ABAQUS/Explicit and NiftySim.

compression for the five cases described in section 2.1. All the analyses were performed on a
personal computer (Intel dual-core 3.4 GHZ, 4 GB, windows 7, 32 bit operation system). The
GPU-speedup was supported with an NVIDIA GeForce GTX 285 graphics card with 1 GB
memory.

3.1. Evaluation for FE solver

The developed GPU-based dynamic explicit FE solver has been evaluated in previous studies
(Han et al 2010, Taylor et al 2008, 2009). In this study, we evaluated the new implementation of
a frictionless contact algorithm for breast compression analyses. Since the plate compression
process is a slow loading process, we considered the breast compression as a quasi-static
process. In the simulations, the kinetic energy was monitored to ensure that the ratio of kinetic
energy to internal energy was less than 5%, that is, the dynamic effect could be neglected
(Han et al 2010, ABAQUS 2010). The FE model for case 1, shown in figure 3, was used as a
numerical example for the FE solver evaluation. We assumed that the breast consisted of one
homogeneous and isotropic material. An isotropic NH material model with initial Young’s
modulus in the undeformed state equal to 10 kPa, a Poisson’s ratio of 0.49 and mass density
of 1000 kg m−3 was employed. The geometric nonlinearity was considered due to large strain.
To evaluate the proposed algorithm, simulation results obtained from our dynamic explicit
FE solver, NiftySim, were compared with those calculated with commercial FE solvers,
ABAQUS/Standard, a static implicit solver and ABAQUS/Explicit, a dynamic explicit FE
solver. As an explicit FE solver, ABAQUS/Explicit can handle much larger deformation
than ABAQUS/Standard, without requiring remeshing. For facilitating the comparison, the
maximum compression in this numerical example was set to 25% of the maximum thickness
of the breast between the two plates. This is the maximum compression that the solution with
ABAQUS/Standard can achieve before requiring remeshing, a difficult and time-consuming
task. Figure 5 shows 2D slice images from the calculated MR volume images for a compressed
breast with the three FE solvers, NiftySim, ABAQUS/Standard and ABAQUS/Explicit. All
three calculated images of the compressed breast, as shown in figures 5(a)–(c), cannot be
distinguished from each other visually. To find how different two images are, the difference
images are obtained, as shown in figures 5(d) and (e). Figure 5(d) is the difference image
between the ABAQUS/standard calculation and the ABAQUS/Explicit calculation, which has
a maximum displacement difference of 0.5 mm. Figure 5(e) is the difference image between
the ABAQUS/Explicit calculation and the NiftySim calculation, which has a maximum
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(a) (b) (c)

Figure 6. Comparison of breast shapes in simulated MR images: (a) the original deformed image
superimposed with the original undeformed image, (b) the original deformed image superimposed
with the deformed image estimated with the isotropic NH hyperelastic model and (c) the original
deformed image superimposed with the deformed image estimated with the transversely isotropic
NH hyperelastic model.

displacement difference of 1.2 mm within the region between the two compression plates.
The small difference of calculated displacements between NiftySim and ABAQUS/Explicit
shows that NiftySim can provide essentially the same accuracy for deformation prediction
as ABAQUS/Explicit. However, compared with ABAQUS/Standard and ABAQUS/Explicit,
NiftySim required much less computation time, i.e. in this example, 16 s for NiftySim (GPU
version), 601 s for NiftySim (CPU version), 104 min for ABAQUS/Standard and 312 min for
ABAQUS/Explicit.

3.2. Breast compression simulation

The breast compression in the plate compression experiments and the FE simulations was
controlled by the applied displacement on the movable plate. Therefore, the breast shape
change was determined only by the relative values of material model parameters of tissues.
Here we chose fat as the reference material with an initial Young’s modulus, Ef = 10 kPa. The
upper and lower limits of the three material parameters used in the optimization process were
E (100 Pa–1 MPa), υ (0.45–0.4999) and η (1 Pa–1 MPa).

Previous experimental observations suggested that the breast under plate compression
exhibited an anisotropic deformation behaviour, with a reduced elongation in the anterior–
posterior direction and an increased stretch in the inferior–superior direction (Tanner et al
2011). The anisotropic effect of breast tissues had been investigated with a linear, transversely
isotropic, elastic model, and the plate compression was simulated by applying displacement
constraints to the surface nodes of the breast. Here we explicitly modelled the interaction
between the compression plates and breast tissues with a frictionless contact model and used
nonlinear material models due to large strain. Figure 6 shows a comparison of breast shapes in
MR images predicted using an isotropic NH hyperelastic model and a transversely isotropic
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(a) (b) (c)

Figure 7. Example of central, axial (X–Z) slice images of a breast before and after medio-lateral
compression (case 2): (a) the original undeformed MR image, (b) the original deformed MR image
and (c) the FE-predicted MR image with a transversely isotropic heterogeneous model.

Table 2. Euclidean distance errors of 17 landmarks with four different material models.

