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This paper reviews currently existing fault-tolerant navigation system architectures and data
fusion methods used in the design and development of integrated aircraft navigation systems
and also compares their advantages and disadvantages. Four fault-tolerant navigation sys-

tem architectures are reviewed and the associated Kalman filter architectures and algorithms
are discussed. These techniques have been used in most integrated aircraft navigation
systems. The aim of this review paper is to provide a guide for navigation system designers

to develop future aircraft multisensor navigation systems.
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1. INTRODUCTION. Aircraft navigation systems are a flight-critical system
and must be designed to meet the required navigation performance (RNP) require-
ments for safety, in terms of accuracy, integrity, continuity and availability. In the
past decade, various forms of fault-tolerant aircraft navigation systems have been
developed to achieve these requirements. This paper reviews the methodologies
used in the design and development of fault-tolerant aircraft navigation systems
from the perspective of system design. In Section 2, conventional fault-tolerant
navigation system architectures are outlined and briefly compared. Section 3
reviews the development of several Kalman filter architectures and filtering algor-
ithms. The methods summarised in this paper have been widely applied in many
integrated aircraft navigation systems and enable navigation system developers to
design and develop future aircraft multisensor navigation systems.

2. FAULT-TOLERANT NAVIGATION SYSTEMS. Fault-tolerant
navigation systems have been in use for over 30 years. The design methods
incorporate both fault-tolerant strategies and data fusion techniques to enhance
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reliability and safety and also to improve the performance of aircraft navigation
system in terms of the RNP parameters. During this development, three redun-
dancy strategies have been proposed: hardware redundancy, software redundancy
and analytical redundancy. Hardware redundancy uses multiple navigation sensors/
systems to achieve fault tolerance and improve the performance of an aircraft navi-
gation system. This approach is based on the principle that measurements from
various sensor systems are independent, redundant, complementary or cooperative.
These different types of measurements can be combined by means of data fusion
algorithms, so that the overall system performance is better than that of each indi-
vidual system. Hardware redundancy techniques have been widely applied to many
avionics systems1,2,3. Software redundancy uses different software versions to
increase the safety and integrity of navigation solutions by avoiding possible errors
caused by software and computing failures. However, software redundancy cannot
increase the accuracy of navigation solutions. Analytical redundancy is based on
the knowledge of rotational kinematics and translational dynamics of an aircraft to
enhance hardware redundancy4. Analytical redundancy is generally used to gener-
ate additional redundant information for the diagnosis of system failures rather
than the improvement of accuracy of navigation systems5. For that reason, analyti-
cal redundancy is considered as a failure detection method in most practical sys-
tems. Figure 1 outlines the fault-tolerant design methods used for aircraft
navigation systems. Hardware redundancy plays an essential role in the design of
fault-tolerant navigation systems and the level of fault tolerance depends on both
the architecture of hardware redundant systems and the data fusion methods
implemented. Three types of hardware redundancy have been developed for
the design of fault-tolerant aircraft navigation systems: system-level redundancy,
sensor-level redundancy and distributed redundancy.

2.1. System-Level Redundancy Architecture. A typical system-level redundancy
architecture is shown in Figure 2, where each Inertial Navigation System (INS)
operates independently and there is no data communication between these systems.
This is generally known as an independent system architecture. Each INS can also be
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Figure 1. Heirarchical structure of fault-tolerant design methods.
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integrated with other navaid systems to improve the navigation accuracy and
to control the growth of inertial sensor errors with time. Fault-tolerant methods used
to check the consistency and failures of all the INSs are typically majority-voting
methods or weighted-mean methods. In order to achieve fail-operational/fail-safe
operation, at least three INSs are needed in this configuration. In other words, at least
nine pairs of inertial sensors (accelerometers and gyros) are needed, where each INS is
a conventional orthogonal configuration. The main advantage of this architecture is
that the design and integration is simple and does not require complex fault-tolerant
methods for the diagnosis of system failures. However, if any sensor in one INS fails,
then this INS has to be removed from the fault-tolerant architecture. Consequently,
this architecture cannot exploit the benefits of redundant inertial sensors to dynami-
cally reconfigure an aircraft navigation system when one INS fails. This traditional
redundant architecture is still used in many existing avionic systems6, although these
systems are expensive and the duplication of INS modules can result in a significant
increase in mass.

