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Nomenclature 
 
Typical units used here are: 
 

Time = s, second 
Length = m, meter 
Electrical potential = V, volt 
Electric current = A, ampere 

 
Scales used in nondimensional quanties are: 
 

*L  = length scale 

*µ  = permeability scale 

*ε  = permittivity scale 

*H  = magnetic field intensity scale 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notation Explanation  

eΩ  electric domain  

mΩ  magnetic domain  

fΩ  fluid domain  

emΩ  electric and magnetic coupled domain  

efΩ  electric and fluid coupled domain  

mfΩ  magnetic and fluid coupled domain  

emfΩ  electric, magnetic and fluid coupled domain  
2DE 2D formulations in the E-plane  
2DH 2D formulations in the H-plane  



Nomenclature 
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Notation Explanation Typical unit 

E  electric field intensity [ ]V m  

H  magnetic field intensity [ ]A m  

φ  electric potential [ ]V  

A  magnetic potential [ ]V-s m  

D  electric flux density 2A-s m⎡ ⎤⎢ ⎥⎣ ⎦  
*D  *ε= E   

B  magnetic flux density 2V-s m⎡ ⎤⎢ ⎥⎣ ⎦  

cJ  electric conduction current density 2A m⎡ ⎤⎢ ⎥⎣ ⎦  

J  electric current density ( )c t= +∂ ∂J D  2A m⎡ ⎤⎢ ⎥⎣ ⎦  

K  magnetic current density 2V m⎡ ⎤⎢ ⎥⎣ ⎦  

µ  permeability [ ]V-s A-m  

ε  permittivity [ ]A-s V-m  

*ε  1

in static analysis
in harmonic analysisi

ε
ε σω−
⎧⎪⎪= ⎨⎪ −⎪⎩

  [ ]A-s V-m  

σ  conductivity [ ]A V-m  

0!   imposed source of electric charge density 3A-s m⎡ ⎤⎢ ⎥⎣ ⎦  

0J  imposed source of electric current density 2A m⎡ ⎤⎢ ⎥⎣ ⎦  

0K  imposed source of magnetic current density 2V m⎡ ⎤⎢ ⎥⎣ ⎦  

0I  imposed source of electric current [ ]A  

ω  frequency [ ]1 s  
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Chapter 1 Introduction 
 
ADINA-EM is a general finite-element/finite-volume code that can be used 
for analyzing electromagnetic (EM) problems.  The solutions can be 
coupled with CFD solutions in the ADINA-CFD+EM package that includes 
both ADINA-EM and ADINA-CFD. 
 
In this Theory and Modeling Guide, the theoretical bases and guidelines for 
the use of the ADINA-EM capabilities and the CFD-EM coupled solution 
procedure are presented. 
 
This guide is organized as follows.  A brief introduction is given in Chapter 
1.  It includes all key ingredients in ADINA-EM and the CFD-EM 
coupling.  For experienced ADINA users, it is enough for them to start.  
More details on some important subjects are given in the remaining 
chapters. 
 
The governing equations of first and second orders, in both E-H and  
mathematical formulations are presented in Chapter 2.  The modules and 
analysis types are also introduced in ADINA-EM. 

-A φ

 
The concept of path is described in Chapter 3.  The path is used to ease the 
input of space-varying directions and functions. 
 
In Chapter 4, all the parameters required in element groups are described, 
including material data, electromagnetic sources and the control 
parameters. 
 
Various boundary conditions available in ADINA-EM are detailed in 
Chapter 5, including their mathematical representation and the required 
input parameters. 
 
The discretized linear equations are solved using iterative solvers.  In 
Chapter 6, we introduce the control parameters and explain how they work 
during the iteration procedure. 
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Chapter 1: Introduction 
 

In Chapter 7, we explain how ADINA-EM and ADINA-CFD solutions are 
coupled, in terms of the Maxwell stress and the Joule heating rate.  For 
CFD modeling, the ADINA-CFD theory and modeling guide is referenced. 
 

1.1 Computational domain and coordinate system 
 
The computational domain can be in 2 or 3 dimensional space.  It may 
consist of an electric domain  and/or magnetic domain .  In CFD-
EM coupled models, it also includes a fluid domain . These sub-
domains may be partially or fully coincident, illustrated in the figure below.  

eΩ mΩ

fΩ

 
 

fΩ

eΩ

mΩ

efΩ =

mfΩ =

emΩ =

emfΩ =

)

 = fluid domain 

 = electric domain 
 = magnetic domain 

e fΩ Ω∩  

m fΩ Ω∩  

e mΩ Ω∩  

e m fΩ Ω Ω∩ ∩  
 
 

Figure 1.1  Physical sub-domains used in ADINA-CFD+EM 

 
The Cartesian coordinate system ( , ,x y z  is used in 3 dimensional 

domains, while the system ( ),y z  is used in 2 dimensions. 
 