Euclidean distance error (mm)

Landmark Anisotropic Anisotropic Isotropic Isotropic
Patient displacement heterogeneous homogeneous heterogeneous homogeneous
no (mm) model model model model

Case 1 27.62 ± 8.16 5.85 ± 2.80 8.52 ± 2.90 10.34 ± 3.20 19.54 ± 3.68
Case 2 16.58 ± 3.86 3.85 ± 1.85 5.95 ± 2.73 5.18 ± 2.19 8.36 ± 3.75
Case 3 23.29 ± 6.41 5.68 ± 2.95 6.02 ± 3.15 6.60 ± 3.27 13.53 ± 3.89
Case 4 42.12 ± 8.53 9.54 ± 3.88 11.12 ± 4.23 11.54 ± 4.31 20.38 ± 6.75
Case 5 13.92 ± 2.66 3.18 ± 1.69 3.95 ± 1.58 3.56 ± 1.75 5.12 ± 1.93

NH hyperelastic model. The solid lines denote the boundaries of a breast in the original MR
images, and the dashed lines represent the boundaries of a breast in FE-predicted MR images.
As shown in figure 6(a), the maximum size of the breast in the x-direction has almost no change
after compression, and the stretch in the y-direction dominates the breast deformation, showing
an anisotropic behaviour. Figure 6(b) clearly shows that the isotropic NH hyperelastic model
is insufficient to predict the breast shape change, and figure 6(c) indicates that the transversely
isotropic NH hyperelastic model with a simultaneous material parameter optimization can
accurately capture the breast shape change under plate compression.

In the FE analyses, four kinds of material models were considered: (a) an isotropic
homogeneous model, in which the breast was composed of one homogeneous material and
modelled with an isotropic NH hyperelastic model; (b) an isotropic heterogeneous model,
with the breast composed of different tissues and modelled with an isotropic, NH hyperelastic
model; (c) an anisotropic homogeneous model, with the breast composed of one homogeneous
material and modelled with a transversely isotropic, NH hyperelastic model; and finally
(d) an anisotropic heterogeneous model, in which the breast was composed of different tissues
and modelled with an anisotropic NH hyperelastic model. Figure 7 shows an example of
an FE-predicted MR image with the transversely isotropic, heterogeneous material model
(case 2). The prediction performance of the proposed approach was evaluated by calculating
the Euclidean distance errors of 17 landmarks. The results are listed in table 2. From the
change in the mean errors, we find that the prediction accuracy of FE analyses can be
significantly improved when the breast is treated as a heterogeneous material or considered
as an anisotropic material. The anisotropic, heterogeneous material model gives the best
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Table 3. Optimized material model parameters.

Anisotropic heterogeneous model Isotropic heterogeneous model

Patient no Tissue type E/Ef v η/E E/Ef v

Case 1 Fat 1.00 0.4983 23.63 1.00 0.4982
Glandular 65.92 0.4982 27.25 33.77 0.4648
Muscle 66.80 0.4517 61.97 19.55 0.4561
Tumour 98.60 0.4988 40.25 71.93 0.4531

Case 2 Fat 1.00 0.4773 3.48 1.00 0.4531
Glandular 0.55 0.4955 4.74 0.46 0.4775
Muscle 97.22 0.4782 4.13 30.70 0.4515

Case 3 Fat 1.00 0.4950 4.16 1.00 0.4852
Glandular 3.89 0.4763 4.22 0.22 0.4536
Muscle 13.39 0.4760 0.034 1.21 0.4902

Case 4 Fat 1.00 0.4963 11.26 1.00 0.4502
Glandular 2.97 0.4998 39.21 43.64 0.4768
Muscle 28.65 0.4758 13.06 40.90 0.4643

Case 5 Fat 1.00 0.4509 3.39 1.00 0.4715
Glandular 4.23 0.4980 0.018 5.58 0.4716
Muscle 7.62 0.4990 3.27 49.02 0.4501

deformation estimation. Excepting case 4, the best mean errors for all four cases range from
3.18 to 5.85 mm, equivalent to an accuracy of between 1.1 and 2.0 voxels relative to the diagonal
of a voxel (1.0 × 1.0 × 2.5 mm3). Considering that we always have to make necessary
simplifications and assumptions in FE simulations due to the uncertainties, e.g. the breast
deformation due to patient movement, boundary constraints between pectoral muscle and
chest wall and the positions of compression plates, the proposed method provides reasonable
deformation predictions for all the cases. Table 3 lists the optimized material parameters for
each tissue, for the anisotropic heterogeneous and isotropic heterogeneous models. A tendency
of much stiffer muscle and stiffer tumour can be observed. For most cases, glandular tissue is
stiffer than fat. However, in case 2, Young’s modulus obtained for glandular tissue is smaller
than that for fat. This could be explained by the fact that the fat tissue in the model is a
mixture of fatty tissue, skin and Cooper’s ligaments, and it can be strengthened by the skin
and Cooper’s ligaments, leading to a higher stiffness than that of glandular tissue.

