Downloaded by CORNELL UNIVERSITY on February 1, 2015 | http://arc.aiaa.org | DOI: 10.2514/1.23761

JOURNAL OF AIRCRAFT
Vol. 44, No. 2, March—April 2007

Wake Vortex Model for Real-Time Flight Simulation
Based on Large Eddy Simulation

Graham T. Spence,* Alan Le Moigne, David J. Allerton, and Ning Qin#
University of Sheffield, Sheffield, S1 3JD England, United Kingdom

DOI: 10.2514/1.23761

An alternative approach is presented to represent a counter-rotating vortex pair for wake vortex interaction in a
real-time flight simulation. Rather than using an analytical model, the model directly accesses a precomputed three-
dimensional time-varying dataset. This dataset is generated using implicit large eddy simulations on unstructured
grids. The methodology enables a realistic vortex decay to be reproduced with the apparition of short- and long-wave
instabilities. The vortex model based on these simulations is designed to run on a personal computer and is integrated
with a six-degree-of-freedom real-time flight simulator. The paper combines the use of large eddy simulation data as
the basis of a wake vortex encounter model with methods to access the dataset in real time. The second half of this
paper describes the data compression scheme implemented to reduce the size of the time-varying dataset.
Additionally, rapid data access and issues regarding the real-time data management aspects are discussed. Analysis
of the performance of the model is made and preliminary comparisons with a traditional analytical wake vortex

model are discussed.

Nomenclature

o]
|

wing span

reference length, initial vortex spacing
distance

local field in original mesh

local field in simplified mesh
gravitational acceleration

mass of aircraft

freestream Mach number

number of data points

«nd = number of prefetching candidates
position vector

Reynolds number

core radius

spanwise load factor, taken equal to 77/4 here
tetrahedron index

dimensional time

nondimensional time

reference time

aircraft speed

velocity vector

vertex index

reference velocity, descent speed of a vortex pair
initial circulation

local field error

kinematic viscosity

air density

= vorticity

SRS ERRT YIRS
In o nnunnn

JSsce<s oo
L 1 | | VI | A /1

g =
1}

Received 13 March 2006; revision received 9 June 2006; accepted for
publication 4 August 2006. Copyright © 2006 by Graham T. Spence, Alan Le
Moigne, David J. Allerton, and Ning Qin. Published by the American
Institute of Aeronautics and Astronautics, Inc., with permission. Copies of
this paper may be made for personal or internal use, on condition that the
copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923; include the code 0021-8669/07
$10.00 in correspondence with the CCC.

*Research Associate, Automatic Control and Systems Engineering,
Mappin Street. Member AIAA.

fResearch Associate, Mechanical Engineering, Mappin Street. Member
ATAA.

*Professor, Automatic Control and Systems Engineering, Mappin Street.

SProfessor, Mechanical Engineering, Mappin Street. Associate Fellow
ATAA.

467

I. Introduction

HE effect of aircraft generated trailing wake turbulence on an

encountering aircraft can be hazardous, particularly during the
takeoff and landing phases, as seen in the American Airlines Flight
587 accident over New York on 12 November 2001 [1]. Wake
vortices [2,3] generated by civil transport aircraft are the result of the
lift generated by the aircraft wing and tail and so their formation is
unavoidable. Consequently, aviation authorities impose strict
minimum separation rules for departures and approaches in an
attempt to minimize the likelihood of encountering wake vortices.
However, these rules also restrict the capacity of airports. With the
continued growth in air traffic, there is increasing interest toward
gaining a greater understanding of wake vortex behavior, not only in
terms of safety but also from the perspective of increasing
airport capacity. The ability to model the effect of aircraft trailing
wake vortices in real time provides several benefits: 1) training
flight crew to cope with potentially hazardous situations, including
wake encounters; 2) aiding the determination of acceptable
safety limits or passenger comfort aspects in the event of a wake
encounter; and 3) validation of wake vortex models in comparison
with events that have been experienced during real-life wake
encounters.

Several analytic models of the post roll-up flowfield of aircraft-
wake vortices exist. A summary of these vortex models is presented
by Gerz et al. [4]. These models are suitable for real-time use and
some have been used in previous flight simulation studies [5—-8].
However, until recently, most real-time wake turbulence encounter
simulation studies have been limited to models that describe the
velocity field in two dimensions. Although computationally cheap,
such approaches lack the ability to include the three-dimensional
flow structures that are observed in actual wake turbulence [9]. Real-
time studies of airplane encounters with analytic models of perturbed
wake vortex systems are now emerging [10]. An attempt at using
large eddy simulation (LES) data to form the basis of an analytic
vortex model has also been presented [11]. This study derived 2-D
velocity flowfields from 3-D LES data. 3-D instability effects were
then created by varying the flowfield in a sinusoidal fashion. Until
now, no real-time aircraft-wake encounter simulations have
attempted to directly access the data from LES to provide a real-
time model of a wake vortex system. This is the major contribution
described in this paper. A similar model has been used in a study of
the influence of aircraft encountering wake vortices in a convective
boundary layer [12], however, it is not a real-time model. The idea of

http://dx.doi.org/10.2514/1.23761

Downloaded by CORNELL UNIVERSITY on February 1, 2015 | http://arc.aiaa.org | DOI: 10.2514/1.23761

468 SPENCE ET AL.

coupling computational fluid dynamics (CFD) data into flight
simulations can be traced back to the mid 1990s [13]. The generation
of CFD datamaps was suggested as a technique to integrate the flow
of air around ships during simulations of close proximity helicopter
maneuvers. More recently, combined ship airwake and aircraft
simulations [14,15] have become feasible due to advances in CFD
and computational resources.

It has been demonstrated that the decay of aircraft trailing wake
vortices can be simulated using CFD methods, in particular, LES.
Such computations [12,16-21] require significant resources and
time. However, their results have shown the LES can be used to
capture three-dimensional wake vortex decay in detail. We employ a
similar technique although ours is based on an unstructured grid
approach [22], which allows a clustering of the grid points in the
proximity of the vortex cores and a coarser spacing for the rest of the
domain, thus saving on the computing cost.

