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Abstract

Human vocal folds experience flow-induced vibrations during phonation. In

previous computational models, the vocal fold dynamics has been treated

with linear elasticity theory in which both the strain and the displacement

of the tissue are assumed to be infinitesimal (referred to as model I). The

effect of the nonlinear strain, or the geometric nonlinearity, caused by the

finite displacement is yet not clear. In this work, a two-dimensional model is

used to study the effect of the geometric nonlinearity (referred to as model

II) on the vocal fold and the airflow. The result shows that even though the

deformation is under 1 mm, i.e., less than 10% of the size of the vocal fold,

the geometric nonlinear effect is still significant. Specifically, model I under-

predicts the gap width, the flow rate, and the impact stress on the medial

surfaces as compared to model II. The study further shows that the differ-

ences are caused by the contact mechanics and more importantly, the fluid-

structure interaction that magnifies the error from the small-displacement

assumption. The results suggest that using the large-displacement formu-

lation in a computational model would be more appropriate for accurate

simulations of the vocal fold dynamics.

PACS numbers:
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I. INTRODUCTION

Computational modeling of the vocal fold vibration is an important tool for studying the vocal

fold dynamics and the physical process of voice production. In such a tool, a vocal fold model

is typically coupled with an airflow model to simulate the fluid-structure interaction (FSI) during

phonation. Recently, continuum mechanics based computer models have gained popularity com-

pared to the earlier simple but nevertheless insightful lumped-mass models, e.g., two-mass models

with connective springs1,2. In the continuum models, the vocal fold tissue is treated as a contin-

uously deformable medium using classical solid mechanics theory, which allows the deformations

of the vocal fold to be captured in more detail. In a recent work, Alipour et al.3 have given a

broad review of computational phonation in which they discussed extensively existing modeling

techniques, primary research findings, and also the validation efforts.

Among many previous studies that have developed continuum models of the vocal fold, small

deformations are often assumed for the vocal fold4–6. The rationale for this assumption is that

during normal phonation, the displacement of the vocal fold is on order of 1 mm, which is much

smaller compared to the characteristic length of the vocal fold, which is around 1 cm7. Thus,

the strain is only approximately 10% for normal phonation. This assumption makes the model

computation very efficient since the linear elasticity theory based on small deformations involves a

linear strain measure and also a linear stress-strain relationship. In some recent work, nonlinear

models have been adopted for the vocal fold. For example, Thomson and coworkers8,9 used a

hyperelastic Ogden tissue model in their study of the geometric effect of the laryngeal configuration

on the vocal fold dynamics. As a separate line of effort, Chan and his colleagues have worked on

characterization of the nonlinear tissue properties and the effect of the nonlinear properties on

the fundamental frequency of the vocal fold10,11. Despite these efforts, a quantitative study on

limitation of the linear assumption is still very limited, especially in the context of fluid–structure

interaction. Further study may be necessary in order to develop accurate computational models

that may find clinical applications.

In solid mechanics, several sources could introduce nonlinearity into the dynamics of a structure.

Typical examples include the geometric nonlinearity, contact mechanics, and material nonlinear-

ity12. For a general solid experiencing arbitrary deformations, sometimes even when the strain is

small, the displacement and accompanying rotation of some parts of the body can be large. A

classical example is a cantilever beam bent under the transverse load, where the free end of the

beam can go through large displacement and rotation even if the local strain anywhere in the beam

is small. Such large displacement and rotation would lead to nonlinear formulation of the strain

due to the significant change to the body configuration, a term referred to as geometric nonlinearity

in solid mechanics12. Therefore, in some cases the large-displacement formulation should be used

for structural analysis even when the strain is only above 5%. As mentioned earlier, the vocal fold

tissue may be around or somewhat exceeding this limit during normal phonation, and thus it would

be worthwhile to investigate its geometric nonlinear effect.

