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a  b  s  t  r  a  c  t

Fast  methods  to  solve  the unloading  problem  of  a cylindrical  cavity  or tunnel  excavated  in elasto-perfectly
plastic, elasto-brittle  or strain-softening  materials  under  a  hydrostatic  stress  field  can  be  derived  based
on the  self-similarity  of the  solution.  As  a consequence,  they  only  apply  when  the  rock  mass  is homoge-
neous and so  exclude  many  cases  of  practical  interest.  We  describe  a robust  and  fast  numerical  technique
that solves  the  tunnel  unloading  problem  and  estimates  the  ground  reaction  curve  for  a cylindrical  cavity
excavated in  a rock  mass  with  properties  depending  on  the  radial  coordinate,  where  the  solution  is  no
longer self-similar.  The  solution  is based  on a continuation-like  approach  (associated  with  the  unloading
and with  the incremental  formulation  of the  elasto-plastic  behavior),  finite  element  spatial  discretization
and a  combination  of explicit  sub-stepping  schemes  and  implicit  techniques  to integrate  the  constitutive
law, so  as to  tackle  the  difficulties  associated  with  both  strong  strain-softening  and  elasto-brittle  behav-
iors. The  developed  algorithm  is  used  for  two  practical  ground  reaction  curve  computation  applications.
The first  application  refers  to  a  tunnel  surrounded  by  an  aureole  of  material  damaged  by  blasting  and  the
second to  a tunnel  surrounded  by  a  ring-like  zone  of reinforced  (rock-bolted)  material.

© 2013  Institute  of  Rock  and  Soil  Mechanics,  Chinese  Academy  of  Sciences.  Production  and  hosting  by
Elsevier B.V. All  rights  reserved.

1. Introduction

The convergence-confinement method (CCM) is a technique
that  quantifies the interplay between tunnel and installed sup-
port  in terms of strains and stresses. The method relies on three
components: the ground reaction curve (GRC), which describes the
relationship between diminishing internal pressure and deforma-
tion  on the tunnel spring-line; the longitudinal deformation profile,
which relates the deformation on the spring-line to distance to the
face; and the support characteristic curve, which represents the
stress–strain relationship for the support system. These together
enable  the designer to estimate the performance of the support sys-
tem. In geomechanical practice, the method is usually applied, for
design  purposes, to tunnels where stresses are expected to surpass
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rock mass strength, that is, deep tunnels excavated in average to
poor quality rock masses.

The  first CCM developments were analytical solutions for
materials  with simple behaviors such as elasto-perfectly plastic
(EPP)  rock masses (Duncan-Fama, 1993; Panet, 1993; Carranza-
Torres  and Fairhurst, 1999). More complex analytical models were
subsequently developed to simulate elasto-brittle (EB) materials
(Carranza-Torres, 1998, 2004). It is usually not possible to find
the  analytical solutions for the problem of a tunnel excavated in
more complex materials, such as strain-softening (SS) materials;
therefore, the GRC has to be obtained using a numerical approach.
There  are a number of approaches to obtain the GRC for SS rock
masses  (Alonso et al., 2003; Guan et al., 2007; Lee and Pietruszczak,
2008;  Park et al., 2008; Wang et al., 2010; Zhang et al., 2012). For
a  homogeneous material, the most efficient solution is numerical
approximation of the self-similar solution, which requires a single
initial value associated with an ordinary differential equation sys-
tem to be solved. Note that it has been shown that the response of
rock will differ depending on the selected behavior model (Alejano
et  al., 2009a).

The  curves can also be obtained for any type of material using
2D  or 3D numerical models, but the process is typically ineffi-
cient  and very time-consuming (usually requiring several hours).
Moreover,  observed under particular circumstances are mesh
dependency and bifurcation and localization phenomena that
produce  non-symmetric solutions, which significantly increase
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Fig. 1. Unloading scheme for an excavation of radius a, in a non-homogeneous rock
mass under a hydrostatical stress �0. r is the radial coordinate and � is the evolution
parameter.

computation times. If there is bifurcation, the symmetric solution
is  no longer stable. For practical purposes, however, symmetric
solutions derived from self-similar approaches are still relevant to
a homogeneous material (Varas et al., 2005). This indicates that
even  if this problem may  slightly affect results in 2D models, the
variations  used to be not very relevant at the scale of the prob-
lem.  When dealing with 1D models, as in our case, localization
cannot take place. So it is expected that symmetric solutions for
non-homogeneous materials, as shown below, behave in the same
way.

Under particular circumstances, a tunnel of radius a or an under-
ground  excavation may  be surrounded by an aureole or ring-like
zone  of radius Rc made of a material whose behavior differs from
that  of the rock mass (Fig. 1), where an external radius, Rf, large
enough  can be selected. In such a way, the elastic conditions are
encountered  at that distance of the excavation. The GRC of this
case  can be solved as a series of problems where an internal pres-
sure,  pi, is applied to the boundary of the tunnel and this pressure
is  reduced from �0, the field stress, to a null value.

This  may  happen when there is an aureole of blast-damaged
rock around a tunnel or when a regular pattern of reinforce-
ment (rock bolts or cables) is installed so that the bolted rock
behaves  like a stronger material. Other situations reflecting dif-
ferent  types of reinforcement, such as grouted zones or forepole
umbrellas,  might also be considered under this approach. In these
cases, the rock mass is not homogeneous and solutions are not self-
similar, so it is impossible to use the traditional rapid approaches
to  obtain the GRC. It would nevertheless be convenient to have
a  rapid technique available for obtaining the GRC of the exca-
vation  when the two different materials appear concentrically
around the tunnel. We  therefore sought to develop an efficient
numerical approach for obtaining a symmetrical solution for such
cases.

The  remainder of the article is laid out as follows. Section 2 states
the  problem and describes the mathematical background, the rock
mass  behavior model, and the characterization approach adopted
to  estimate all the parameters. Section 3 presents the numerical
solution  to the problem. Section 4 describes the technique for esti-
mating GRCs in tunnels surrounded by an aureole of blast-damaged
material (along with some examples) and Section 5 describes an
approach for reinforced tunnels. The article closes with a discussion
of  our conclusions, and also an appendix that verifies the approach
for  simple cases.