If the computed flowfields can be conveniently stored and
organized for rapid access, this information can be retrieved in real
time to provide the basis for an alternative model of wake vortex
decay for use in flight simulation. Such a model may potentially
provide added realism and flexibility to wake vortex encounter
simulations. Ideally, the interaction of the aircraft and the decaying
wake vortex may also be accounted for using LES, but this is difficult
to achieve in the real-time simulation. Nevertheless, incorporating a
more realistic wake model combined with a strip theory model for the
interaction is a significant step toward improving flight simulation
models. If the LES simulations can be considered sufficiently
representative of real wake decay, it should also be possible to
generate different datasets for the encounter simulations.
Unfortunately, the use of LES data in a real-time encounter
simulation introduces significant challenges, because computation
of the wake model is significantly more complex than analytic
models. In summary, these challenges include: 1) how to access the
data quickly; 2) organization and management of memory;
3) positioning and orienting the vortex data in the simulated
environment; and 4) integration of the flight dynamics model with
the flowfield so that the wake encountering aircraft experiences the
precomputed flowfields.

The real-time system presented in this paper shows how various
techniques can be integrated to directly fly through LES generated
data. The system is based on using a PC to host the wake vortex
model and its source LES time-varying dataset. A compression
scheme, based upon the simplification of meshes and its underlying
data, is applied to the entire dataset because the volume of the
datasets can be considerably large. Data compression is feasible
because the spatial resolution of the LES data exceeds the detail
required by the aircraft-wake interaction model. Postcompression,
the data points are extracted from the mesh and converted into a form
in which unstructured data points can be located rapidly. In this case,
the data are organized by spatial data structures. For this encounter
model, hard disk accesses introduce an unacceptable performance
reduction so memory management methods are used to swap in
relevant data time steps before computation of the aircraft-wake
encounter model. This approach allows the software to access the
time-varying dataset in a timely and I/O efficient manner, without
significantly affecting the real-time performance of the flight
simulation. As with previous wake encounter simulations, the
velocity field of the wake system remains unperturbed by the
encountering aircraft (uncoupled model).

The first part of the paper focuses on the CFD aspects, describing
the methodology employed in the large eddy simulations of the wake
vortices. The second part describes the integration of this time-
varying dataset into a research flight simulator, covering the
reduction in the volume of data while still retaining acceptable data
resolution for the wake vortex encounter simulation. Software
techniques used for fast data point queries and the memory
management of individual time steps are presented. The flowfield
data extraction techniques used in the flight simulator are described,
together with discussion of the performance and validation issues.
Finally, the model is compared with a two-dimensional analytical
wake vortex model.

II. Large Eddy Simulation of a Pair of Wake Vortices
A. Numerical Methods

The LES calculation is performed with the CFD code uns-
MERLIN, which has been jointly developed by Cranfield University
and the University of Sheffield. It is a compressible unsteady three-
dimensional finite-volume Euler/Navier—Stokes solver working on
unstructured and hybrid grids. It is parallelized using the message
passing interface (MPI) standard, Metis being used for the domain
decomposition. The time integration is performed with an explicit
three-stage Runge—Kutta scheme.

An implicit LES approach is employed, that is, no subgrid scale
model is used. Instead, we rely on the numerical dissipation to actas a
subgrid scale model to transfer energy from the resolved scales to the
modeled ones. This is similar to the concept of monotone integrated
large eddy simulation (MILES) [23]. Stumpf [16] used MILES for
simulating the decay of vortices in the far field. His solver is a pure
advection scheme which omits the calculation of diffusive fluxes.
We follow a similar approach, because it is believed that the flow
problem is essentially a convection dominated problem, and the large
scale turbulence is a result of the flow instabilities due to the
convection terms. Thus uns-MERLIN is used in the unsteady Euler
mode in this work.

The computational domain considered has the form of a horizontal
cylinder, its length being aligned with the axes of the vortices. It is
408 m long to correspond to the wavelength of a Crow instability [9].
The grid is unstructured, which makes it possible to cluster grid
points in the region where the vortices are and to provide a coarser
resolution away from the vortices to reduce the computational effort
of the simulations. From our numerical investigation [22], it was
found that a mesh consisting of a core of Cartesian structured grid
surrounded by tetrahedra to the far-field boundary was less
numerically dissipative than a fully tetrahedral grid and hence was
more accurate to simulate the evolution of the vortices, as compared
with experimental vortex descending trajectories. Two views of such
a grid are shown in Fig. 1.

Using a grid that combines coarse and fine resolution for a 2-
vortex simulation is only meaningful if the vortices stay in the refined
region of the grid. However, two counter-rotating vortices induce on
each other a downward velocity, so that the vortex system descends
with time. To obtain fixed vortices in the computational domain, a
Lagrangian referential “attached” to the vortices has to be employed
in the simulation. This is achieved by imposing a freestream constant
vertical velocity at the circumferential boundary, equal and opposite
to the theoretical descent velocity [4]

_ Do
" 2mb,

(€3]

Wo

The vortices that have been simulated are based on a Boeing 747
first generation (—100, —200, or —300) aircraft in the approach
condition (2000 ft, 155 kn) and with a relatively low weight
(248,000 kg) for which Iy = 565 m?/s and b, = 47 m according to
(4]

M
T, 8 and bo=sB @
psBV
X KNSR ' S
I/ RORKATN AOERRAS 4 =)
KIAKCEAARADGAN I 2R\
S s £ 2

!A'A""vhv VAV
ooy
A

N

AVAVAY
YA\
N
X
AL

XN
ol
A
X
024

RSN S
X %5 X

YA
O
85

T
N
U
)

™
K
WA
B

"“A

a) b)
Fig. 1 View of the computational grid. a) cut through the grid;
b) extremity of the grid.

Downloaded by CORNELL UNIVERSITY on February 1, 2015 | http://arc.aiaa.org | DOI: 10.2514/1.23761

SPENCE ET AL. 469

werical WOy 4 4 4

?
papttdd o \

periodic faces

\

N

/ k\\iiitzf/

/

. / f T ? f T ? f f f ? ? far-field boundary
t1

pa T

P
-

Fig. 2 Boundary conditions.

These values have been chosen to match one of the cases simulated
by Holzépfel et al. [17]. For this vortex system, wy, = 1.91 m/s, that
is, the vortices “see” an ascending flow with a Mach number
M, = 0.005624. The circumferential boundary condition is hence
set as a characteristic-based far-field boundary condition with those
freestream conditions. The two faces at both extremities of the
cylinder are set as periodic boundaries to simulate a pair of long
vortices. The boundary conditions are illustrated in Fig. 2.