2.2. Sensor-Level Redundancy Architectures. Sensor-level redundant archi-
tectures were developed with the advent of high-speed, large memory embedded
microprocessors and low-cost, small-size and low-mass inertial measurement units
(IMU). Several redundant schemes have been proposed, including IMU-level and
multisensor redundancies.

2.2.1. IMU-Level Redundancy. An IMU-level redundant architecture used in
many aircraft navigation systems is shown in Figure 3, where duplex or triplex
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Figure 3. IMU-level redundancy.
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conventional IMUs are configured in a federated architecture to obtain fault toler-
ance. Each IMU can be skewed with respect to the aircraft body axes when it is
mounted in the aircraft in order to reduce the number of IMUs7. Theoretically, a
fault-tolerant navigation system consisting of two IMUs affords fail-operational/fail-
operational/fail-safe operation if one of these IMUs is skewed relative to the aircraft
body axes, or is a non-orthogonal IMU. In this configuration, six pairs of inertial
sensors can achieve a higher level of fault tolerance in comparison with three inde-
pendent INSs. Each navigation processor can combine the outputs of all IMUs with
data from aiding systems to estimate the aircraft motion states and to perform sensor
failure detection and isolation and system reconfiguration. Compared with the INS-
level redundancy, this architecture significantly increases the level of fault tolerance
and makes effective use of existing IMU equipment. However, resultant fault-tolerant
systems still share some of the disadvantages of system-level redundant architectures
and considerable efforts are being made to reduce volume, weight and cost.

2.2.2. Multisensor Redundancy An alternative development is to integrate mul-
tiple inertial sensors in a single suite in the form of non-orthogonal configurations3,
known as skewed redundant IMU (SRIMU) configurations. One multisensor suite
can thus replace multiple IMUs to reduce the volume, weight and power required for
an aircraft navigation system. A representative architecture of multisensor fault-
tolerant systems is shown in Figure 4, where the multisensor suite is a dodecahedron
configuration. Six pairs of inertial sensors are installed perpendicular to the parallel
faces of a regular dodecahedron. The SRIMU outputs are sent to redundant navi-
gation processors, each individually performing the navigation and attitude compu-
tations, sensor FDI functions and navigation system reconfiguration. The
multisensor redundancy is a cost-effective approach that exploits the benefits of
emerging inertial sensor technologies and high-speed embedded microprocessor sys-
tems. Multisensor technology will provide the basis for the future generations of
fault- tolerant navigation systems.
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Figure 4. Multisensor redundancy.
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2.3. Distributed Redundant Architectures. Distributed redundant architectures
is a new fault-tolerant concept which has been developed with the introduction of
distributed and integrated modular avionics architectures. A current combat plat-
form may have a total of twelve traditional IMUs of various quality, providing the
state vector information required by avionic systems and weapon systems8. In this
architecture, inertial sensor systems are mounted at several locations in an aircraft,
not only to meet the fault tolerance requirements of navigation systems, but also to
provide accurate local inertial vector states for other systems, for example, weapon
control systems and imaging sensors and to provide radar stabilization and motion
compensation. The concept of using an inertial network for aircraft avionics was
initially proposed by Kelley, Carlson and Berning8 in 1994. However, no research has
been published describing a systematic study of inertial network architectures for
fault tolerant aircraft navigation systems, in terms of combining data fusion methods,
dynamic alignment and correction of distributed inertial sensor systems and dis-
tributed sensor failure detection and isolation techniques.

3. DATA FUSION FILTER ARCHITECTURES. Kalman filtering
techniques have been developed for applications in aircraft navigation, control and
guidance since the 1970s. During this period, many Kalman filter architectures and
filtering algorithms have been proposed as prime data fusion methods, to combine
multiple navigation sensors/systems to achieve the required navigation perform-
ance. Data fusion filter architectures currently used in aircraft integrated navigation
systems can be categorised as four types : centralised, cascaded, federated and dis-
tributed data fusion architectures.