2.  Statement of the problem

2.1.  The unloading problem

The  unloading problem for a particular excavation section ˝
can  be formulated as the search for a stress field �, depending both
on  the spatial coordinates, r, and on an additional parameter, �,
which  measures the evolution of the unloading process. Note that
this additional parameter will also serve as the natural parameter
in  the formulation of elasto-plastic material behavior in terms of
the rate-independent, incremental plasticity theory.

Neglecting inertial terms, the solution to the unloading prob-
lem  over section  ̋ leads to a continuum of equilibrium problems,
associated with the unloading conditions on the excavation wall �
and suitable asymptotic conditions:

div �̇ = 0 (in ˝)

�̇ �n = ṗi �n (on � )

}
(1)

where �n is  a unitary vector normal to the excavation wall; the
dot  represents derivatives with respect to the unloading evolution
parameter  �, which, in line with the previous comment, can also
be  considered to be the plasticity evolution parameter.

In order to effectively compute the GRC, we now consider a
semi-discretization of the unloading problem. In particular, we
assume that the stress field associated with a pressure pk

i
on

the  wall excavation has already been computed and we  consider
a  further decrease in the pressure from pk

i
to pk+1

i
. This semi-

discretization requires solving an equilibrium problem:

div �k+1� = 0 (in ˝) (2)

with a boundary condition associated with the unloading on the
excavation wall:

�k+1� �n = �k+1pi �n on �a (3)

where

�k+1� = �k+1 − �k and �k+1pi = pk+1
i − pki

In the semi-discretized problem stated above, incremental
stresses �k+1� will be given by integration of the SS material behav-
ior,  in terms of the incremental plasticity theory. More precisely,
�k+1� will be obtained through:

�k+1� =
∫ �k+1

�k

�̇d� (4)

starting from stresses (and internal variables related to the plas-
tic  state) at the k-th step. It should be remarked that the load
path  appearing in this integral (connecting the plastic states corre-
sponding to �k and �k+1) must, in fact, be computed as part of the
solution.

In  order to initialize computation of the GRC, suitable initial con-
ditions  corresponding to the stress field before excavation must
be  described. These initial conditions are dependent on the spatial
variable  in non-homogeneous rock masses.

Let us consider, for example, an excavation in an otherwise
homogeneous rock mass where a cylindrical region (correspond-
ing  to the tunnel and a surrounding ring-like region) is composed
of  a different material. If this rock mass (composed of two homo-
geneous  materials) is subjected to hydrostatic stress, a radial
distribution of stresses (including a jump in the circumferential
stress at the contact radius) will appear (see Fig. 2). From this pro-
file,  we  obtain the initial stresses (including the initial internal
pressure  on the excavation wall) to compute the unloading curve.

In some cases, the corresponding stress profile (for an elastic
solution) can be obtained analytically. For more complex cases,



J. González-Cao et al. / Journal of Rock Mechanics and Geotechnical Engineering 5 (2013) 431–442 433

Fig. 2. Example of radial and tangential initial stress (�r and ��) distributions
(remark  the jump in ��) and initial displacement (ur) for the case of a tunnel (a = 2 m)
surrounded by an annulus (Rc = 3 m)  of a softer material.

where plasticity arises before excavation begins or where varia-
tions  in material properties occur, an analytical solution may  not
be possible, so a numerical approach will be required.

An asymptotic condition associated with the field stress is used
in  the statement of the unloading problem. Instead of using a large
computational domain to ensure this condition, asymptotic behav-
ior can be imposed by matching the elastic solution at an artificial
external  boundary (in the sequel it will be taken as r = Rf) chosen
beyond  the reach of the plastic zone. This will reduce the compu-
tational  load.

Due  to the axisymmetric geometry, the problem can be written
in  terms of radial and circumferential stresses as functions of the
radial coordinate:

∂

∂r
(�k+1�r) + 1

r
(�k+1�r − �k+1��) = 0 (a < r < Rf) (5)

with the unloading condition on the excavation wall (at r = a):

�k+1�r(a) = �k+1pi (6)

Matching with the elastic solution at the external radius r = Rf is
then  provided by

�k+1
r (Rf) + �k+1

�
(Rf) = 2�0 (7)

In the methodology developed in Section 3, the material param-
eters  are allowed to vary arbitrarily in the radial coordinate
(corresponding to the axial symmetry assumed throughout this
paper) and a simpler configuration (corresponding to a homoge-
neous  rock mass except for the presence of a ring-like region of
damaged or reinforced material) will be used in the examples.

In  order to compute the unloading curve, once the problem
has  been semi-discretized, a set of equilibrium problems must be
solved (Eqs. (2) and (3)). This can be viewed as a continuation
method in which internal pressure plays a role of the continuation
parameter. Although natural, this approach can be quite inefficient.
In  practice, very large displacements at the excavation walls are to
be expected for a rock mass with strong SS behavior. As a con-
sequence,  the corresponding GRC (obtained by plotting the point
(uk+1
r (a), pk+1

i ) after solving each equilibrium problem) can exhibit
a  very shallow step in the final stretch of the curve. Consequently,
the  step in internal pressure variation must be very small in order
to  ensure convergence in the equilibrium problem solution, as a
good initial iteration will otherwise be difficult.

As an alternative, the incremental displacement at the wall can
be  used as the control parameter in order to compute the unloading
curve.  Even better is to use an arc-length continuation technique,

Fig. 3. Rock mass behavior models.

where the distance in the ur(a)–pi plane between two consecutive
steps  is used as a control parameter.

2.2. Rock mass behavior models

Rock mass behavior models can be classified according to post-
failure  behavior in EPP, EB and SS materials. SS can be considered
as  the most general case, since EPP and EB are simply particular
types  of SS: EPP is a type of SS in which the peak and residual
failure criteria coincide, and EB is a particular case of SS in which
stress  jumps from the peak strength to the residual strength with-
out  strain relaxation during failure (Fig. 3). Since SS behavior covers
every  type of rock mass, it is the focus of the present study.