The flowfield is initialized as a superposition of two Lamb—Oseen
vortices with a core radius . = 4 m. Some turbulence is added to the
initial vortex flowfield to represent the turbulence generated by an
aircraft passing through the air as well as the ambient atmospheric
turbulence. The turbulence is simulated by the addition of a random
perturbation (white noise) to the three components of velocity
following the approach of Holzipfel et al. [17].

B. Time Evolution of the Wake Vortices

All the CFD simulations are run for a total real time of 200 s. The
computation takes on the order of one week running on 30 processors
of a Linux cluster. Figure 3 shows four snapshots of the flowfield at
different times. The time is nondimensionalized as follows:

=t/ 3)
where
27b}
fo=—20 =465 @)
Iy

The structure of the vortices is shown with two isosurfaces of
vorticity magnitude: the isosurface in dark gray corresponds to the
high value of vorticity magnitude to represent the vortex cores while
the isosurface in light gray shows the low vorticity of the ambient

Fig. 3 Time evolution of the pair of vortices. Isosurfaces of vorticity
magnitude (||o||) are shown: ||| =5 x 10~* in dark gray, ||@| =5 x
10~ in light gray. Several computational domains have been put end to
end to show the periodicity of the calculation. Approximately two
computational domains can be seen in each picture. a) ¢* =2.02
(t=49.7s). b) t*=4.09 (t=100.65s). c¢) t* =6.11 (¢t=150.3s).
d)t* =8.08 (t =198.8 s).

turbulence generated by the decay of the vortices. Although not
clearly visible in Fig. 3, short-wave (elliptic [24]) instabilities start to
form at around #* = 2.2. Long-wave instabilities (Crow [9]) are more
evident in Figs. 3b and 3c and develop at around ¢* = 3.2. They
cause the vortex cores to come closer to each other. The deformation
of the vortices produces “ribs” of vorticity underneath the vortex
cores (Fig. 3¢c) as observed in other simulations [17,21]. Experiments
by Leweke and Williamson [24] in a water tank revealed that these
vorticity structures are created by the short-wave length instabilities.
For each wavelength of these instabilities, two counter-rotating
vortices are created perpendicular and beneath the two main vortices.
These transverse vortices are well reproduced in the direct numerical
simulation (DNS) of that experiment [21]. Although our simulations
represent a different case (our ratio ry/by, = 0.076 and Reynolds
number Re = T'y/v =15 x 10° are representative of actual wake
vortices as opposed to the values 0.2 and 2700, respectively, in the
experiment), similar vorticity structures were found in their
simulations. Finally the decay of the main pair of vortices is observed
in Fig. 3d.

III. Integration of the LES Data into a Flight
Simulator
A. Processing of the Dataset
1. Dataset Compression

Two hundred seconds of wake vortex decay are simulated by LES
and a solution file is saved approximately every 0.5 s of simulated
flow, yielding a dataset size of approximately 20 GB. The time
needed to access this unprocessed data would be prohibitive for the
real-time access required by the wake encounter simulation. A
compression scheme is implemented to reduce the run-time memory
footprint of this time-varying dataset. With this approach, the wake
vortex model is manageable (in terms of memory management) on a
dedicated desktop PC. The resolution of the strip model (the distance
between adjacent wing strips) representing the encountering aircraft
is lower than that of the LES dataset, and a coarser, or compressed
representation of the dataset may be adequate for real-time
applications. The fine resolution of the CFD grid is necessary to
obtain an accurate LES solution. Although it is possible to coarsen
the LES dataset (postcomputation), it is not acceptable to use a
coarser CFD grid to perform the LES simulations. Although the
computational effort of generating the dataset is reduced and
possibly the compression step described in this section could be
omitted, the physics of the vortex decay would not be correctly
modeled.

Lossy compression techniques provide much higher compression
ratios than traditional lossless techniques. However, to use lossy-
block compression methods, such as wavelet transforms [25],
unstructured datasets have to be resampled on to a structured grid.
This constraint significantly increases the dataset memory footprint
before compression and would require the implementation of a fast
run-time decompression scheme.

Rather than resampling each time step of the dataset and using a
block compression method, a mesh simplification technique [26] is
used to reduce the size of the dataset. The mesh simplification
process is based on the incremental operation of edge collapsing the
underlying tetrahedra and is illustrated in Fig. 4. To collapse an edge
in a tetrahedral mesh a vertex is moved to an adjacent vertex. This
operation reduces several tetrahedra to zero volume (degenerate),
which can be removed from the mesh. Data values associated with
the modified vertex are updated to reflect the modified vertex
location. As a result of the edge collapse, a field error in the data is
introduced. The field error refers to the amount by which the local
data in a modified mesh have deviated from the local data in the
original mesh. Because the simplified mesh has been modified by the
removal of a selected vertex, a linear tetrahedral interpolation is used
to determine a local field error at a point within the tetrahedron that
was distorted to occupy the space left as a result of degenerate
tetrahedra. The local field error is defined in Eq. (§) and in this case
provides a measure of the error of the velocity magnitude at a point in
the simplified field F”, relative to the value in the original field, F.

Downloaded by CORNELL UNIVERSITY on February 1, 2015 | http://arc.aiaa.org | DOI: 10.2514/1.23761

470 SPENCE ET AL.

v (w,v,w...)
T T}
e Ty
V4 V4
T,
V2 Va

V3 V3

a) before b) after

Fig. 4 An example of tetrahedral edge-collapsing operation. Edge e is
collapsed from vertex v, to vertex v,, removing v, and tetrahedra 7; and
T,.

e =IF[{/ i+ v} +v)]-F[Ji+vl+D)] &)

Although the local field error has been defined in terms of the
velocity magnitude, the local field error could be composed of any
variety of variables. For example, the value of vorticity could be used
to define the local field error. Mesh simplification proceeds with an
initial step of determining all of the possible field errors resulting
from the collapse of each existing edge. These potential edge
collapse errors are arranged in a priority queue. Edges with the lowest
predicted local field error are collapsed first, and edges resulting in a
high local field error are only collapsed in cases when a user desires
aggressive compression. Typically, the individual meshes of each
time step are reduced to approximately 15% of their original size
while still retaining the important wake vortex flow characteristics.

Although mesh simplification techniques tend to not achieve the
compression ratios of lossy-block methods, this method of data
reduction is attractive for two reasons. First, mesh simplification
techniques can be applied to nearly all mesh topologies (assuming a
particular cell can be decomposed into tetrahedra), making this data
reduction approach independent of the mesh type. Secondly,
computational resources are not required for any data decompression
tasks during the real-time wake encounter calculations.