Contact mechanics is involved in the vocal fold dynamics due to collision of the two folds at

their medial surfaces. This effect has been included in many previous studies5,13,14 to investigate

the impact stress on the vocal fold. Since contact mechanics is essentially a nonlinear process and

it largely depends on the local geometry of the two surfaces15, a small error relative to the overall
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dimension of the vocal fold could lead to significant change in the displacement of the local contact

area and therefore, less accurate prediction of the impact stress. Furthermore, although the gap

between the two vocal folds, i.e., the glottis, is small as compared to the size of the vocal folds,

the airflow largely depends on the width and shape of the glottis, and the flow may in turn affect

the pressure distribution on the vocal folds. However, it is not yet clear whether the error due to

the small-displacement assumption would increase or not in the context of nonlinear fluid-structure

interaction. A careful investigation of the issues described here would provide useful information

on modeling errors and thus be helpful for future development of accurate vocal fold models.

We emphasize that the current discussion is still within the scope of the small-strain assumption.

In real situations, large deformations (and thus large strains) of the vocal fold can happen as well,

for example, due to substantial local deformation, lengthening of the vocal folds, or insertion of

an implant. The large strain could lead to a nonlinear stress-strain relationship, i.e., material

nonlinearity as referred to in solid mechanics, and it is beyond the scope of this work.

In this work, we will use a two-dimensional (2D) larynx model to study the effect of finite

displacements on the characteristics of the vocal fold vibration and those of the glottal flow. The

problem formulation and the theoretical background of geometric nonlinearity will be described in

Section 2. Results and discussion will be provided in Section 3. Concluding remarks will be given

in Section 4.

II. MODEL DESCRIPTION AND THE NUMERICAL APPROACH

A. Model setup

The two-dimensional vocal fold model is shown in Fig. 1, where the setup is similar to the one

in Luo et al.16. A pair of vocal folds of identical properties are placed in a straight rectangular

channel representing the passageway of the airflow. The channel length and height are L = 12

cm and H = 2 cm, respectively. The channel walls are rigid, but the vocal folds are elastic and

can go through plane-strain deformations (i.e., deformation in the xy-plane only). Although the

vocal fold tissue is known to be anisotropic and inhomogeneous17, here we simplify the problem by

considering an isotropic and homogeneous tissue model. The tissue properties include the density

ρs = 1 g/cm3, Young’s modulus E = 40 kPa, and Poisson’s ratio νs = 0.3. These properties are

within the ballpark of previous computational models4,13,16.

The airflow is driven by a constant subglottal pressure, Psub, at the inlet on the left end of the

channel, and it varies from 0.5 to 0.8 kPa, and the outlet pressure, Pout, is set to be zero. The

air is assumed to be Newtonian and incompressible, and its density and viscosity are respectively

ρf = 0.001 g/cm3 and µ = 2 × 10−4 Pa·s. The governing equations for the flow are the unsteady

incompressible Navier–Stokes equations,

∂vi

∂t
+

∂vivj

∂xj

= −

1

ρf

∂p

∂xi

+ ν
∂2vi

∂xj∂xj

,
∂vi

∂xi

= 0, (1)

where vi is the velocity component, p is the pressure, ρf is the density and ν is the kinematic

viscosity. No-slip and no-penetration boundary conditions are imposed at the channel walls and

also at the vocal fold surfaces. At the inlet and outlet, the normal shear stress is set to zero.
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FIG. 1. A 2D model for studying the role of geometric nonlinearity in the vocal fold dynamics.

The vocal fold tissue is assumed to be linearly elastic, which is a suitable assumption when the

strain is small. That is, the stress is linearly proportional to the strain. However, depending on

whether the solid structure experiences significant displacement and significant rotational deforma-

tions (e.g., greater than 5%), the stress and strain measures are different. Two formulations are

considered here. One of them is the commonly adopted small-displacement formulation, in which

the stress σij is linearly proportional to the strain εij by the relationship12.

σxx = (C11εxx + C12εyy), σyy = (C12εxx + C22εyy), σxy = 2Gεxy , (2)

where G = E/(2 + 2νs) is the shear modulus and C11, C22, C12 are the elasticity constants deter-

mined from E and νs
12. The strain is also a linear function of the displacement, that is,

εij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

, (3)

where ui is the displacement vector.