2.2.1.  Strain-softening behavior
SS behavior can be derived from the incremental, rate-

independent plasticity theory (Hill, 1950), described by means of a
failure criterion, f, and a plastic potential, g, both of which depend
not  only on the stress tensor �ij but also on the so-called softening
(or  plasticity) parameter 	.

For the sake of simplicity, we have chosen the Mohr–Coulomb
failure criterion, although the method can be easily adapted to any
other failure criterion and plastic potential. Accordingly, the gen-
eral forms of the failure criterion and the plastic potential in this
case  are given by

f (�r, ��, 	) = �� − Kp�r − 2c
√
Kp (8)

g(�r, ��, 	) = �� − K �r (9)

where

Kp = 1 + sin 


1 − sin 


K = 1 + sin  

1 − sin  

⎫
⎪⎬
⎪⎭

(10)

where c is the cohesion, 
 is the friction and   is the dilation angle.
The  proposal by Alonso et al. (2003) is followed to define the

evolving  Mohr–Coulomb failure criterion. The cohesion c and the
friction 
 are characterized by means of bilinear functions of the
plastic parameter 	, in such a way  that, starting from their peak
values  (cp and 
p), they linearly decrease to their residual values
(cr and 
r) for a particular value of the plastic parameter (	*). For
larger  values of this parameter, c and 
 will keep a constant residual
value.  Accordingly, the functions representing these values take the
following form:

X =

⎧
⎨
⎩
Xp − Xp − Xr

	∗ (	  < 	∗)

Xr (	≥	∗)
(11)

where X refers to the cohesion and the friction. Fig. 4 shows the peak
and residual failure criteria and their impact on the stress–strain
behavior of the rock mass, together with the typical functions of
c and 
 as defined by Eq. (11). This approach can be implemented
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Fig. 4. (a) Peak and residual failure criteria of a SS material and stress–strain response of a test on a sample and (b) evolution models for cohesion and friction.

in standard numerical codes, for instance, FLAC (Itasca Consulting
Group,  2009).

To  fully define material behavior according to the theory of
incremental plasticity, it is necessary to define the plastic parame-
ter.  Following Alonso et al. (2003) in an approach also adopted by
other authors (Lee and Pietruszczak, 2008; Park et al., 2008), we
used the plastic shear strain as the plastic parameter:

	 = εp
1 − εp

3 = εp
�

− εp
r (12)

This plastic parameter is easy to be computed and can be related
to  other plastic parameters, like those suggested by Vermeer and
de Borst (1984) or used in FLAC (Itasca Consulting Group, 2009).
Using  the plastic potential defined by Eq. (9), the flow rule imposes

εp
ij

= �̇ ∂g
∂�ij

(13)

for some �̇ to  be computed, related to the type of loading (Lubliner,
2006).

2.2.2.  Estimating rock mass parameters for strain-softening
behavior

Once it is accepted that rock mass behavior is SS, all the
parameters that control this behavior need to be provided. For
Mohr–Coulomb SS as defined above, the parameters needed to fully
characterize a rock mass include peak strength criteria (cp and 
p),
elastic parameters (E and 
), residual strength criteria (cr and 
r)
and post-failure parameters (	* and  ).

Traditional rock mechanics approaches, based on rock mass
classification systems and laboratory tests on rock samples, are
used to obtain the needed parameters including peak strength
criteria  and elastic parameters. Post-failure parameters can be
obtained, following recently suggested guidelines, as described
below.

Classic  rock mass characterization starts from compressive
tests on rock samples in the laboratory, which provide the values
for  unconfined compressive strength (�ci) and the Hoek–Brown
parameter m.

Field  work enables the quality of the rock mass to be assessed
according to one or various classification systems. For the sake of
simplicity, we chose the GSI (Marinos and Hoek, 2000). For char-
acterization  purposes also needed was an estimate of the density
of  the materials and, to obtain an estimate of the field stress, the
depth  of the excavation to be investigated.

With this information, typically available from any excavation
study,  and using the approach proposed by Hoek et al. (2002) and
implemented in the freeware code RocLab (Rocscience Inc., 2009),
one  can obtain a reasonable estimate for the peak strength param-
eters  (cp and 
p) and the elastic parameters (E and 
).

The  residual strength parameters can be obtained based on an
estimate  of the residual value for the GSIres. Based on Cai et al.
(2007),  Alejano et al. (2012) suggested roughly estimating this
value  according to

GSIres = 17.25e0.0107GSIpeak
(14)

Post-failure parameters are estimated following the approach
by  Alejano et al. (2010). The value of 	*, i.e. the plastic parameter
marking the transition to the residual state, is estimated for every
level  of confinement stress �3 as

	∗ = �p
1 − �r

1
E

ω  + 1
ω

(
1 + K 

2

)
(15)
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where

ω = 0.0046e0.0768GSIpeak

(
�3√
speak�ci

)−1(
for

�3√
speak�ci

≥0.1

)

ω = 0.0046e0.0768GSIpeak

(
�3

2
√
speak�ci

+ 0.05

)−1(
for

�3√
speak�ci

≤ 0.1

)

⎫
⎪⎬
⎪⎭

(16)

where speak is the Hoek–Brown parameter of the intact rock mass,
E  is the Young’s modulus for the rock mass, and K depends on
 .  This dilation, considered constant for this application, can be
estimated as

  = 5GSIpeak − 125
1000


p (17)

Note, in regard to Fig. 4, that in the axial branch of the
stress–strain curve, the value of 	* can be related to the negative
slope  of the post-failure component of this curve M (related to ω
and E according to M = − ωE).

An aureole of material surrounding the tunnel (formed of blast-
damaged  material) is considered here for a particular application.
In  order to quantify the parameters controlling the behavior of this
damaged material, a simple (although somewhat rough) approach
based  on the characterization by Hoek et al. (2002) can be applied.

A  parameter D, reflecting the level of disturbance, is included
as  an indicator of the damage suffered by the rock mass, roughly
estimated  in accordance with the blasting procedure used. This
parameter  takes a value between 0 (undamaged material) and 1
(very damaged material), usually 0, 0.5 or 0.8. Thus, D = 0 when
excellent  quality-controlled blasting or mechanical excavation
produces minimal disturbance to the rock mass surrounding the
excavation, D = 0.5 when squeezing problems result in significant
floor  heave and D = 0.8 when a high level of damage is associated
with  very poor quality blasting that produces severe local damage
in  the surrounding rock mass (Hoek et al., 2002).