2. Data Organization for Fast Queries

For the purpose of embedding the CFD generated data into the
flight simulator, each time step is transformed into a pure point set by
removing any mesh connectivity information. Not only does this
assist in further data reduction, it provides the data as a cloud of
points. By providing the lookup data in a point-only format, the flight
simulator can accommodate data from a variety of sources (CFD
data, experimental wind tunnel data, field data from light detection
and ranging, and different vector field simplification techniques).
Organizing and searching for a data point in an arbitrary three-
dimensional field of points can be tackled by the use of hierarchical
spatial data structures. These data structures capture spatial
coherence of data and lead to efficient search routines based on data
locations and spatial proximity.

Spatial data structures such as bsp-trees [27], oct-trees [28], kd-
trees [29], and many others [30], together with accompanying spatial
query operations provide excellent ways to partition and spatially
organize point data sets as hierarchies, or trees. Access to the data

Internal
Node

points stored at the leaves involves navigating tree structures and is
on average completed in log N time.

Three candidate spatial data structures (kd-trees, bsp-trees, and
oct-trees) were evaluated for data point organization in this project
[31]. Overall, the kd-tree [29,32] provided the most effective solution
to spatial data organization of the individual LES time steps, due to its
traversal times and efficient memory usage. The performance of the
adaptive kd-tree, which has been implemented to access arbitrary
data points in a three-dimensional point field, is presented in Sec. IIL.
D.3. Other fast data querying techniques exist, such as
straightforward array based indexing; however, trees provide a
flexible method for accessing both structured and unstructured data.

B. Dataset Management

Typically, it is impractical to store large time-varying datasets
within the physical RAM of a workstation. In order for the flight
simulator to sustain an iteration rate of at least 50 Hz, a mechanism is
required in which data stored on hard disk can be swapped into the
main memory sufficiently in advance of its use in any wake
interaction computations. Data prefetching techniques have been
used to build such functionality into the wake encounter application
and are presented in the following sections.

1. Disk I/O Efficiency

Each time step in the dataset is stored as an individual file. To
optimize the process of reading individual time steps from hard disk,
a pointerless version of a kd-tree has been developed that uses byte
offsets to locate nodes in a contiguous block of memory as shown in
Fig. 5. Using this method, the memory format of the kd-tree on disk
maps exactly to the format required in RAM by the wake interaction
calculations. Such memory layouts allow individual time steps to be
loaded in a single system call.

This approach supports efficient disk I/O. For example, an 8 MB
contiguous memory formatted kd-tree can be loaded in
approximately 0.2 s on the host computer. This equates to a data
transfer rate of about 40 MB per second, which is close to the
theoretical average sustained data transfer rate of the hard disk of
60 MB per second (disk specification: ATA-100 interface, 7200 rpm;
8.5 ms access time; 683 Mbits per second internal sequential transfer
rate). Using a contiguous memory data format minimizes the number
of accesses to the hard disk and a pointerless tree representation
eliminates any postloading data processing (modifying pointers).

2. Application Controlled Memory Management

To create a viable application framework for larger-than-RAM
datasets, an efficient data I/O system is integrated with the flight
simulator software. A strong case has been made for entirely
removing the normal operating system behavior from the task of
paging within an application [33]. The argument is that virtual
memory schemes of most operating systems have been designed for
general-purpose use and consequently, they are inefficient for
specific applications. Application controlled segmentation schemes
[34,35] have been shown to improve performance over standard
virtual memory schemes, but with the constraint that each segment is
smaller than the available physical memory.

Leaf

Ngde

o
NN LN
N N
e e

=
'
o
o

B

o
&
i
o

e T

Data —

Points

Fig. 5 Simplified contiguous memory layout. L and R represent the left and right child memory byte offsets, respectively. D is a node’s internal data
section containing the spatial partitioning information. Any remaining space in a leaf node is the allocated space for data point storage (patterned areas).

Downloaded by CORNELL UNIVERSITY on February 1, 2015 | http://arc.aiaa.org | DOI: 10.2514/1.23761

SPENCE ET AL. 471

Although it has been suggested that virtual memory is the
antithesis to real-time computing [36], it cannot be practically
removed or disabled because general-purpose operating systems are
dependent on such schemes. To minimize the virtual memory
interference of the host operating system, the wake encounter
application contains an application segmented cache. Each LES data
time step is regarded as an individual cache segment. A data cache of
a user-defined size can be allocated and then segmented into equal
size chunks as defined by the size of the largest time-step file. This
design simplifies the implementation, ensuring that when
overwriting a segment with a new data block, no adjacent segments
are overwritten. Once the cache system is initialized, it handles all of
the time-step requests for memory required by the simulation,
leaving memory allocation for noncache related tasks under the
control of the operating system. The contiguous kd-tree memory
layout further assists with data caching because procedures within
the cache are simplified to single memory writing operations.

3. Data Prefetching

As previously mentioned, time steps requested by the wake
encounter calculations have to be resident in physical memory before
any computations can proceed. Speculative prefetching methods
attempt to predict which pages, or in this case data blocks, are
required in main memory before computational access and can vastly
improve the performance of an application.

When considering an I/O process that transfers megabytes of data
from disk to RAM, it is likely that on-demand disk operations will
severely disrupt the desired iteration rate. It is undesirable to combine
the real-time wake vortex encounter calculation task with the time-
step I/O task, within a single computational process. Consequently, a
multiple threaded application design has been developed to alleviate
the task blocking nature of I/O as shown in Fig. 6.

The first processing thread generates and executes data lookup
queries to obtain the relevant wake vortex flow field data from the
application cache. A second thread is dedicated to prefetching
candidate time steps from secondary memory. For wake vortex
encounters, the prefetching task can be reduced to a one-dimension
problem by making use of a decay time line. An encountering aircraft
can only access data along this time line, which represents the
recorded instants of the decaying wake (see Sec. I1I.C.2). The basis of
this speculative prefetching method employs a sliding scale based on
a directional travel bias on the wake axis. Rather than fetching all
Neana time-step candidates in the direction of travel along the wake
axis, this scheme uses the relative velocity of both aircraft along the
wake axis to adjust an initially balanced window by an amount
determined by a simple scale as shown at the end of Sec. IIL.C.2.