The other formulation assumes that the displacement and rotation are no longer small, and

the strain measure becomes a nonlinear function of the displacement, which is termed geometric

nonlinearity12. Using the Lagrangian formulation, the strain can be written as

εij =
1

2

(

∂ui

∂Xj

+
∂uj

∂Xi

+
∂uk

∂Xi

∂uk

∂Xj

)

, (4)

where Xi refers to a material point in the reference configuration (or the undeformed state). Note

that compared with Eq. (3), Eq. (4) has higher-order terms from products of the linear deformation

components. Such a formulation incorporates the nonlinear effect caused by rotation of entire or

part of the body, e.g., the rigid-body-type rotation near the free tip of a cantilever beam when the

displacement is large. In the case of vocal fold deformation, such rotational effect could happen

to the vocal fold, if its cross section is viewed as a cantilever beam with the medial surface as

the free end and the subglottal pressure as the load. Eq. (4) also takes into account of the finite

deformation, if any, at the contact area during vocal fold impact. In the present work, we consider

a simple material behavior, where the stress-strain formulation is the same as Eq. (2) except that

the notation of the second piola-Kirchhoff stress12, Sij , would be used in place of σij.

Henceforth we will refer to the first formulation as model I and the second as model II. Note that

the present coupled flow-vocal-fold system is overall a nonlinear system no matter which constitutive
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law is being used. Furthermore, the contact mechanics as discussed earlier adds another source of

nonlinearity to the vocal fold dynamics in both models.

B. Numerical method

The numerical simulation is performed using the fluid-structure interaction package ADINA

8.8 (ADINA R&D Inc., Watertown, MA). This finite-element package has been previously used for

vocal fold modeling8,9,18. A triangular mesh of 12,850 nodes and 24,576 elements is used to discretize

the flow domain shown in Fig. 1. Finer resolution is employed within the glottis and around the

vocal fold surfaces. A triangular mesh of 385 nodes and 288 elements is used to discretize each vocal

fold. For the transient analysis, a composite second-order method is adopted for the flow, while

the Bathe integration method is chosen for the solid. The iterative solution option is chosen for the

fluid-structure coupling. Descriptions of these choices can be found in the ADINA documentation.

The time step is ∆t = 0.02 millisecond (ms), which leads to about 250 steps for a vibration cycle of

approximately 5 ms. The mass-damping coefficient and the stiffness-damping coefficients are chosen

to be 0.015 and 0.0002, respectively, for the vocal folds. A minimum gap of 0.2 mm is assumed for

the glottal gap. The two vocal folds are assumed to be in contact when they approach this specified

limit. For the contact dynamics, the built-in penalty function is applied, which prevents the vocal

folds from penetrating each other.

A grid convergence test is done for model II with Psub = 0.7 kPa. In the test, the number of mesh

elements are doubled and the simulation result is compared with that from the baseline simulation.

The comparison shows that the differences of the two simulations in the glottal gap width, the

oscillation frequency of the vocal folds, and the impact stress (definitions of these quantities will be

given later) are only 2.64%, 0.1%, and 5.69%, respectively. Therefore, the original mesh is deemed

acceptable for this work. Note that as the vocal folds move, the mesh will deform correspondingly,

which is done automatically in ADINA. However, manual mesh regeneration and simulation restart

are necessary in some cases, e.g., Psub = 0.8 kPa, since the mesh distortion becomes severe. To

make sure that the simulations are acceptable, a similar grid convergence test was done for these

cases. The result shows that after mesh refinement, the change in the glottal gap width is less than

9% (i.e., much smaller as compared with the difference we will report between model I and model

II) and the vibration behavior of the vocal fold does not vary significantly.

III. RESULTS AND DISCUSSIONS

In the current study we set the subglottal pressure Psub to be 0.5, 0.6, 0.7, and 0.8 kPa. Further

increase of Psub would cause the mesh quality to deteriorate quickly and would require extensive

manual mesh adjustment. For each value of Psub, we run model I and model II separately; then

we collect the statistics after onset of the vocal fold vibration is established. The simulations were

typically run for 100 to 200 vibration cycles, and it takes 60 to 100 cycles to reach steady vibration.