Once D is defined, the same characterization procedure as
defined  previously for an undamaged rock mass can be followed,
with  the new D value included in the expressions provided by Hoek
et al. (2002).

3.  Numerical solution

Using  a weak formulation, the (k + 1)-th step in the unloading
problem stated in the previous section indicates an incremental
displacement field �k+1ur such that the corresponding incremental
stress  �k+1� solves∫

˝

�k+1�ε(�)d  ̋ =
∫

∂˝

�k+1��dS (18)

for any virtual displacement field �. This formulation (correspond-
ing  to the principle of virtual work) can then be particularized to
axisymmetric solutions.

Alternatively,  a weak formulation of the axisymmetric problem
can  be directly obtained. The weak formulation for the axisym-
metric  problem reads (in the second case) as follows: find a radial
displacement (incremental) field �k+1ur solution of
∫ Rf

a

(
�k+1�r

d�
dr

− �k+1�r − �k+1��
r

�

)
dr − �k+1�r(Rf)�(Rf)

+  �k+1�r(a)�(a) = 0 (19)

for any virtual displacement field �.
This problem is discretized (in space) using a standard

Lagrange P1 finite element method (FEM). Then, after dividing
the  interval (a, Rf) using a (non-uniform) grid {rj}j = 0,N (with
a  = r0 < r1 < . . . < rN−1 < rN = Rf), we look for the (approximated) val-
ues  of the radial displacement (incremental) field �k + 1ur at the

nodes  ({rj}j = 0,N, �k + 1ur,j) as the solution for the system of non-
linear  equations, which can be obtained from the weak formulation
when  the virtual displacement field is taken as each one of the
functions  in the finite element basis {ϕj(r)}j = 0,N (defined by
{ϕj(ri)} = ıij, where ıij represents the Kronecker delta).

In  the FEM discretization, the integrals over each element will
be  approximated using Gaussian quadrature. If a one-point scheme
is  used (as should be done when using a P1 FEM discretization
of  the displacement field), quadrature leads to the rectangle for-
mula  using the central point. As a result, radial and circumferential
(incremental) stresses, �k+1�r and �k+1�� , are only computed at
the  centre of each element.

To  determine radial and circumferential (incremental) stresses,
�k+1�r and �k+1�� , and the components of the tangent stiffness
matrix, Kk+1

t , at the points used in the numerical quadrature (i.e. the
central points of the elements), the constitutive law must be inte-
grated  for some prescribed deformation path. The (incremental)
displacement field is estimated for each iteration in the solution of
the non-linear problem and the associated deformation path (along
the  unloading step) is computed at the quadrature points. The con-
stitutive law is then integrated along this path to determine the
(incremental)  stresses at these points. A residual of the weak for-
mulation  is obtained to assess the quality of the approximation, and
a new estimate is computed if the residual is not small enough.

3.1.  Integrating constitutive equations

As explained in the previous sections, in order to solve the k-
th  step in the unloading problem, an incremental displacement
field  �k+1ur must be found such that the corresponding incremen-
tal  stresses, �k+1�r and �k+1�� , solve the equilibrium equation.
When using a finite element discretization, incremental stresses
(associated  with a given incremental discrete displacement field
and characterized by incremental displacement at the mesh nodes)
must  be computed at each numerical integration (quadrature)
node.

This  prediction is trivial if material behavior is elastic. Thus, in
order  to integrate the constitutive equations for the material, an
elastic trial is first computed (assuming that material behavior is
elastic along the whole increment in the displacement field associ-
ated  with the unloading step �k+1ur). If the final stress given by the
elastic  trial remains in the elasticity domain, the trial is accepted
and  the incremental stresses �k+1�r and �k+1�� are computed.
Otherwise, the total incremental displacement field is decomposed
into  an elastic part (associated with the fraction of the incremental
displacements needed by the elastic trial to reach the yield surface)
and  a plastic part (the rest).

More precisely, given the incremental strain field �k+1ε asso-
ciated  with the incremental displacement field �k+1u, the elastic
trial  is computed as �k+1�e = C�k+1ε (where C stands for the ten-
sor  of elastic constants). If the stress field updated using �k+1�e

lies outside the elastic domain, �k+1ε is decomposed as

�k+1ε = �k+1εe + �k+1εp (20)

where �k+1εe = ˛�k+1ε and the scalar  ̨ is determined so that the
updated  stress field (and internal variables) associated with the
elastic  prediction for �k+1εe lies on the yield surface. In this case,
the  rate-independent plasticity constitutive law for the plastic part
�k+1εp (starting from the yield surface) must be integrated.

As previously mentioned, to find the value of the incremen-
tal  stresses (at each quadrature node), the integral in Eq. (4) can
be  used, where the derivative of the corresponding stress will be
given by the constitutive law (in this case, the SS behavior described
in  Section 2.2). Thus, the relationship between stress and (plastic)
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strain given by the flow rule (see Eq. (13)) can be inverted (Lubliner,
2006):

�̇ = Cep(�, 	)ε̇ (21)

where Cep stands for the elasto-plastic stress–strain tensor
(dependent on the stress tensor and the plastic parameter 	). In
our  computation, since the incremental strain field is known (and,
hence, initial and final values of ε are prescribed, and a simple path
with  constant strain rates can be constructed), the previous equa-
tion  can be seen as a system of ordinary differential equations in the
stress field � and in 	 (where the definition of 	, given by Eq. (12)
and  written in differential form, must be incorporated in this sys-
tem). As a consequence, standard integration schemes for ordinary
differential  equations can be used to obtain �k+1� (Sloan, 1987).

Alternatively, the incremental stresses can be directly computed
by  seeking a final plastic stage associated with the imposed incre-
mental  displacement and compatible with the constitutive law.
Some  details and considerations of benefits and drawbacks of both
approaches will be shown in the following sub-sections.