C. Flight Simulator Integration
1. Flight Simulator Overview

The wake vortex model has been integrated with a six-degree-of-
freedom research flight simulator [37]. The real-time simulator is
distributed over eight PCs, connected via a local area network. The

modular approach of partitioning the flight simulation software over
several computers allows integration of an additional dedicated wake
vortex model hosting computer into the flight simulator with
minimum disruption to the baseline flight model.

2. Wake Vortex Data Positioning

To simulate flight through the wake vortex system trailing behind
the wake generating aircraft, the 3-D blocks of data must be
positioned appropriately to ensure that the encountering aircraft
accesses the relevant instant of wake vortex decay. We can consider a
vector emanating backwards from the wake generating aircraft to
represent the approximate direction of the wake vortex system. This
vector is termed the wake axis, v, and can be defined as a unit
vector in a direction opposite to a unit flight vector, v,,. The current
time step can be determined by calculating the distance d,,; of the
encountering aircraft behind the wake generating aircraft-wake roll-
up point py, in the wake system axis. This is achieved by
projecting the position of the encountering aircraft, p.,., onto the
vector defining the wake system axis, v, using a vector dot
product operation as shown in Eq. (6).

dproj = Vyake * (pcnc — Proll up) (6)

Using distance d,,,; and the speed of the leading (wake generating)
aircraft, the time behind the wake roll-up point can be calculated to
determine the appropriate time step in the dataset. To recreate the
effect of flying through the data blocks, a data tiling system has been
created. Tiling the data allows seamless repetitive transitions when
the aircraft travels between data blocks.

The tiling concept provides a grid that fixes the initial locations of
the data blocks in the environment world coordinates (Fig. 7). Tile
locations are oriented (in both azimuth and elevation) along the wake
axis, with the size of each tile equating to the length of the CFD
domain to ensure no gaps exist between adjacent tiles. Using a fixed
reference point, Pjia, to define the start of the tiling grid, the
distance that the wake generator has traveled from the tile reference
point can be determined. The placement location of a particular tile
can be calculated as outlined in Eqs. (7-11).

First, the distance between the wake roll-up point and the
following aircraft along the wake axis is calculated using a dot
product operation.

dl = Vyake (penc — Proll up) (7)

Secondly, the distance that the roll-up point of the leading aircraft
has moved from the initial start position is computed.

d, = vector dist(Piyigar> Pron up) (8)

The number of tiles that fit into the distance d; (the distance from
initial start position to the following aircraft) is determined by
dividing d; by the CFD domain length.

dy =d, —d, ©)

Secondary
Thread

a) Inspect aircraft

Primary Shared
Thread Data

a) Receive Aircraft
simulator data data
b) Data query Main

: memory

execution

cache

¢) Send wake
model data to
simulator

circumstances

b) Create prefetch
candidates

Wake

c) Update cache if

vortex
dataset

necessary

Fig. 6 Illustration of the dual-threaded application design, with arrows representing the direction of dataflow between the threads. Both threads
require access to individual segments of the main memory cache, and so operations on a segment require an exclusive memory lock.

Downloaded by CORNELL UNIVERSITY on February 1, 2015 | http://arc.aiaa.org | DOI: 10.2514/1.23761

472 SPENCE ET AL.

DomainLength

Pinitial t{m\ Pproj

f_J% Leading aircraft
Pron up

>

Vivake Veen

I 1
Tile O... ...Tilen

| Tile boundaries

Fig. 7 Diagram of the various point locations, vectors, and distances used in the determination of the currently accessed time step and the current tile

location.

Time-step Prefetch window
numbers

pml/ up

ny oy e 13,12,11010,9,8,7,6,5
| I I I I LML 1) 1

Wake axis i
vertical offset LN Vs

4,32 1,0
F4H40 «— N 1,

Vivake

Fig. 8 Diagram showing the leading aircraft with velocity V;, and the wake encountering aircraft with velocity V,. In this example, V, is greater than V,;
therefore the time-step prefetching bias is directed toward younger wake decay instants.

dy
tile number = integer| =0 S ?
ile number = in eger(domain 1ength) 4o

Finally, the position of the tile in world coordinates, #,, is
calculated by projecting a point from the initial start position along
the flight vector of the leading aircraft.

t yos = Pinitial + [(tile number x domain length)v,,] 11

The positioning of data blocks at any particular tile location is
independent from the current decay instant or time step. This allows
the referenced time step to change while an aircraft encountering the
vortex is midtile, not just on tile boundaries. Such a feature is feasible
because the change in the velocity field between two adjacent time
steps is small; therefore unrealistic jumps in the forces acting upon
the encountering aircraft are negligible. To emulate the descent of the
wake system, an offset from the wake axis is added to the position of a
data tile for each encountered time step (Fig. 8). The magnitude of
this offset is determined using the wake descent velocity wy (Sec. IL.
A) and the current decay instant.

3. Wake Vortex Interaction Model

The effect of the wake vortex flowfield on the encountering
aircraft is calculated by a strip theory method [6,38]. The notable
modification in the strip calculations used in this study is how the
velocities are retrieved from the time steps of a dataset. Each point
that defines a lifting surface strip is tested for intersection with a
bounding box defining the domain of an instant of wake decay data.
Points intersecting with the domain are then used as query points for
searches in the kd-tree representing the current time step. The
searches will locate vectors in the wake flowfield that are closest to
each of the strip points; these vectors are then transformed into the
aircraft body axis system for use in the strip calculations.

D. Model Performance

Previous sections have described the building blocks used to
develop the LES based wake vortex encounter simulation. The
different methods used to generate the offline vortices have a
significant impact on the real-time simulation.

1. System Scalability
The use of an LES based wake vortex model raises questions as to
the limits on the size of any potentially usable dataset, particularly,
1) the limit imposed upon cache size so that it only resides in
physical memory;

2) the number of time steps that can be fitted into the cache;

3) the effect of compression of the dataset on these limits;

4) the number of time steps that can be stored on the hard drive.

Table 1 summarizes the limits on single dataset sizes, assuming a
maximum cache size of 1 GB and 100 GB of disk space. Although it
is possible to increase the size of the cache to its maximum limit, it
can be shown that a larger cache does not necessarily result in
increased application performance [39,40]. An upper limit for the
size of an individual time step can be set at 102 MB with the current
hardware. Justification of this limit is provided by the prefetching
routines, which require sufficient space in the cache to work
successfully, with 10 cache segments being considered adequate. In
addition, loading times of file sizes larger than 102 MB become
significant. To meet the performance requirements of the application,
wake encounter simulations need to be restricted to cases where the
rate of change of the currently referenced time step is greater than the
associated file loading time. The majority of civilian transport
aircraft-wake encounters satisfy this restriction.