It was determined that steady vibration has been achieved when the averaged gap width over

20 cycles does not change significantly. The statistics are collected over 20 cycles during steady

vibration. We will discuss the vibration characteristics, the impact stress at the medial surfaces,
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FIG. 2. The lowest four eignmodes of the current vocal fold model. (a) The 1st mode at f1 = 86.9

Hz, (b) the 2nd mode at f2 = 192.2 Hz, (c) the 3rd mode at f3 = 217.5 Hz, and (d) the 4th mode

at f4 = 372.9 Hz. The dashed line is for the rest shape, and the solid line is for deformed shape.
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FIG. 3. The time history of the glottal gap width for model II with Psub =0.6 kPa. (a) Initial

transition period; (b) the established vibration.

and the flow behavior for each model.

A. Frequency and mode of vocal fold vibration

An eigenmode analysis is first performed for the current vocal fold model. The analysis will help

us discuss the vibration pattern of the vocal folds induced by the flow. Figure 2 shows the lowest four

eigen modes along with the corresponding eigenfrequencies. These modes are qualitatively similar

to those of a three-layer, two-dimensional vocal fold model used by Luo et al.16. In addition, the

spectrum of the eigenfrequencies is also close to that in Luo et al.16. That is, the lowest frequency

is near f1 = 100 Hz; the second and the third frequencies, f2 and f3 are both roughly twice of

f1; and the fourth frequency, f4, is roughly four times of f1. Therefore, using the single-material

model does not change the characteristics of the vocal folds qualitatively.
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Figure 3 shows a typical time history of the glottal gap width, defined as the smallest gap

between the two vocal folds projected along the y-direction, for both the transient period (Fig. 3(a))

and later established vibration (Fig. 3(b)). In this figure, Psub = 0.6 kPa and model II is used.

It can be seen that the vocal folds first oscillate at a lower frequency and then a higher-frequency

mode appears and finally takes over. A further inspection shows that these two frequencies are

respectively close to the first and the second eigenfrequencies. Therefore, the current vocal folds

go through a modal transition during the onset of vibration. This result is consistent to the report

in Luo et al.5.

The dominant vibration frequency of the vocal folds during steady vibration are tabulated in

Table I for both model I and model II. The frequency is calculated based on the y-displacement of

a point on the medial surface (shown in Fig. 4(a)). It can be seen that except for the case of model

I at Psub = 0.8 kPa, the frequency in all other cases is near the second eigenfrequency f2 = 192.2

Hz. Furthermore, the results from model I and model II are very close to each other. However,

at Psub = 0.8 kPa the two models have significantly different results. The frequency from model

II remains near f2, but the frequency from model I is higher and is actually closer to the third

eigenfrequency f3 = 217.5 Hz.

We further examine the vibration patterns shown in Fig. 4 for the cases of Psub = 0.6 kPa to 0.8

kPa. It can be seen that at Psub = 0.6 and 0.7 kPa, both model I and model II produce a pattern

that is similar to the second mode, albeit the amplitude of vibration is greater in model II. The case

with Psub = 0.5 kPa, not shown here, is similar to that of Psub = 0.6 kPa except that the amplitude

of vibration is smaller. At Psub = 0.8 kPa, the vibration from model II still has a second-mode

pattern, and the amplitude becomes further increased as compared to that for Psub = 0.7 kPa.

However, for model I the vibration pattern at this higher subglottal pressure resembles the third

eigenmode shown in Fig. 2(c), and this result is consistent with the oscillation frequency of this

case. In this particular pattern, The inlet and the exit of the glottal gap open/close alternatingly;

and the maximum width of the glottis is thus always limited. This gap width effect will be further

discussed later. To explain a plausible cause for the behavior of model I at Psub = 0.8 kPa, we

note that the second eigenmode and the third eigenmode of the present vocal fold model are close

to each other in terms of the frequency (192.2 Hz and 217.5 Hz, respectively). Furthermore, the

temporal/spatial variations of the pressure in the glottis could allow either oscillation pattern to

actually take place. Therefore, the present coupled fluid-structure system may have two stable

periodic orbits that are close to each other, and it could be possible that due to change of Psub or

system description (i.e., linear v.s. nonlinear strain), the system settles down to a different orbit

(vibration state).