3.1.1. Explicit algorithm: sub-stepping scheme
Algorithms to integrate the constitutive law (at each quadrature

node)  using the numerical integration of Eq. (2) are usually known
as  sub-stepping techniques (Sloan, 1987; Sloan et al., 2001). The
plasticity evolution parameter (i.e. the independent variable in the
system of ordinary differential equations) can be arbitrarily chosen
to  vary in (0, 1). Note that, in the present computation, the integra-
tion  interval corresponds to the transition associated with the k-th
unloading step.

The  integration interval must be discretized in a number of sub-
steps  that can be determined in advance or (in more elaborated
algorithms) that can be computed along the integration using some
kind of step control strategy (based on an estimate of the local trun-
cation  error). In order to keep the low computational cost, explicit
schemes  are usually considered.

A  rather simple alternative for solving Eq. (2), for the plastic part
of  the incremental strain tensor, with the additional equation for
the  plastic parameter 	, is

d
dr
��  = Cep(�k + ��(	))

d
dr
�εp

d	
d�

= dεp
�

d�
− dεp

r

d�

⎫
⎪⎬
⎪⎭

(22)

Here we use the modified Euler scheme with constant time
steps,  with �εp(�) = �k+1εp(�).

This  approach for the incremental stress computation can be
safely  used only when rock mass behavior (as described in Sec-
tion  2.2) is true SS behavior. It is important to note that strong
SS  (i.e. when df/d	 is negative and has a large absolute value) can
result  in a singular tensor Cep in Eq. (22). This makes it impossi-
ble  to use Eq. (2) to calculate the incremental stress field; it also
causes  the jump in the stress field that characterizes EB behavior.
It  should be observed that, in the context of the material behav-
ior  described in Section 2.2, the strength of the SS rock mass, for a
given set of peak and residual parameters, is related to the residual
plastic  parameter 	*. Thus, a critical value 	crit, depending on the
peak  and residual parameters, can be defined so that SS behavior
only  results if 	* > 	crit (see Alonso et al. (2003) for further details).
In  the particular case of the Mohr–Coulomb failure criterion, 	crit
is given by

	crit = (1 − 
)(1 + K )

2G
K1 (23)

where

K1 = 2(
p − 
r)
cos 
p

(1 − sin 
p)2

(
p∗

i + cp√
Kp
p

)
+ 2(cp − cr)

√
Kp
p

p∗
i

=
2�0 − 2cp

√
Kp
p

1 + Kp
p

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(24)

where Kp
p is as in Eq. (10) referred to peak friction angle 
p.

3.1.2.  Implicit algorithm
As  explained above, when material behavior is EB (detectable

by  comparing the plastic parameter associated with the transition
to  the residual state 	 with the corresponding critical value 	crit,
as  shown in Eq. (23)), the incremental stress field can no longer be
computed by integrating the system of ordinary differential equa-
tions.

In this case, the final stress associated with EB behavior is com-
puted  by seeking final stress corresponding to the residual state
and  compatible with the (imposed) incremental plastic strain. This
approach will define an implicit algorithm (in contrast with the
explicit algorithm resulting from the use of explicit schemes to inte-
grate  the system of ordinary differential equations) and will require
the  use of an iterative method to find the solution for the resulting
non-linear  problem (in the values of the incremental stress field at
the quadrature node under consideration).

Concerning the solution for the resulting non-linear system, a
very effective strategy in most cases is using the Newton method
with  line search. Nevertheless, if the drop from peak values to resid-
ual values is large, convergence may  be difficult with this method
(despite  additional robustness provided by line search). In these
cases,  a more robust technique, based on Powell’s hybrid method
(Powell,  1970), is used.

3.2.  Solution for the non-linear problem

At the k-th step of the unloading problem, the finite element
discretization of the equilibrium equations leads to the solution of
a non-linear problem in the displacement field at the nodes of the
mesh. This equation is the discrete counterpart of Eq. (18), which
represents  the principle of virtual work. More precisely, a vector
of  nodal incremental displacements �k + 1u must be found as the
solution  for a system of non-linear equations that can be written
as

�k+1F(�k, 	k; �k+1u) = �k+1b (25)

where �k+1 F represents the balance of internal forces determined
from  the integration of the constitutive law at each quadrature
point,  starting from an initial state described by the fields (�k, 	k)
corresponding to the previous unloading step and �k+1 b stands for
the  external forces associated with regional stress and with internal
pressure  at the excavation wall.

Since the continuation method, associated with the computa-
tion  of the unloading curve, could provide (if the GRC is regular)
a  good initial guess for the incremental displacement field at each
step  (several previously computed steps can be used to elaborate
this  guess), using Newton’s method can result in a fast global algo-
rithm.  At the (j + 1)-th iteration of Newton’s method, once the j-th
approximation  of the incremental displacement field �k,j u has
been  computed, a new approximation is computed to solve the
linear  system:

�k+1F
(
�k, 	k; �k+1,ju

)

+ Kk+1,j
t (�k+1,j+1u − �k+1,ju) = �k+1b (26)
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Table  1
Rock  mass strain softening parameters for the intact and damaged rock masses.

GSI D Rc (m)  E (MPa) 
 cp (MPa) 
p (◦) cr (MPa) 
r (◦)   (◦) 	* (def)

25 0 – 2054 0.3 1.195 30.64 1.121 29.68 0 0.048
25  0.5 4 1540 0.3 0.839 23.34 0.773 22.18 0 0.174
25  0.8 4.5 1232 0.3 0.577 17.03 0.521 15.81 0 0.437
25  1 5 1026 0.3 0.387 11.95 0.342 10.83 0 0.832
40  0 – 4870 0.27 1.655 35.67 1.257 31.01 2.68 0.013
40  0.5 4 3652 0.27 1.261 29.74 0.894 23.81 2.23 0.04
40  0.8 4.5 2922 0.27 0.959 24.12 0.624 17.53 1.81 0.094
40  1 5 2435 0.27 0.722 19.06 0.425 12.43 1.43 0.176
60  0 – 15,400 0.23 2.498 41.47 1.468 33.05 7.26 0.002
60  0.5 4 11550 0.23 2.023 37.63 1.086 26.37 6.59 0.0028
60  0.8 4.5 9240 0.23 1.680 33.72 0.795 20.32 5.9 0.004
60  1 5 7700 0.23 1.408 29.85 0.572 15.15 5.22 0.0058

The tangent matrix Kk+1,j
t , which is related to the derivative of

the  incremental stresses at the quadrature nodes with respect to
the incremental displacements at the mesh nodes, must be com-
puted  from the information obtained in the integration of the
constitutive  laws. For instance, it can be extracted from the last sub-
step  in the case of the explicit sub-stepping technique described in
the previous sections.