2. Mesh Simplification Analysis

The collapse of each edge during the mesh simplification stage
results in the loss of a vertex containing wake vortex flow
information. From the data presented in Table 2, it is evident that, as
the local field error is increased beyond 0.1 m/s, there is no
significant improvement in compression. It is shown that a point is
reached where a relatively small gain in the number of collapsed
edges introduces a much larger local field error. For the wake vortex
flowfields in question, edge collapses that introduce a 5.0 m/s error
into the flowfield are unacceptable, where such an error may be
approximately 10% of the maximum velocity magnitude
encountered.

3. Data Access Performance

Mesh simplification allows data point access times to be improved
by allowing the creation of deeper trees for the same memory cost.

Table 1 Time-varying dataset limits imposed by the hardware used

Time-step Max. number Max. number Time-step
file size, of cached of time steps loading
MB time steps on disk time, s

1 1024 102,400 0.025

8 128 12,800 0.2

20.5 50 5,000 0.51

102 10 1,000 2.55

512 2 200 12.5

Downloaded by CORNELL UNIVERSITY on February 1, 2015 | http://arc.aiaa.org | DOI: 10.2514/1.23761

SPENCE ET AL. 473

Table 2 Effect of tolerated local field error &, on mesh size, number of
permitted edge collapse operations, and the resulting file size (mesh
connectivity removed)

Local field error, m/s ~ Tetrahedra Edges collapsed File size, bytes
0.0 1,871,728 0 7,631,932
0.001 1,548,411 56,523 6,275,380
0.01 879,902 169,108 3,573,340
0.05 473,663 237,014 1,943,596
0.1 387,141 252,896 1,562,428
0.5 311,125 266,060 1,246,492
1.0 299,930 267,927 1,201,684
5.0 297,237 268,361 1,191,268

Figures 9a and 9b highlight the effect that tree depth has on data point
retrieval performance and memory usage. It is clear that the deeper
the tree, the shorter the point access time, although access times
increase for very deep trees. However, before that point is reached,
and as shown in Fig. 9b, deeper tree depths require significantly more
memory but with minimal benefit in terms of search performance.
For the current kd-trees, a good balance was achieved with a tree
depth of 11.

The time to resolve the strip theory calculations becomes a
significant factor as the number of searches increase, to the point
where it becomes difficult to sustain the real-time iteration period.
For example, using a tree depth of 11 resulted in average access times
for individual data points of 2 x 1073 s. If 100 strips are used to
represent the aircraft, point searches absorb 2 ms of the 20 ms frame.

4. Cache and Data Prefetching Analysis

To assess the effectiveness of the prefetching mechanism, a
comparison was made with a version of the software implemented
with on-demand time-step loading, as shown in Figs. 10aand 10b. As
expected, the on-demand version a) shows significant spikes in the
iteration rate. These spikes coincide with the time when the
encountering aircraft required access to a new time step (in this test,
the encountering aircraft was catching up with the leading aircraft).
The prefetching version b) of the software exhibits a steadier iteration
rate. Mean iteration rates of 49.87 and 49.89 Hz, and variances of
14.38 and 5.47 were recorded for the on-demand and prefetching
versions, respectively. It is clear that the performance of the

s
oo s
-]

Point Access Time, 10

0 5 10 15 20
Tree Depth

a)

multithreaded prefetching version of the software is significantly
better than the on-demand version. The smaller spikes observed in
Fig. 10b were caused by other periodic operating system kernel tasks.
Clearly, the use of a real-time operating system would reduce these
variations in performance.

5. Simulated Wake Encounter

To assess the response of the LES based wake vortex model, a
simulated flight was made through a wake vortex system. Two vortex
models were used for comparison. One model was an analytic
superposition of two Lamb—Oseen vortices, using a similar approach
as described in some previous wake encounters [3—8], while a second
model directly accessed the LES dataset. In both vortex models, the
wake vortex generating aircraft was a Boeing 747-100, with an initial
wake circulation of 565 m?/s. The wake vortex system was
initialized straight and level and the encountering aircraft (a
Boeing 737 model) was set to intersect with the vortex system ata 15-
deg angle in the horizontal plane, approximately 3.7 km (2 nm)
behind the 747. Wake induced roll angles for each vortex model are
presented in Fig. 11. Both models cause roll upsets of approximately
40 deg and each event lasts approximately 10 s. The roll angle history
for each model is very similar for this instant in the life span of the
wake vortex system. This is expected and shows that the strength and
the form (parallel vortices) of the wake vortex modeled with LES has
approximately the same rate of decay as an analytical wake vortex
eddy-dissipation model [41].

The simulated flightillustrated in Fig. 11 highlights the similarities
of the models during the stages of wake decay when the vortices
remain parallel. In contrast, the high fidelity LES data model is
intended to provide access to three-dimensional data, including wake
instabilities beyond the parallel vortex phase of the wake. Further
simulated flights were studied to confirm that the wake encountering
aircraft was subjected to the forces created by the three-dimensional
flow features after the wake instabilities developed. The dataset
instant representing 150 s of wake decay (see Fig. 3c) was chosen for
the flight tests. To emphasize the effect of the instabilities, an
autopilot was used to hold the encountering aircraft near to the vortex
cores, but sufficiently far away so that the autopilot could maintain a
steady heading and altitude. In Fig. 12a the encountering aircraft was
initialized to fly parallel to the wake and in the same horizontal plane
as the two vortices. Additionally, the right wingtip was relatively
close to the core of the left vortex. The recorded lateral accelerations

w
=]

25
g
@ 20
)
15
@
o
“ 10
2
=g

0

0 5 10 15 20
Tree Depth

b)

Fig. 9 The relation of kd-tree depth against data point access time a) and the respective file size b).

Iterations i s
&

Simulation Iteration

a)

ol o o

Simulation Iteration

Iterations i s
o
o

b)

Fig. 10 Comparison showing the effect of using on-demand time-step loading a) and using the time-step prefetcher b), on the iteration rate of the

simulation.