Figure 5 shows the power spectrum density (PSD) analysis of the steady oscillation of the y-

displacement of a point on the medial surface (shown in Fig. 4(a)) for Psub = 0.7 kPa and 0.8 kPa.

It can be seen that in all cases except model I at Psub = 0.8 kPa, the power spectrum is dominated

by the single frequency that is close to the second mode frequency f2. For model I at Psub = 0.8

kPa, the third mode is dominant as discussed earlier, but the second mode is also significant. The

PSD result in the cases of Psub = 0.5 and 0.6 kPa is not shown here since their frequency component

is similar to that in the case of Psub = 0.7 kPa.
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FIG. 4. The vibration pattern of the vocal folds simulated by model I (a,b,c) and model II (d,e,f).

The subglottal pressure is (a,d) Psub = 0.6 kPa, (b,e) Psub = 0.7 kPa and (c,f) Psub = 0.8 kPa. The

solid line and dashed line represent the open and closed phases, respectively. The circle shown in

(a) is the marker point that will be used in the PSD analysis.
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FIG. 5. The PSD analysis of the oscillation of a point at the medial surface for Psub = 0.7 and 0.8

kPa. The two dashed lines indicate the eigenfrequencies f2 and f3.

B. Gap width, waveform, and impact stress

Figure 6(a) shows the relationship between the maximum glottal gap width and subglottal

pressure for both model I and model II. In general, the glottal gap width increases when the

subglottal pressure is raised, which is consistent with previous studies17. An exception is in the

case of model I with Psub = 0.8 kPa. As discussed earlier, this case has a different vibration mode
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FIG. 6. (a) The gap width during the open phase versus Psub. (b) The waveform of the gap width

at Psub = 0.6 kPa. In both (a) and (b), the dashed line is for model I and the solid line for model

II.

that leads to a smaller gap width. The figure shows that model II consistently gives a greater

magnitude of the gap width than model I. For Psub between 0.5 and 0.7 kPa, the difference between

the two models is less than 0.1 mm, but it still represents about 15% of increase for model II.

At Psub = 0.8 kPa, the difference between the two models is clearly large. Figure 6(b) shows the

waveform of the gap width at Psub = 0.6 kPa. We see that the waveforms have almost the same

profile for the two models since the vocal folds are vibrating at the same mode at this pressure.

However, the closed phase, or the contact time, of the vocal folds in model II is approximately 40%

longer than that of model I.

The impact stress on the medial surface of the vocal folds during collision is an important

quantity of interest, as it is likely the main contributing factor of phonotrauma19. Figure 7(a)

shows the relationship between the impact stress and the subglottal pressure. The impact stress

is calculated by averaging the stress during vocal fold collision at the contact area. At Psub = 0.5

kPa, the vocal folds as predicted by model I did not reach the contact limit, and the impact stress

is thus zero. As the subglottal pressure is raised from 0.5 kPa to 0.8 kPa, the magnitude of the

impact stress is increased from 0.5 kPa to 1.5 kPa, which is generally in the data range of previous

work14.

Comparing model I and model II, we see that model II always has greater impact stress than

model I, and the difference is consistently around 0.4 kPa. As greater impact also leads to a

larger contact area, we also plot the total contact force per unit span in each case. The result

in Figure 7(b) shows that the contact force increases as Psub is raised, as expected. In addition,

the difference between model I and model II becomes more pronounced at higher values of the

subglottal pressure. At Psub = 0.8 kPa, this difference is about 1.7 N/m. A further inspection

shows that the locations of the maximum impact at Psub = 0.8 kPa are also different between the

two models. This result can be seen from the shape of the closed glottis in Fig. 4. For model II,

the greatest impact takes place in the middle of the medial surface (Fig. 4(f)), which is also the
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FIG. 7. The impact stress (a) and the total contact force (per unit length in span) (b) during vocal

fold collision. The dashed line is for model I and the solid line for model II.
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FIG. 8. (a) The time-averaged flow rate (per unit span); (b) the waveform of the flow rate at

Psub = 0.8 kPa. The dashed line is for model I and the solid line for model II.

case for the lower values of Psub in Fig. 4. For model I, Fig. 4(c) shows that the greatest impact

instead takes place near the glottal exit.