The  previous linear system in the correction of the incremental
displacement field �k+1,j+1 u − �k+1,j u is usually rewritten as

Kk+1,j
t (�k+1,j+1u − �k+1,ju) = rk+1,j (27)

where rk+1,j = �k+1 b − �k+1 F(�k, 	k ; �k+1,j u) represents the
residual of the non-linear system of equations (i.e. the unbalance
between  internal and external forces in the j-th iteration) which is
used to check convergence.

The  convergence of the Newton algorithm relies on the regular-
ity  of the solution for the unloading problem. This algorithm works
well  for most but not all SS materials.

In brittle or guasi-brittle materials, abrupt changes in stresses,
may  appear and a irregular behavior of the unloading problem can
be anticipated. In these cases, as done in the integration of the
constitutive  equation using an implicit algorithm, a more robust
algorithm  based on Powell’s hybrid method is used.

4.  Application to a tunnel surrounded by blast-damaged
rocks

Blasting is commonly used for drift and tunnel advancing in civil
and  mining engineering fields, particularly when the rock is hard
and  in a good or very good quality rock mass. However, blasting
not  only breaks the rock the engineers want to remove but also
damages  or disturbs the surrounding rocks. This undesirable effect
has been studied widely from different perspectives (Holmberg and
Persson, 1979; Raina et al., 2000; Ouchterlony et al., 2002). How-
ever,  although a good number of studies analyze the nature of this
damage, few assess the impact on tunnel design. Noteworthy is the
works by Saiang and Nordlund (2009), who considered a reduction
in  the elastic parameters and analyzed their influence on tunnel
response.  A rather simple way to account for blast-induced damage
is  the approach proposed by Hoek et al. (2002), based on quantify-
ing  what is called the disturbance parameter D (Section 2.2). This
method, together with the rock mass characterization approach
described  here, permits the estimation of all the parameters needed
to model the behavior of the damaged material found around the
excavated tunnel.

The  extent of the blast-damaged zone also needs to be known
for  modeling purposes. Even if it is clear that the degree of dam-
age  decreases from the excavation surface to the interior of the
rock  mass, approximate estimates of the extent of damage can be

Table 2
Parameters of the explicit algorithm for GSI = 25 and 40.

Unload step (MPa) NR tolerance Number of nodes Rf

0.015 1.0 × 10−6 850 10

Table 3
Parameters of the implicit Powell algorithm for GSI = 60.

Unloading step (MPa) Powell tolerance Number of nodes Rf

0.03 1.0 × 10−3 850 7

computed using observation and classic approaches (Anläggnings
AMA-98, 1999).

Another  possible approach, developed by García-Bastante et al.
(2012), shows how an estimate can be based on Langefor’s theory of
blast calculation, starting from the explosive energy, the coupling
factor,  the rock mass constant and the gas isentropic expansion
factor.

Accounting for the typical values for these parameters in actual
blasting  tunnel advance, the extent of the damaged zone may vary
between 0.5 m and 2.5 m but usually takes values in the range of
1–2 m.

For  illustrative purposes, we modeled 3 m radius tunnels exca-
vated  in different quality rock masses in which different degrees of
blast damage were induced. All the rock masses were composed
of  standard rock. The laboratory value for uniaxial compressive
strength was 75 MPa, for m = 10 and an estimated depth of 600 m
(�0 = 15 MPa). Rock masses with low (GSI = 25), low to average
(GSI  = 40) and average to high (GSI = 60) geotechnical quality were
modeled.  For each type of rock mass, we computed the value of the
plastic radius for the unloaded case and the GRC for four different
levels  of blast-induced damage associated with different values of
D (0, 0.5, 0.8 and 1). These damage levels can be related to different
situations  as in Hoek et al. (2002).

For this general approach, the extent of the damaged zone was
considered  to vary in accordance with the damage level, from 1 m
for  the case D = 0.5 to 2 m for the case D = 1 (very damaged rock).
All  the parameters needed to model these excavations were calcu-
lated  following the procedure described in Section 2.2. Recall that
dilatancy is considered to be constant, the parameters obtained for
the  different rock masses and blasting-induced damage levels are
presented in Table 1. The algorithm parameters for GSI = 25 and 40
are  shown in Table 2 and those for GSI = 60 in Table 3. Results for
the  different GRCs and plastic radii Rp are shown in Fig. 5.

Note  that, as would be expected, in all cases the plastic radii and
final  displacements increase with higher levels of blasting-induced
damage. Note also that the displacement increments are larger for
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Fig. 5. GRCs in terms of pi and displacement ur and final plastic radius, for the
tunnels excavated in different quality rock masses (GSI = 60) surrounded by different
types (size and damage level) of blasting-induced damaged material.

poorer quality rock masses, where the influence of the damage may
be more relevant in terms of support needs.

These results indicate noticeable differences in expected
displacements and plastic radii, depending on whether

blasting-induced damage around a drift or tunnel is consid-
ered  and, if considered, its magnitude. The approach described
above  enables the influence of this damage to be assessed within
the  CCM approach.

Alejano et al. (2009b), using real data for a Peruvian mine,
showed that poor blasting techniques increased the need for sup-
port and reinforcement in mining drifts. This increased need for
support  and reinforcement can be quantified by means of the
approach  described here and within the framework of the appli-
cation  of the CCM to estimate support needs (e.g. Oreste, 2003).
Note  that the fact of computing the GRC of a drift or tunnel while
accounting  for blasting-induced damage can lead to better and
less  costly support design and can help decide whether blasting-
controlled  techniques are a suitable option.