3.1. Centralised Filter Architecture. The centralised filter architecture is illus-
trated in Figure 5, where measurements or data from all navigation sensors/systems
are processed in a central data fusion filter to obtain the accurate estimates of aircraft
motion states. This architecture is the most common filter design implemented in
current integrated navigation systems, including INS/GPS/Doppler integrated
systems9, GPS/Doppler integrated systems10 and tightly-coupled GPS/inertial sys-
tems11,12. In these systems, INS outputs and raw GPS measurements are combined in
a centralised filter to estimate the navigation state errors and sensor errors, including
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Figure 5. Centralised data fusion architecture.
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GPS receiver clock errors, inertial sensor errors and baro-altimeter errors. Numerous
covariance analysis methods and numerical computations of the standard and
extended Kalman filters have been reported in the literature. Theoretically, the cen-
tralised filter can obtain optimal estimates of the aircraft motion states. However,
with the increasing number of sensor systems in aircraft, the filtering algorithms can
be quite complex and the centralised filter computation can be time-consuming as a
result of the large number of states in the dynamic models of the filter. Accordingly,
the centralised filter is not necessarily an appropriate methodology in the develop-
ment of fault tolerant multisensor navigation systems20,29,31. To overcome the
limitations of the centralised filter, other filter architectures have been developed.

3.2. Cascaded Filter Architecture. The cascaded filter architecture is shown in
Figure 6, where the outputs of one filter are used as inputs to a subsequent filter stage.
The filter outputs include the estimates of the system states and their error covari-
ances. This filter architecture has been proposed for the integration of existing navi-
gation systems which contain their own Kalman filters. The cascaded filter can
improve the accuracy of integrated navigation systems and also perform in-flight
calibration or transfer alignment between an INS/GNSS integrated system and a
slave INS or attitude heading reference system (AHRS). This architecture has been
used in GPS/INS/terrain-aided navigation systems13 and loosely-coupled GPS/INS
integrated navigation systems, where the GPS navigation solutions, derived by an
GPS internal filter and INS data, are combined in a separate cascaded filter external
to the GPS receiver to estimate the navigation state errors and the inertial sensor
errors. The GPS filter estimates the GPS receiver clock errors. However, the GPS
filter is generally based on a simplified model and may not output the computed error
covariances. Consequently, the cascaded filter may not have access to covariance
information. Schlee et al14 developed a cascaded filtering algorithm to improve the
accuracy of an existing GPS/inertial system, known as a master INS, which utilises an
internal filter to estimate the master INS navigation solutions and the GPS clock
errors. This cascaded algorithm also provides transfer alignment between the master
INS and a second inertial system. Their study showed that improvement in the
accuracy of the master INS and the accuracy of the transfer alignment depend on the
update rate of the cascaded filter. However, correlations of the state errors caused by
the internal filter are ignored in the measurement noise matrix of the cascaded filter.
From Kalman filter theory, the non-diagonal elements of the state error covariance
matrix of the filter (which represent the correlations) can only be ignored if the filter
offers highly accurate estimates of the navigation states and the magnitudes of the
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Figure 6. Cascaded data fusion architecture.
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off-diagonal elements are far less than the diagonal elements. Otherwise, the per-
formance of the cascaded filter may be degraded as a result of the correlation.

Wade and Grewal15 analysed the effect of this correlation on the accuracy of
cascaded GPS/INS systems; their results show that the accuracy of cascaded systems
depends on the correlation matrix. When the state errors estimated by the internal
filter are closely correlated, the cascaded filter may incorrectly estimate the navigation
state errors and the inertial sensor errors. Wade and Grewal suggest adjusting the
measurement noise matrix by using adaptive process noise in the cascaded filter.
However, development of this adaptive process and identification of the measure-
ment noise matrix are not reported in detail.