C. Flow characteristics

Figure 8(a) shows the flow rate, Q, averaged in time, from the two models. The flow rate

increases nearly linearly with the subglottal pressure for model II. For model I, the flow rate is

lower than that of model II for all levels of the subglottal pressure, and this result is consistent
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(a) (b)

FIG. 9. Instantaneous vorticity contours during vocal fold opening for (a) model I and (b) model

II at Psub = 0.8 kPa.

with the result comparison on the glottal gap width as discussed earlier. At Psub = 0.8 kPa, the

flow rate given by model I becomes much lower than that of model II, and this result is due to

the different vibration modes in the two models as discussed earlier. In this case, Q = 124 cm2/s

for model II, and for model I the flow rate is only Q = 83 cm2/s. From the waveform plotted in

Fig. 8, the flow rate in model I not only has a lower magnitude but also has a significantly different

temporal profile than that in model II.

The vorticity plot indicates that when Psub is increased, the flow fields from models I and II

become significantly different from each other. Figure 9 shows the comparison of the instantaneous

vorticity during the maximum opening phase between the two models at Psub = 0.8 kPa. Compared

to the cases with low Psub, the jet Reynolds number, defined as Re = 3Q/2ν, is higher at Psub = 0.8

kPa, and thus the flow field is more complex. In addition, at higher Psub, the jet becomes more

asymmetric and its skewness varies from cycle to cycle. Discussed in detail in Luo et al.16, these

phenomena are typical for the glottal airflow, and they are present in both models from the figure.

However, we see that the jet is clearly stronger in model II than in model I, as in model II the jet

has longer penetration length and produces stronger vortices downstream.

D. Further discussion

In the present study, the subglottal pressure is no greater than 0.8 kPa and is not particu-

larly high as compared with the range of the normal phonation pressure17, and the deformation

magnitude of the vocal folds is less than 1 mm, i.e., 10% of the size of the vocal folds. However,

significant differences are produced by using model II in the predicted glottal gap width, impact

stress, and flow characteristics. Note that in human phonation, the displacement up to 2 mm has

been reported for the vocal folds19. To investigate the source that has caused such differences, two

additional tests are introduced where the flow is assumed to be absent and the load on the vocal

folds are manually specified. In the first test, a single vocal fold identical with those in the present

FSI study is considered, and a uniform and static load p is applied on the subglottal and medial

surfaces as shown in Fig. 10(a). In the second test, the load is sinusoidal with the amplitude p

and the frequency at 200 Hz, and both vocal folds are present so that collision would occur. For

both tests, we compare the displacement of the vocal folds calculated from model I with that from

model II.
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FIG. 10. (a) Illustration of the load tests of the current vocal fold model. The reference point

marked by a circle is used to measure the displacement. (b,c) p/Psub from the FSI simulation

during vocal fold opening for (b) Psub = 0.6 kPa and (c) Psub = 0.8 kPa.

(a) (b)

0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p or P
sub

 (kPa)

T
ot

al
 d

is
pl

ac
em

en
t (

m
m

)

 

 

Static, model I

Static, model II

Dynamic, model II

Dynamic, model I

FSI, model II

FSI, model I

0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.1

0.2

0.3

0.4

0.5

p or P
sub

 (kPa)

y−
di

sp
la

ce
m

en
t (

m
m

)

 

 

Static, model I

Static, model II

Dynamic, model I

Dynamic, model II

FSI, model I

FSI, model II

FIG. 11. Displacement of the reference point in the static load test, the dynamic load test, and the

coupled FSI simulation. (a) The total displacement; (b) the y-displacement.

Figure 11 shows the result from the static test and the dynamic test. For comparison, we have

also included the results from the coupled vocal-fold/flow simulation. The displacement of a point

at the supraglottal exit as shown in Fig. 10 is used for such comparison. The magnitude of the load

p is raised from 0.5 kPa to 0.8 kPa, to be consistent with the subglottal pressure used in the FSI

simulation. Both the y-displacement and the total displacement (i.e., both x and y components

included) are shown for the reason that will be explained soon.