5. Application to a tunnel surrounded by a ring-like zone of
reinforced  rock

Indraratna and Kaiser (1990a, 1990b) proposed an analytical
model  to represent the behavior of a reinforced rock mass near
a  circular underground opening, considering a proper interaction
mechanism between the ground and the grouted (or friction) bolts.
To analyze the influence of the bolt pattern on tunnel response,
they  introduced the bolt density parameter, ˇ, as a dimensionless
parameter that reflects the relative density of bolts on the tun-
nel  perimeter, and considered the shear stresses opposing the rock
mass  displacements near the tunnel wall.  ̌ is defined as

 ̌ = �d�̄a
SLST

(28)

where d is the bolt diameter; SL and ST are the spacings of the bolt
pattern  in the tunnel advance direction and in the tunnel section,
respectively; and �̄ relates the mobilized shear stress acting on the
grouted bolt to the stress acting normal to the bolt. This value is
analogous to the coefficient of friction or the bond angle used to
analyze reinforced earth and split-set bolts.

The dimensionless ratio ˇ/�̄ is  the inverse function of the bolt
spacing  for a given bolt and tunnel geometry and it generally
ranges between 0.1 and 0.4. Once this parameter is defined, the
above  named authors proposed obtaining equivalent Hoek–Brown
parameters for the reinforced rock mass by means of the expres-
sions:

mreinf = m(1 + ˇ)

�creinf = �c(1 + ˇ)

}
(29)

Indraratna and Kaiser (1990a) described how to derive the ana-
lytical  model and illustrated the effect of bolts on the stress and
displacement  field near an opening. Verification of the theory by
laboratory simulations and field measurements was  subsequently
described in detail. This type of geometrical distribution of rock and
reinforced rock proposed to include reinforcement in GRC behavior
can  be used within the frame of our methodology.

As an example application, a laboratory simulation performed
by  Indraratna and Kaiser (1990b) was  studied by means of the pro-
posed methodology and compared to results obtained by these
same  authors. A small 130 mm radius tunnel was  excavated in
artificial  rock with the following properties: E = 1500 MPa, 
 = 0.25,

 = 32◦, �c = 3.5 MPa, s = 0.9 and K = 2.

The  tunnel was reinforced with 100 mm brass bolts, with an
estimated  friction factor of �̄  = 0.36, subjected to an isotropic field
stress  of 14 MPa. Results were obtained for the unsupported tunnel
(ˇ  = 0) and for open and closed bolting meshes (  ̌ = 0.145 and 0.291,
respectively).
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Table  4
Rock  mass strain softening parameters for the intact and damaged rock masses.

 ̌ �0 (MPa) Rc (m) E (MPa) 
 cp (MPa) 
p (◦) cr (MPa) 
r (◦)   (◦) 	* (def)

0 14 – 1500 0.25 0.97 32 0.873 32 19.47 0.0007
0.145  14 0.23 1500 0.25 1.04 35.23 0.93 35.23 19.47 0.00085
0.291  14 0.23 1500 0.25 1.1 37.99 0.99 37.99 19.47 0.0009

Table 5
Parameters of the implicit Powell algorithm for GSI = 60.

Unloading step (MPa) Powell tolerance Number of nodes Rf

0.03 1.0 × 10−6 500 0.3

For these cases, following the approach by Indraratna and Kaiser
(1990a),  the parameters presented in Table 4 were obtained. Note
that in this case peak and residual frictions were considered equal
and  brittle behavior was considered for cohesion, in such a way
that  the residual value of the compressive strength was  computed
from  the expression:

�c
r = �cs

peak (30)

Remind that cohesion and compressive strength could be
related  according to

c = �c

2
√
Kp

(31)

The algorithm parameters are presented in Table 5. The GRCs
for  the different cases together with the values of the plastic radius
for  the fully unloaded case are shown in Fig. 6. The results compare
quite  well those obtained by Indraratna and Kaiser (1990a) in their
models and are checked against actual laboratory results.

Even  if the results have been compared to those for a small
laboratory model, they still seem to indicate that the approach to
include the effect of reinforcement in the CCM is suitable for real
engineering  applications as suggested by Oreste (2003).

Note  that other ground improvement techniques such as grout-
ing  or the use of forepole umbrellas can also be dealt with in the
framework  of this approach.

Fig. 6. GRCs in terms of pi and displacement and plastic radius, for the case of a
0.13 m tunnel excavated in a rock mass surrounded by different types (bolt density
parameter ˇ) of rings of reinforced material.

6. Conclusions

We  have described a methodology for solving the axisymmet-
ric  problem associated with the computation of the GRC and plastic
radius  around tunnels excavated in non-homogeneous axisymmet-
ric  rock masses. The method is a robust and fast approach that
can  be used when self-similar solutions are not possible due to
the  non-homogeneity of the rock mass.

The method solves the sequence of equilibrium problems
associated with tunnel unloading. A non-homogeneous stress dis-
tribution associated with the regional stress field needs to be
computed  and used as the initial condition in the problem. Assum-
ing  axial symmetry of this solution, the equilibrium equation in
radial coordinates is solved by means of 1D FEM over an adapted
mesh.

Coupling  with the elastic (far-field) solution is used as a bound-
ary  condition at an external boundary located at a sufficient
distance from the tunnel wall.

A robust strategy to integrate the constitutive law is adopted
in  combination of an explicit technique (based on a sub-stepping
algorithm) for the general cases (EPP and SS) and an implicit (and
more  time consuming) technique for rock masses behaving in a
brittle way, i.e. when the stress drop occurs brusquely.

The Appendix of the manuscript contains both a verification of
the developed code and a validation of the numerical aspects of
the algorithm. In this sense, the proposed numerical method to
deal with circular excavations in non-homogeneous, axisymmet-
ric  strain-softening rock masses can be considered as validated.
Our  method has been moreover verified for homogeneous and
non-homogeneous cases and two applications of practical interest
are  presented. The first application deals with the computation of
GRCs around tunnels surrounded by an aureole of blast-damaged
materials. Results for different quality rock masses submitted to
different damage levels point to an increased need for support and
reinforcement in the case of poor blasting techniques. The sec-
ond  application refers to a tunnel surrounded by a ring of rock
bolt-reinforced material. The resulting GRC shows diminishing
deformation associated with the stabilizing effect of the rock bolts.
Numerical results are in good agreement with laboratory tests. The
two examples demonstrate the usefulness of the proposed numer-
ical  approach, capable of making predictions in an efficient way.