In order to improve the robustness of the cascaded filter to input conditions and
adverse environments, Karatsinides16 proposes two methods for dealing with the GPS
position bias and identifying the statistical values of measurement noise for the
cascaded filter. The GPS positioning solution contains biases resulting from satellite
clock errors, ephemeris errors, ranging signal propagation delay and geometries of
visible satellites. Although GPS position bias is unobservable and cannot be esti-
mated in the GPS filter, it can influence the accuracy of cascaded GPS/INS systems
through the error covariance matrix. The first method models GPS position bias as a
first-order Gauss-Markov process and then uses these biases as the consider-states of
a Schmidt-Kalman filter. The part of the Schmidt-Kalman gain matrix related to the
consider-states is set to zero in order to ignore the estimated consider-states. The
second method computes the variances and covariances of the errors of the navi-
gation states derived by the GPS filter, using conventional computation equations of
variance and covariance, provided that the update rate of the cascaded filter is less
than the GPS filter.

The cascaded filter architecture can be used to integrate existing navigation
systems into a fully integrated system and may only require minimal modifications to
existing navigation systems. In practice, most existing navigation systems do not
output covariance data of the navigation state errors. Consequently, the cascaded
filter is extremely dependent upon the methods that are used to estimate the covari-
ances of the primary filter and the performance of the primary filter. Moreover,
tuning of the primary filter is of critical importance to the performance of the
cascaded filter15.

3.3. Federated Filter Architecture. The federated filter architecture was initially
recommended by Carlson17 for integrating multiple navigation sensor systems in
order to provide a high level of fault tolerance and accuracy. This is a two-stage
filtering architecture, as shown in Figure 7, where all the parallel local filters combine
their own sensor systems with a common reference system, usually an inertial system,
to obtain the local estimates of the system states. These local estimates are sub-
sequently fused in amaster filter to achieve the global estimations. By using a common
reference system, all parallel filters have a common state vector. The federated filter is
generally designed on the basis of two different strategies17,18. In the first method, the
local filters are designed independent of the global performance of the federated filter
and estimate n sets of local state vectors and their associated covariances by using
their own local measurements. These n sets of the local state estimates are then
weighted by their error covariances to obtain the global state estimates. The second
method is based on the global optimality of the federated filter ; the local filters are
derived from the global model of the federated filter and estimate n versions of the
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global states from local sensor measurements. These n versions of estimates are
weighted by their error covariances to obtain the global optimality. The master filter
is a weighted least-squares estimator. Carlson19 developed a square-root form of the
federated filtering algorithm to increase the computational precision and the
numerical stability of the federated filter.

A significant feature of the federated filtering process is that a reference INS must
be used to create the common system states in the local and master filters, which are
the navigation states. Therefore, each local filter can obtain the suboptimal navi-
gation states. A comparison of the federated and centralised filters has shown that the
federated architecture offers improvements in failure detection, isolation and recov-
ery (FDIR) and fault tolerance over the centralised filter20.

Levy21 uses dual state suboptimal analysis to model the true world state vector and
develops covariance analysis algorithms for assessing the sub optimality of both the
cascaded and the federated filters. The dual state contains the states of the first and
second filters in the case of the cascaded filter (or the states of all parallel filters and
the master filter in the case of the federated filter). Levy’s results have shown that the
cascaded and federated filters are seldom optimal in comparison with the centralised
Kalman filter. As the master filter updates become sparser, the actual performance of
the federated filter degrades in comparison with the centralised filter. The federated
filter is only optimal (or equivalent to the centralised filter) when the full global state
is modelled in each local filter and the master filter is run at the update rate of the
local filters.

Tupysev22 develops a federated filtering algorithm based on the principles of state
vector augmentation and the rejection of partial information. Unlike Carlson’s filter,
the global state model that is used to derive the parallel local filters contains a com-
mon state vector plus individual local bias state vectors instead of all the states of the
local filters.