Downloaded by CORNELL UNIVERSITY on February 1, 2015 | http://arc.aiaa.org | DOI: 10.2514/1.23761

474 SPENCE ET AL.
50, 50
40 40

Roll angle(degrees)
=
o

30625 30 35 40 45 50 5
Time (seconds)

a)
Fig. 11

5

0.1
0.0
&
=
-0.1]
025 35 30 35
Time (seconds)
a)

Fig. 12

40

N W
o o

o

Roll angle(degrees)
—
o

b b
o o

&
=)

0 25 30 35 40 45 50 55
Time (seconds)

b)

History of recorded bank angle during the LES a) and the analytic b) wake vortex encounters, respectively.

0.8
En 0.6
=
= 0.4
0.2
0.85 5 30 35 20
Time (seconds)
b)

History of accelerations recorded at the aircraft center of gravity during a simulated flight in the proximity of a wake vortex after 150 s of decay.

The lateral accelerations a) and the vertical accelerations b) are shown, respectively.

at the aircraft center of gravity show cyclic behavior with a period of
approximately 5 s. In Fig. 12b, vertical accelerations at the center of
gravity are plotted while the aircraft was held centrally above the two
vortex cores at a sufficient distance so that the autopilot could
maintain altitude and heading. At this location one would expect the
aircraft to experience periodic vertical acceleration changes because
of the influence of the rising and falling nature of the vortices, as
shown in Fig. 3c. These cyclic acceleration effects are clearly
noticeable, again with an approximate period of 5 s, which coincides
with the period that the encountering aircraft travels the length of an
individual data tile. The noise observed on the plots in Fig. 12 is
mainly attributed to the turbulent nature of the LES data at this point
in the decay of the wake, although these effects may also be
introduced by the data resolution. These results demonstrate the
ability of the model to simulate flight through LES simulations of
decaying wake vortices in real time. Such a tool should provide
insight in any future analysis of flight through decaying wake
vortices, especially in the investigation of reduced aircraft approach
separation distances.

IV. Conclusions

The approach of using LES computational data as a basis for wake
vortex models in a flight simulator has been demonstrated to be
achievable and practical. Two main problems have been overcome:
1) simulating an accurate wake vortex decay using LES, and
2) integrating this large dataset in the flight simulator. The LES
simulation was able to replicate short- and long-wave instabilities
observed in real life and in other published results. Integrating this
data successfully into a flight simulator depends on the number of
data points, the number of aircraft strips, the spatial data organization
method, and the available computational resources. The simulated
flight test showed that the technique compared consistently with the
analytic wake vortex model before the wake instabilities develop;
however, detailed validation of the model has yet to be undertaken.
Although the model involves a significantly more complicated

software implementation than an analytic wake model, it offers
significant benefits and potential for wake encounters in the unstable
phase of the wake vortices and for future modification using different
forms of datasets. For example, it would be possible to create and use
new datasets simulating vortices generated by different aircraft or
datasets accounting for atmospheric stratification and for ground
effect. While the aircraft/wake interaction model is based on strip
theory, the wake modeling has been substantially improved, using
the LES data as a step towards a more realistic real-time model. This
method of generating real-time vortices provides a useful tool for
investigating simulated encounters with wake vortices and also a
means to simulate encounters with other atmospheric phenomena
that can be modeled with computational techniques.

Acknowledgment

This work is funded by the U.K. Engineering and Physical Science
Research Council under Grant GR/R84047/01, and their support is
gratefully acknowledged.

References

[1] “In-Flight Separation of Vertical Stabilizer, American Airlines Flight
587, Airbus Industrie A300-605R, N14053, Belle Harbor, New York,
12 Nov. 2001,” National Transportation Safety Board, Aircraft
Accident Report NTSB/AAR-04/04, Oct. 2004.

[2] Spalart, P. R., “Airplane Trailing Vortices,” Annual Review of Fluid
Mechanics, Vol. 30, Jan. 1998, pp. 107-138.

[3] Jacquin, L., “On Trailing Vortices: A Short Review,” International
Journal of Heat and Fluid Flow, Vol. 26, No. 6, 2005, pp. 843-854.

[4] Gerz, T., Holzépfel, F., and Darracq, D., “Commercial Aircraft Wake
Vortices,” Progress in Aerospace Sciences, Vol. 38, No. 3, 2002,
pp. 181-208.

[5] Sammonds, R. 1., Stinnett, G. W., Jr., and Larson, W. E., “Criteria
Relating Wake Vortex Encounter Hazard to Aircraft Response,”
Journal of Aircraft, Vol. 14, No. 10, 1977, pp. 981-987.

[6] Vicroy, D. D., and Nguyen, T., “A Numerical Simulation Study to

Downloaded by CORNELL UNIVERSITY on February 1, 2015 | http://arc.aiaa.org | DOI: 10.2514/1.23761

SPENCE ET AL. 475

Develop an Acceptable Wake Encounter Boundary for a B737-100
Airplane,” AIAA Paper 96-3372, July 1996.

[7] Stewart, E. C., “A Piloted Simulation Study of Wake Turbulence on
Final Approach,” AIAA Paper 98-4339, Aug. 1998.

[8] Sedin, Y. C.-J., Grasjo, L., Kullberg, E., and Larsson, R., “A Model for
Simulation of Flight Passages Through Trailing Tip Vortices,” ICAS
Paper 2002-7.9.3, Sept. 2002.

[9] Crow, S. C., “Stability Theory for a Pair of Trailing Vortices,” AIAA
Journal, Vol. 8, No. 12, 1970, pp. 2172-2179.

[10] Loucel, R. E., and Crouch, J. D., “Flight-Simulator Study of Airplane
Encounters with Perturbed Trailing Vortices,” AIAA Paper 2004-1074,
Jan. 2004.

[11] Proctor, F. H., Hamilton, D. W., Rutishauser, D. K., and Switzer, G. F.,
“Meteorology and Wake Vortex Influence on American Airlines FL-
587 Accident,” NASA TM-2004-213018, April 2004.

[12] Holzépfel, F., Gerz, T., Frech, M., and Dornbrack, A., “Wake Vortices
in Convective Boundary Layer and Their Influence on Following
Aircraft,” Journal of Aircraft, Vol. 37, No. 6, 2000, pp. 1001-1007.

[13] Woodfield, A. A., and Tomlinson, B. N., “Ship Airwakes—A New
Generic Model for Piloted Simulation,” AGARD FVP Symposium, CP-
577, Paper 10, May 1995.