1.2 Variable, source and material data 
 
In ADINA-EM, the independent solution variables are electric field 
intensity  and magnetic field intensity H , or electric potential  and E φ

We

Wf

Wm
Wem

Wef

Wemf

Wmf
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magnetic potential .  Other resultant variables are electric flux density 
, magnetic flux density , electric current density  and magnetic 

current density . 

A
D B J

K
 
The material data required are permeability , permittivity , conductivity 

, and, in harmonic analysis, the frequency of the model ω . 
µ ε

σ
 
The imposed sources are electric charge density , electric current density 

, magnetic current density  and electric current .   
0ρ

0J 0K 0I
 
The input of sources , ,  or  may need path data sets that ease 
the definition of space-varying directions and functions.  The path option is 
described in detail in Chapter 3. 

0ρ 0J 0K 0I

 

1.3 Analysis type 
 
The static and harmonic analysis types are available in ADINA-EM. 
 
In static analysis, all solution variables, boundary condition values, sources 
and material data are assumed to be independent of time. 
 
In harmonic analysis, while the material data are still assumed constant in 
each element group, all solution variables, sources and boundary condition 
values are assumed to vary in the form  
 

( *cos sin Re i t
r i )f f t f t f e ωω ω= − =  (1.1) 

 
where 1i= −  and *

r if f if= + .  The real component rf  and the 

imaginary component if  are required in the input. 
 
A non-zero phase variable must be written in the form of Eq.(1.1) to obtain 
its real and complex components.  Since ( )( ) ( )* *Re Rei t i i tf e f eω θ θ ω+ = e , 

we have  
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( ) ( )* cos sin sin cosi
r i r i

real component imaginary component

f e f f i f fθ θ θ θ θ= − + +!""""""""#""""""""$ !""""""""#""""""""$  

 
For example, the input values of the real and imaginary components of 

( ) ( )2 22cos sint tπ πω ω+ + +  are 1 ( )2 22cos sinπ π= +  and 2 

( )2 22sin cosπ π= −  respectively. 
 
We need to note that the total number of equations or degrees of freedoms 
in harmonic analysis is double that in static analysis.  The solutions have 
real and imaginary components. 
 
In both static and harmonic analyses, the input data are assumed 
independent of time.  However, in order to ease the solution execution 
procedure, �time-varying� inputs are allowed.  They are not physically time 
varying, but simply represent data values at different computational steps.  
This feature is useful in solving a series of similar problems in one 
execution. 
 

1.4 Mathematical formulation and module 
 
There are two mathematical formulations available in ADINA-EM: the one 
that governs electric and magnetic field intensities ( -E H  formulation), and 
the one that governs magnetic and electric potentials ( -A φ formulation).   
 
Either the -E H  or -A φ  formulation can be used, but they cannot be used 
in the same model.  Furthermore, in each formulation, one or both variables 
can be active. 
 
In the 3D E-H formulation, both E and H are vectors in 3D space, and in 
the -A φ  formulation, A is a vector in 3D space and φ  is a scalar. 
 
There are two types of 2D formulations, one with vector electric field 
intensity and one with vector magnetic field intensity.  They are called here 
E-plane (2DE) and H-plane (2DH) formulations respectively.  Based on 
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this definition, solution variables can be easily classified according to the 
governing equations.   
 
For example, in 2DE -E H  formulations, since electric filed intensity is a 
vector in the ( ),y z  plane, magnetic field intensity must be a scalar that 

contains only its x-component.  In 2DE -A φ  formulation, since magnetic 
field intensity is a scalar, its potential is then a vector in the ( ),y z  plane.  
Similarly, in 2DH formulations, the magnetic field intensity is a vector in 
the ( ),y z  plane, while the electric field intensity (or magnetic potential in 

the -A φ  formulation) is a scalar (with x-component only). 
 
ADINA-EM provides modules to identify those diversities.  A module 
combines the mathematical formulation, the space dimension and the 
active/inactive variables.  Only one module can be selected in a problem. 
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The following table lists the available modules in ADINA-EM. 
 