However, the use of a reference navigation system as a common information
source of all local filters in the federated filter architecture means that common mode
failures in the reference system can corrupt the performance of these filters. This
influence can further degrade the level of fault tolerance and FDIR functions.
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This problem seems to have been ignored in current designs of federated integrated
navigation systems. The federated filter has been applied to several multisensor
navigation systems, for example, GPS/INS/SAR/terrain aided navigation and
tracking systems23. It should be noted that the federated filter is sometimes referred to
as the decentralised filter27.

3.4. Distributed Filter Architectures. Distributed filter architectures were orig-
inally developed for target tracking and identification where distributed sensor sys-
tems (possibly in different platforms) are combined in order to estimate and identify
various moving targets in military applications. Liggins et al24 gives a comprehensive
survey of distributed fusion architectures for target tracking. Distributed filtering
techniques used for the design and development of fault-tolerant navigation systems
have appeared since 199027. The cascaded and federated filter algorithms are special
cases of the distributed filter architectures. Unlike the filter architectures described
above, distributed filter architectures have no standard models. In general, there are
two main data fusion approaches to the design of distributed filters, known as
measurement fusion and state fusion. In state fusion, the local states estimated by the
local filters are fused in a central filter to obtain global estimations. By contrast, in
measurement fusion, various subsets of all the sensor measurements are fused by
means of a bank of Kalman filters to obtain multiple state estimation versions of the
global system states, which are combined to obtain the more accurate global state
estimation and to detect system failures. However, there may be no central data
fusion in a fully distributed multisensor data fusion system. In fact, the distributed
filter architecture offers the most flexible scheme in the design of multisensor navi-
gation systems.

Several distributed filtering algorithms have been developed since 1980 for the
design of various distributed control systems, target tracking systems and integrated
navigation systems. Speyer25 describes a distributed filtering algorithm in which each
of K local filters has its own local sensor measurements and the same state model.
Each local filter computes the global estimate of the system state vector. The infor-
mation shared between these local filters consists of the local estimates and error
covariances and an additional (locally computed) data-dependent term, which is a
dynamic compensation to account for the correlation between the local estimates.
Speyer’s filter is a fully distributed filtering architecture and has a high level of fault
tolerance. However, by using the same state model, this filtering algorithm cannot be
used in a distributed inertial sensor system where the local state vector is needed for a
specific application, for example, local motion compensation.

Willsky et al26 consider a problem where two local filters have models which differ
from the global model. Each local filter processes its local measurements and a fusion
algorithm (based on the global model) computes a dynamic correlation correction
term. The local estimates are then combined to obtain the global estimate. A
necessary and sufficient condition for recovering the global state from the local states
is that a relationship must exist between the observation matrix of the global state
model and that of each local state model. This relationship is formulated as a static
matrix transformation. In other words, the local state vector is a subset of the com-
ponents of the global state vector. This algorithm has been extended to the design of a
multisensor navigation system33. However, these algorithms imply that both the local
and the global states are represented in the same coordinate system and this is not
necessarily true for distributed inertial sensor systems.
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Kerr27 proposes a decentralised filtering structure but the decentralised filter
algorithms applicable for this structure are not detailed. However, some filtering
algorithms, for example, Speyer’s parallel filtering algorithms26, may be used for
this decentralised structure. In terms of the filter architecture, Kerr’s version is similar
to the federated filter architecture given by Carlson17. The differences between these
architectures are the individual methods used for detection and isolation of sub-
system failures. For example, Kerr’s filter uses voter/monitoring methods based on
Gaussian confidence regions of the estimated states whereas Carlson’s filter uses filter
residuals to detect sensor and subsystem failures.

Brumback and Srinath28 describe a distributed filtering mechanism that is a
hierarchical filtering architecture, where the local filters fuse different subsets of all
measurements for local state estimates and failure detection and isolation. A master
filter combines the outputs of failure-free local filters to yield the global estimation.
The local filters in the distributed filter architecture can have system models, which
are different from the global model.