4. Discussion and conclusion

In this study, we proposed a patient-specific FE modelling framework for large breast
deformation prediction, supported by a fast, GPU-based, dynamical explicit nonlinear FE
solver. To minimize manual intervention and reduce the total time for patient-specific
modelling, we implemented a semi-automatic method for tissue classification and a fully
automated method for mesh generation. To avoid the difficulty in determining material property
parameters of soft tissues in vivo for FE analyses, we presented a novel FE simulation approach
with a simultaneous material parameter optimization for breast tissues.

The proposed method was tested by simulating and analysing the deformation of breasts
under medio-lateral plate compression in five experiments, indented to approximate the
compression occurring during x-ray mammography and MR-guided breast biopsy. Unlike
previous studies, the interaction between breast tissues and compression plates was explicitly
modelled and nonlinear, hyperelastic material models were used. To model the interaction
between the breast tissues and the compression plates, we implemented a kinematic-type
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contact algorithm in our GPU-based nonlinear finite element solver. It was evaluated by
comparing the deformation fields of breasts calculated from both our solver and commercial FE
package ABAQUS. Quasi-static simulation results showed that our solver provided essentially
the same accuracy for deformation analyses as ABAQUS. However, our FE solver was much
faster than ABAQUS. To support wider applications, the contact algorithm for modelling the
interaction between two deformable objects has now been implemented in our FE solver.
In the proposed method, the optimized FE prediction on breast deformation was obtained
by maximizing the image similarity between the original deformed MR images and the FE-
predicted MR images. However, alternative objective functions could be employed when a
deformed MR image was not available. For example, for MRI to x-ray image registration, we
could maximize the image similarity between a 2D real x-ray image and the pseudo 2D x-ray
image obtained from the 2D projection of FE-predicted MR volume images (Mertzanidou
et al 2010); in image-guided breast surgery, we could minimize the Euclidean error of fiducial
markers on the breast surface (Carter et al 2006).

In the compression experiments used in this study, an anisotropic response to the
deformation was observed for all the cases. This could be caused by the anisotropic nature
of Cooper’s ligaments and connective structures in the breast and the non-uniform initial
deformation within the breast due to gravitational body force. Ideally, the deformation from
gravitational force should be separated from the total deformation of tissues. Previous studies
have attempted to remove the effect of the initial strain due to gravitation force. For example,
a neutral buoyancy configuration of a breast was obtained by submerging the breast in water
to offset the effect of gravity during MR imaging (Rajagopal et al 2008). Although the net
buoyancy force could balance the overall weight of the breast with this method, the internal
breast tissues will not be stress/strain free. This is due to the fact that buoyancy force is a
surface force, while gravity is a body force acting throughout the whole volume of a breast.
FE-based numerical methods were also proposed to estimate the zero-stress reference state of
a breast from its deformed configuration under gravity loading by solving an inverse problem
(Pathmanathan et al 2008, Rajagopal et al 2008). However, in these methods, the material
parameters must be known in advance and the estimated undeformed breast shape at the
zero-stress reference state was not validated because of difficulty in obtaining the reference
state of breasts experimentally. Since soft tissues are always subjected to gravitational force
and/or physical constraints in their natural state, the zero-strain state is not available. It is more
convenient to consider the effect of initial strain/stress due to gravitational force as a part of
material properties of soft tissues. In this study, the anisotropy of a breast was considered
by using anisotropic material models or heterogeneous material models. In heterogeneous
models, although each breast tissue is isotropic, the non-uniform spatial distribution of
breast tissues will make a breast anisotropic. Numerical simulation results showed that the
prediction accuracy on the displacement of landmarks could be significantly improved when
breasts were treated as anisotropic materials. Further, a more accurate representation of the
heterogeneity of breast tissues could be implemented by considering the partial volume effect.
In the segmentation process of fat and fibroglandular tissue described in section 2.2.1, the
probabilities of fibroglandular tissue and fat were calculated for each voxel; thus, it is possible
to assign each voxel/element with different material parameters by using a suitable weighting
scheme of material parameters between fibroglandular tissues and fat.

In this study, the skin was not explicitly included in the FE simulations; however, its
reinforcement to fatty tissue and its effect on the anisotropic behaviour of the breasts have
been implicitly considered by simulating fat as an anisotropic material. To construct more
accurate biomechanical models, the skin should be segmented and explicitly simulated.
Consequently, the interaction between the skin and breast tissue could be included, and a



Development of patient-specific biomechanical models for predicting large breast deformation 471

frictional contact between the skin and the compression plate could also be considered. The
effects of these interactions on breast deformation could be investigated under the proposed
modelling framework with friction parameters (e.g. friction coefficient) as optimization
variables. Experimentally determining friction characteristics between skin and plate should
also be followed.

With the proposed method, the optimized material parameters for different tissues have
been obtained for five cases. Through assessing more datasets and performing statistical
analyses of material parameters, it may be possible to make the link between the material
parameter values of each tissue, with age, the breast size, the breast density and its anatomical
characteristics (e.g. volume ratio of fat). Subsequently, it could be used to provide guidance
to assign reasonable material parameters for each tissue, in clinical applications, when the
material parameter optimization is impossible due to limitations in time or resources.

The proposed method is suitable for large deformation prediction of breasts and has
great potentials for wide applications such as multimodality image registration, image-guided
surgery and surgical planning.
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