Figure. 11(a) shows that in the static test, the total displacement from model I is near 0.6

mm at p = 0.8 kPa. Model II predicts only slightly greater deformation than model I at all load

levels, and the difference is about 5% for p = 0.8 kPa. In the dynamic test, the relative difference

between the two models becomes more significant than in the static test. As p is increased to 0.8
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kPa, we see that the difference between the two models becomes more evident. This result can

be explained since the contact of the two solid surfaces is a nonlinear function of the deformation

and the difference between the two present structural models can be increased through the contact

process.

When the airflow is introduced in the simulation, the total displacement of the vocal folds is in

general greater than those in the no-flow tests, as shown in Fig. 11(a). In Fig. 10(b,c) we plot the

pressure over the vocal fold surface normalized by Psub for Psub = 0.6 and 0.8 kPa. From these plots,

we see that the pressure changes rapidly along the medial surface as expected. More importantly,

the normalized pressure distribution in the case of Psub = 0.8 kPa is significantly differently from

that of Psub = 0.6 kPa. This change of loading status thus helps to explain why the displacements

shown in Fig. 11 are not linearly proportional to Psub for the FSI cases. At Psub = 0.8 kPa, the

total displacement is near 0.9 mm, i.e., 9% of the size of the vocal folds, for both model I and model

II. This total displacement is mostly in the x-direction due to the mean displacement of the vocal

folds. The rotational effect and the coupling the x- and y- components of deformation due to this

mean displacement have been incorporated in the geometric nonlinear formulation, as discussed

in Section II.A. Since the y-component of the displacement is not necessarily linearly proportional

to the x-component and the y-component is critical in determining the glottal opening, we show

a comparison of this component in Fig. 11(b). In this figure, the comparisons of model I and

model II in the static and the dynamic tests are similar to those shown in Fig. 11(a). That is,

the difference between the two models is more pronounced in the dynamic test where contact is

present. For the FSI simulation, the y-displacement from model I is 0.32 mm, which is significantly

smaller as compared to 0.49 mm from model II and represents a larger difference than in the no-flow

cases. Note in both no-flow and and FSI tests, the only difference between model I and model II

is that geometric nonlinearity of the vocal folds is included in model II. From these test results,

we see that the error due to ignoring geometric nonlinearity in modeling the vocal fold dynamics

could be amplified through the interaction of the vocal folds with the flow and consequently lead

to significant error in the prediction of the coupled system.

IV. CONCLUSION

We have numerically studied the flow-induced vocal fold vibration using a two-dimensional

computational model under assumption of small strains. The vocal fold tissue is assumed to be

linearly elastic but no restriction is required for its displacement and rotation so that the effect

of geometric nonlinearity has been included in the model. By comparing this model with the

previously commonly adopted small-displacement model (model I), we studied the effect of the

finite displacement (model II) on the vocal fold dynamics and also on the glottal airflow.

The simulation result shows that model I produces consistently a smaller vibration amplitude

for the subglottal pressure considered and consequently, the impact stress and the flow rate are

significantly lower than those obtained from model II. In some cases, even the vibration mode of the

vocal fold predicted by model I is different from that by model II, e.g., for the subglottal pressure

at 0.8 kPa in the present study. Further investigation shows that the nonlinear effect is significant

when the contact process and in particular, the flow-vocal-fold interaction, are involved, both of
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which are sensitive to the displacement of the vocal folds.

In the case of phonation, the width and shape of the glottis are determined by the vocal fold

displacement, and errors in predicting the vocal fold displacement may lead to significant change

to the glottis and therefore to the vocal fold collision and the glottal airflow. The present study is

limited to two dimensions and the isotropic/homogeneous tissue properties, and the quantitative

results reported here may not be directly applicable to the vocal models in the previous studies or

to the real vocal fold tissue. However, it suggests that for the sake of caution, including geometric

nonlinearity in a computational model would be preferable for an accurate simulation of the vocal

fold dynamics.
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Psub (kPa) 0.5 0.6 0.7 0.8

Model I: f (Hz) 201.2 201.4 203.8 220.9

Model II: f (Hz) 198.7 202.6 202.5 202.3

TABLE I. Dominant vibration frequency of the vocal folds as simulated using the two models.
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