Hashemipour et al29 introduce decentralised Kalman filtering algorithms for three
types of sensor system networks: sensor collected, time sequential measurements and
a hybridisation of these two types. In Hashemipour’s filter, each local filter has the
same state model as the central filter and the observation matrix of each local model
corresponds to one sub-matrix of the observation matrix of the global model. Each
local filter computes the global estimation and its local error covariance; these are
subsequently fused in a central filter to obtain the global optimal estimation.
Accordingly, this filtering algorithm is similar to Speyer’s filter, but uses the infor-
mation form of the Kalman filter and does not need feedback from the central filter to
the local filters. Although this algorithm has been applied to target-tracking prob-
lems, it is not suitable for distributed multisensor navigation systems because feed-
back control is an important means to correct sensor errors in a distributed inertial
sensor system.

Hong30 presents a distributed multisensor integration algorithm in which the local
measurements, together with previous global estimates obtained via the communi-
cation network, are locally processed to obtain the local state estimate and the local
error covariance. These local estimates (state and covariance) are fused in a central
filter to obtain the global estimate. Because the local state and covariance predictions
are derived from the previous global estimates, the local filters have no state models.
However, rotation matrices and translation transformations are introduced to define
the relationships between the local states and the global (central) state. Moreover,
this algorithm was designed to minimise the uncertainties of these transformations. It
should be noted that the same relationships are also used for the measurement
transformations from the local nodes to the central node. This is not necessarily true
in distributed inertial sensor systems, especially when a nonlinear relationship exists
between the measurements and the states. Compared with Speyer’s filtering algor-
ithm, this method simplifies the complexity of the distributed filtering algorithms.
However, the local states greatly depend on the global states because this method
lacks local dynamic models.

Roy et al31 propose a square root filtering structure where parallel local filters have
a smaller dimension than the global filter. Paik et al32 develops a gain fusion algor-
ithm for decentralised parallel Kalman filters to obtain computation-efficient
suboptimal estimation results. Raol et al33 describe a decentralised square-root
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information filtering scheme where all information fusion is processed locally at each
node and there is no central fusion. These algorithms can improve the computational
precision and numerical stability of existing distributed filtering algorithms.

Fully distributed filtering architecture and information fusion algorithm are
developed, where no central data fusion centre is needed34. Each local filter has its
own local system model and processes the local measurements and information
assimilated from other filters to obtain a global estimate of the system state.
However, there is still a key problem to be considered; the dynamic relationship
between the local states must be determined, especially if the local state models are
different. Berg et al35 describe the static relation between the local states and the
global state using an approach similar to Speyer’s method25.

For aircraft systems, multisensor data fusion offers potential improvements in
performance in the following areas of navigation:

’ Aircraft navigation system RNP parameters ;
’ Fault tolerance of navigation systems;
’ Estimation of local motion states.

The majority of previous applications have focused on meeting RNP and reliability
requirements. In other words, existing distributed filtering algorithms have preserved
the global optimality of the navigation states, which is a desirable feature and serves
as a benchmark for other avionic systems. However, these methods rarely consider
the dynamics of the local subsystems or the dynamic relationships between the local
subsystems. Some algorithms still require extensive computations of local and global
inverse covariances. Very few studies have addressed estimation of the local states. In
fact, distributed inertial sensor systems consisting of several IMUs mounted in an
aircraft affords both redundant inertial measurement information and distributed
inertial state vectors, which can be used for aircraft navigation, guidance and control
and also in the implementation of local motion compensation functions. These IMUs
measure local motion with reference to specific coordinate frames defined by their
installation positions and have individual error dynamics. Therefore, the local states
must be accurately estimated to determine the local dynamic motion. The develop-
ment of distributed filtering algorithms can also be used to investigate methods for
dynamic alignment and calibration of distributed IMUs. To date, these consider-
ations have not been addressed in the open literature.

4. CONCLUSIONS. This paper has reviewed the developments of fault-
tolerant aircraft navigation systems based on an extensive literature survey. The
methodologies for the design and development of safety-critical aircraft navigation
systems have been summarised, including fault-tolerant navigation system archi-
tectures, data fusion filter architectures and corresponding filtering algorithms.
These methods provide the techniques for navigation system engineers and
researchers to design and develop future aircraft multisensor navigation systems.
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