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Numerical Simulation of Temperature Field and Grain
Texture During Casting Single Crystal Superalloy DD403 with
Liquid Metal Cooling
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State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, Shanxi, China

Abstract The temperature field and grain texture during the directional solidification of Ni-base single crystal
superalloy DD403 has been simulated by ProCAST&CAFE model. The effect of withdrawal rate on stray grains
formation and shape as well as location of the solid-liquid interface of the casting between its platform and
transition region (airfoil) was analyzed. Critical withdrawal rates (Vc), which are maximum withdrawal rates of
no stray grains formation in the single crystal casting, were obtained with two methods. It is found that the liquid
isotherm moves from center to edge at the platform region for liquid metal cooling (LMC) method at a rate of
150 wm/s, inhibiting the formation of stray grains. However, the edge of platform for high rate solidification
(HRS) approach with the same withdrawal rate is cooled earlier than the center, and great undercooling of the
edge of the platform may occur, which results in stray grains formation there. In this study, Vc cannot be more
than 125 pm/s for HRS method; it is recommended the maximum withdrawal rate for LMC approach cannot
exceed 150 pm/s, otherwise new grains may occur at the pigtail or platform region. When the withdrawal rate is
150 pm/s, the LMC process can create axial thermal gradient (Ga) at airfoil more than double the HRS process
with a 1/3-1/2 refinement in primary dendrite arm spacing (PDAS). In addition, Ga and PDAS are more uniform
along the axis of the castings compared with HRS method. As withdrawal rate increases in the range of 50 to 200
pm/s, the solid-liquid interface at airfoil remains flat and moves to the middle of the thermal baffle for LMC
method; however, it becomes more concave and moves to the underside of the baffle for HRS approach.
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Table 1 Nominal composition of alloy DD403 used in this
study w/%
Cr Co W Mo Al Ti Ni
9.5 5.0 5.2 3.8 5.9 2.1
1
1.1 LMC
ProCAST CAFE o1
LMC DD403
° 2 kg HRS/LMC
113 R
2

3a o N
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Fig. 1 Schematic diagram of the furnace chamber
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Fig. 2 FEM mesh model of the simulated furnace chamber

3
Fig. 3 Schematic diagram of the castings

a casting with a platform b selector with a pigtail
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3a Table 3 Enthalpy of alloy DD403 used in this study
H D 35mm 15 mm /c [0k
25 -368.669
0. ds dr 30°, 20 mm 5
1100 242.130
fme 1200 346.176
12 CAFE 1300 415.848
1324 450.134
1371 700.922
dn/d AT dn AT 1500 793.145
o dn/d AT 1 600 866.936
do_ ‘e [ L AT-ATw )2} | 4 DD403
d AT /2w AT, 2 AT, Table 4 Density of alloy DD403 used in this study
AT AT, /'C /(kg-m™)
- 0 o 25 8.164
1 000 7.766
° 1200 7.606
© 1324 7.505
<001> N 1371 7.169
<001> “ v 1500 7.058
. 1600 6.974
KGT 0 0.3 0
KGT
0 h 4000 W-m=-C¥
v AT = AT+a;T° 2 25°C.
. a3 AT 400 C
° 25°C, 2
1.3 . DD403 1550 C.
1.3.1 2 min
ProCAST . IMatPro . O .
DD403 Table 5 Heat transfer coefficients between interior mold
2-4 ° DD403 surface and casting
1371°C 1324°C [15] 1376C /C [(Wem?-C)
1328°C o 25 150
20 500 150
Wem2- C-el 5 1000 150
1 000 Wem=2-°C-116_ 1324 350
1371 750
1 600 750
2 DD403 1.3.2 CAFE
Table 2 Thermal conductivity of alloy DD403 used in this study (13 171 1
/C A(W-m- T 6
25 10.293
1055 25.061 6 CAFE
1100 26.379 Table 6 Nucleation parameters used for CAFE computation
1200 31177 Al /€ AT, /C P
1324 32.820 2.0 1.0 1.65x10°m™
1371 30.509 15.0 1.5 9.00x10° m™
1600 34.249 =23%x107 m+-s™-°C >

asz=
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Fig. 4 Predicted front solidification parameters of the casting between its

platform and transition region airfoil with LMC/HRS method 150 pwm/s

5 150 wm/s
Fig. 5 Predicted front temperature field of the casting under the platform
at different time 150 pm/s a LMC b HRS. When begin withdrawing
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100 um/s  HRS

6 LMC
Fig. 6 Predicted front solidification parameters of the airfoil with LMC
method at different withdrawal rates

a 50um/s b 100 pm/s ¢ 150 pm/s d 175 pm/s e 200 wm/s

7 6
Fig. 7 Predicted temperature field corresponding to Fig.6

8 HRS

Fig. 8 Predicted front solidification parameters of the airfoil with HRS
method at different withdrawal rates

a S0um/s b 100 pwm/s ¢ 125pum/s d 150 pm/s e 200 wm/s

9 8
Fig. 9 Predicted temperature field corresponding to Fig.8
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Fig. 10 Predicted temperature field of cross section of the platform at

different time 150 pm/s
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Fig. 13 Photograph of cross section of the platform after macroetching at

different withdrawal rates
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