Future work includes comparing numerical results with in situ
monitoring  data.
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Appendix A. Verification

In  this Appendix, computation of the GRC using the proposed
methodology will be considered for verification purposes in fol-
lowing three test cases:
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Table A.1
Rock  mass parameters for homogeneous case.

�0 (MPa) a (m)  E (MPa) � cp (MPa) 
p (◦) cr (MPa) 
r (◦)   (◦) 	* (def)

4.07 2 3837.8 0.25 1.183 24.81 0.9 15.69 6.2 0.01

(1) A circular excavation in a homogenous EPP rock mass, where
the solution is compared with the self-similar solution com-
puted using the method proposed by Alonso et al. (2003).

(2) A circular excavation in a rock mass where an aureole of
damaged zone is presented (both materials exhibit EPP behav-
ior), where two different plasticity laws (Mohr–Coulomb and
Drucker–Prager) are considered and where the solution is com-
pared with analytical and 2D numerical solutions.

(3) A circular excavation in an EB homogeneous rock mass, where
the solution is compared with the self-similar solution com-
puted using the method proposed in Alonso et al. (2003).

A.1. Test case 1

A  circular tunnel of 2 m radius is excavated in a homogeneous
strain softening rock mass submitted to an isotropic field stress of
4.07 MPa, equivalent to 160 m in depth. This stress field is consid-
ered  as the external boundary condition. Parameters used in this
test case are shown in Table A.1 and the resulting GRC is shown
in  Fig. A.1, where the GRC computed from the self-similar solution
is  also represented. As can be observed in Fig. A.1, both solutions
agree  (note that no self-similarity is imposed here but naturally
arises  from the problem symmetry).

Concerning the computation time, although the proposed
methodology must solve a sequence of (1D) equilibrium problems
instead  of integrating an initial value problem associated with a
reduced system of ordinary differential equations (as is the case of
the self-similar solution), the computational cost is not very much
increased.  For instance, in this example using an implementation
with  GNU/OCTAVE the computation time using the approach in
Alonso  et al. (2003) is 1.3 s, while the corresponding time using the
proposed methodology rises to 6 s.

A.2.  Test case 2

In  this test case, first considered is a Mohr–Coulomb mate-
rial  with EPP behavior. In this case, �0 = 4.07 MPa, Rc = 2.2 m and
a  = 2 m (the excavation radius). So a damage aureole of 0.2 m is

Fig. A.1. GRCs in terms of pi and displacement for the homogeneous rock mass
verification case.

Table A.2
Rock  mass parameters for EPP non-homogeneous case.

Type of rock mass E (MPa) 
 c (MPa) 
 (◦)   (◦)

Undisturbed 3837.8 0.25 1.183 24.81 6.2
Disturbed 2837.8 0.25 0.9 20.1 4.5

Table A.3
Rock  mass parameters for Drucker–Prager model.

Type of rock mass E (MPa) 
  ¯̨   ̌ b

Undisturbed 4870.02 0.27 1.93 0.836 0.836
Disturbed 2922.01 0.27 1.17 0.546 0.546

considered. Material properties (both for the undisturbed and dis-
turbed materials) are summarized in Table A.2. Computed radial
and  circumferential stress fields corresponding to the complete
unloading (pi = 0) are plotted in Fig. A.2, also illustrating the ana-
lytical  solution. As shown, the computed and analytical solutions
agree.

The  second case computed refers to a Drucker–Prager material
with  EPP behavior and associated flow rule, defined as in Regueiro
and  Borja (1999). In this case, �0 = 15 MPa, Rc = 3.113 m and a = 2 m.
So  a damage aureole of 1.113 m is considered.

Material properties are summarized in Table A.3. The solution
computed with the proposed methodology is compared with that
obtained with the FEM code TAHOE using a 2D model. TAHOE
(Sandia  National Laboratories, 2003) is an open source FEM code
developed  for the simulation of complex material behavior. The
resulting GRC is represented in Fig. A.3.

For this case, where a rather fine mesh has been used to exhibit
the  large difference in computation time when comparing the
proposed  method with a general solver for a 2D model, the com-
putation  time for the proposed method rises from a few seconds
in  the previous test cases to one minute; meanwhile, the compu-
tation  time used by TAHOE to solve a quarter of the 2D geometry,
for  a mesh size similar to the size used in the proposed method, is
around five minutes.

Fig. A.2. Stress field for a tunnel section for the non-homogeneous EPP rock mass
verification case.
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Table  A.4
Rock  mass parameters for homogeneous-brittle case.

�0 (MPa) a (m)  E (MPa) 
 cp (MPa) 
p (◦) cr (MPa) 
r (◦)   (◦) 	* (def)

14.07 3 3837.8 0.25 1.183 24.81 0.9 15.69 6.2 0.0045

Fig. A.3. GRCs in terms of pi and displacement for the Drucker–Prager model.

Fig. A.4. GRCs in terms of pi and displacement for the homogeneous-brittle rock
mass verification case.

A.3. Test case 3

A  circular tunnel of 3 m radius is excavated in a homogeneous
EB rock mass submitted to an isotropic field stress of 14.07 MPa,
equivalent  to 560 m in depth. This stress field is considered as the
external boundary condition. Again, the computed solution is com-
pared with that obtained using a self-similarity approach (as done
in Alonso et al., 2003).

The  parameters used in this test case are shown in Table A.4 and
the  resulting GRC is represented in Fig. A.4. The method described
in  this paper is shown to be able to deal with this singular behav-
ior  by switching to an implicit integration of the constitutive law;
meanwhile,  the self-similar solution is again recovered as can be
observed in Fig. A.4.

Plotted  also is the self-similar solution computed using the
approach  in Alonso et al. (2003), where elasto-brittle transition is
much easier to detect and deal with.
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