[14] Polsky, S., and Naylor, S., “CVN Airwake Modeling and Integration:
Initial Steps in the Creation and Implementation of a Virtual Burble for
F-18 Carrier Landing Simulations,” AIAA Paper 2005-6298,
Aug. 2005.

[15] Advani, S. K., and Wilkinson, C. H., “Dynamic Interface Modelling
and Simulation—A Unique Challenge,” Royal Aeronautical Society
Conference, The Challenge of Realistic Rotorcraft Simulation, Royal
Aeronautical Society, London, U.K., Nov. 2001.

[16] Stumpf, E., “Numerical Study of Four-Vortex Aircraft Wakes and
Layout of Corresponding High-Lift Configurations,” AIAA
Paper 2004-1067, Jan. 2004.

[17] Holzépfel, F., Gerz, T., and Baumann, R., “The Turbulent Decay of
Trailing Vortex Pairs in Stably Stratified Environments,” Aerospace
Science and Technology, Vol. 5, No. 2, 2001, pp. 95-108.

[18] Switzer, G. F., and Proctor, F. H., “Numerical Study of Wake Vortex
Behavior in Turbulent Domains with Ambient Stratification,” AIAA
Paper 2000-0755, Jan. 2000.

[19] Moet, H., Darracq, D., Laporte, F., and Corjon, A., “Investigation of
Ambient Turbulence Effects on Vortex Evolution using LES,” AIAA
Paper 2000-0756, Jan. 2000.

[20] Moet, H., “Simulation Numérique du Comportement des Tourbillons
de Sillage dans I’ Atmosphere,” Ph.D. Dissertation, Institut National
Polytechnique, Toulouse, France, 2003.

[21] Laporte, F., “Simulation Numérique Appliquée a la Caractérisation et
aux Instabilités des Tourbillons de Sillage d’Avions de Transport,”
Ph.D. Dissertation, Institut National Polytechnique, Toulouse, France,
2002.

[22] Le Moigne, A., and Qin, N., “LES with Numerical Dissipation for
Aircraft Wake Vortices,” AIAA Paper 2006-1258, Jan. 2006.

[23] Boris, J. P., Grinstein, F. F., Oran, E. S., and Kolbe, R. L., “New Insights
into Large Eddy Simulation,” Fluid Dynamics Research, Vol. 10,
No. 4-6, 1992, pp. 199-228.

[24] Leweke, T., and Williamson, C. H. K., “Cooperative Elliptic Instability
of a Vortex Pair,” Journal of Fluid Mechanics, Vol. 360, April 1998,

pp- 85-119.

[25] Muraki, S., “Volume Data and Wavelet Transforms,” Computer
Graphics and Applications, Vol. 13, No. 4, July 1993, pp. 50-56.

[26] Cignoni, P., Costanza, D., Montani, C., Rocchini, C., and Scopigno, R.,
“Simplification of Tetrahedral Meshes with Accurate Error
Evaluation,” Proceedings of IEEE Visualization 2000, IEEE,
Piscataway, NJ, 2000, pp. 85-92.

[27] Fuchs, H., Kedem, Z., and Naylor, B., “On Visible Surface Generation
by A Priori Tree Structures,” Computer Graphics, Vol. 14, No. 3, 1980,
pp- 124-133.

[28] Samet, H., “The Quadtree and Related Hierarchical Data Structures,”
ACM Computing Surveys, Vol. 16, No. 2, 1984, pp. 187-260.

[29] Bentley, J. L., “Multidimensional Binary Search Trees Used for
Associative Searching,” Communications of the ACM, Vol. 18, No. 9,
1975, pp. 509-517.

[30] Gaede, V., and Gunther, O., “Multidimensional Access Methods,”
ACM Computing Surveys, Vol. 30, No. 2, 1998, pp. 170-231.

[31] Spence, G. T., Allerton, D. J., Le Moigne, A., and Qin, N., “Real-Time
Model of Wake Vortices Based on Large Eddy Simulation Datasets,”
AJAA Paper 2005-6205, Aug. 2005.

[32] Bentley, J. L., “Multidimensional Binary Search Trees in Database
Applications,” IEEE Transactions on Software Engineering, Vol. 5,
No. 4, 1979, pp. 333-340.

[33] Cox, M., and Ellsworth, D., “Application-Controlled Demand Paging
for Out-of-Core Visualization,” Proceedings of IEEE Visualization
1997, IEEE, Piscataway, NJ, 1997, pp. 235-244.

[34] Ueng, S. K., Sikorski, C., and Ma, K. L., “Out-of-Core Streamline
Visualization on Large Unstructured Meshes,” IEEE Transactions on
Visualization and Computer Graphics, Vol. 3, No. 4, 1997, pp. 370-
379.

[35] Lane, D. A., “UFAT—A Particle Tracer for Time-Dependent Flow
Fields,” Proceedings of IEEE Visualization 1994, IEEE, Piscataway,
NJ, 1994, pp. 257-264.

[36] Silberschatz, A., Galvin, P. B., and Gagne, G., Operating System
Concepts, 6th ed., Wiley, Hoboken, NJ, 2002.

[37] Allerton, D. A., “A Distributed Approach to the Design of a Real-time
Engineering Flight Simulator,” Proceedings of the 21st ICAS Congress,
ICAS, Stockholm, Sept. 1998.

[38] Reimer, H. M., and Vicroy, D. D., “A Preliminary Study of a Wake
Vortex Encounter Hazard Boundary for a B737-100 Airplane,” NASA
TM 110223, April 1996.

[39] Aliaga, D., Cohen, J., Wilson, A., Baker, E., Zhang, H., Erikson, C.,
Hoff, K., Hudson, T., Stuerzlinger, W., Bastos, R., Whitton, M.,
Brooks, F., and Manocha, D., “MMR: An Interactive Massive Model
Rendering System Using Geometric And Image-Based Acceleration,”
Proceedings of the 1999 Symposium on Interactive 3D Graphics,
Association for Computing Machinery, New York, 1999, pp. 199-206.

[40] Wilson, A., Manocha, D., and Lin, M. C., “Representation and
Interactive Manipulation of Massive CAD Databases,” Lecture Notes in
Computer Science, No. 1737, Springer, Berlin/Heidelberg, 1999,
pp. 268-285.

[41] Sarpkaya, T., Robins, R. E., and Delisi, D. P., “Wake-Vortex Eddy-
Dissipation Model Predictions Compared with Observations,” Journal
of Aircraft, Vol. 38, No. 4, 2001, pp. 687-692.