 

MODULE USED FOR  SOLUTION VARIABLES 

EH3D 3D -E H  model  , , , , ,x y z x y zE E E H H H  

E03D 3D E  model  , ,x y zE E E  

0H3D 3D H  model  , ,x y zH H H  

FA3D 3D -A φ  model  , , ,x y zA A A φ  

F03D 3D φ  model  φ  

0A3D 3D A  model  , ,x y zA A A  

EH2DE 2D -E H  model in E-plane  , ,y z xE E H  

E02DE 2D E  model in E-plane  ,y zE E  

0H2DE 2D H  model in E-plane  xH  

FA2DE 2D -A φ  model in E-plane  , ,y zA A φ  

F02DE 2D φ  model φ  

0A2DE 2D A  model in E-plane  ,y zA A  

EH2DH 2D -E H  model in H-plane , ,x y zE H H  

E02DH 2D E  model in H-plane  xE  

0H2DH 2D H  model in H-plane  ,y zH H  

0A2DH 2D A  model in H-plane  xA  

 

Table 1.1  Electromagnetic modules in ADINA-EM 

 
The module ID characters shown in the first column are self-explanatory.  
For example, F02DE indicates the 2D model in the electric plane (indicated 
by the last 3 characters �2DE�) with only φ  active (indicated by the first 2 
characters �F0�), while FA2DE is the same module but having both φ  and 
A  active (indicated by characters �FA�). 
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Table 1.1 contains three parts: the 3D modules are in the first part, and the 
2DE and 2DH modules are in the second and third parts respectively. 
 
The solution variables shown in the last column are for static analysis.  For 
harmonic analysis, they represent both real and imaginary components.  
The number of unknowns is then doubled. 
 

1.5 Elements and element groups 
 
The sub-domains are discretized with elements, and elements are combined 
into one or more element groups.  An element group normally represents a 
sub-domain that has the same material properties, sources and active 
variables. 
 
In each element group, a set of material properties of the sub-domain must 
be defined.  The data set includes permeability, permittivity, conductivity, 
etc. 
 
Depending on the problem, multiple sources may be imposed.  The type of 
source can be electric charge density ( )0ρ , electric current density ( )0J , 

magnetic current density ( )0K  and electric current ( )0I .  Note that sources 
of the same type are added up in the program.  
 
Electric/magnetic variables can be set active/inactive for an element group.  
Element groups with active electric variables form the electric domain, and 
those with active magnetic variables form the magnetic domain.  One or 
both variables may be active in the same element group.   
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The table below details the possible choice in one element group. 
 

 ELECTRIC 
VARIABLE 

MAGNETIC 
VARIABLE 

FLUID 
VARIABLE 

eΩ  active inactive inactive 

mΩ  inactive active inactive 

emΩ  active active inactive 

fΩ  inactive inactive active 

efΩ  active inactive active 

mfΩ  inactive active active 

emfΩ  active active active 

 

Table 1.2  Active variables in sub-domains 

 
In ADINA-EM, the active/inactive electromagnetic variables are 
automatically set in all element groups according to the selected module.  
User may deactivate them later in element groups if needed.  For example, 
0H2DE indicates that active magnetic variable and inactive electric variable 
are initially set in all element groups. 
 
In ADINA-CFD+EM, a default CFD model is assumed.  Consequently, 
electromagnetic variables are initially set inactive.  They may be activated 
later in two steps: (1) turn on EM option and (2) activate electromagnetic 
variables in the element groups where they are present. 
 
2D/3D elements are used in 2D/3D models.  Depending on the number of 
vertices, 2D elements are either 3-node (triangle) or 4-node (quadrilateral) 
elements, and 3D elements are 4-node (tetrahedron), 5-node (pyramid), 6-
node (wedge) and 8-node (brick) elements. 
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Figure 1.2  Elements and solution location in ADINA-EM 

 

1.6 Boundary conditions 
 
ADINA-EM provides some basic types of boundary conditions.  The 
following table summaries these conditions, the corresponding solution 
variables that the conditions can be applied to, and conditions where these 
are applicable. 
 
Condition Variables Covered sample conditions 
Dirichlet , , ,φE H A  Balloon 
Normal , , ,φE H A  Perfect symmetry planes 

Parallel , ,E H A  Perfect E; perfect H; perfect 
symmetry planes 

Natural ,E H   

Impedance , ,E H A  Finite conductivity; Lumped RLC; 
Imperfect conductor 
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A boundary condition is a data set that is applied to a part of the boundary.  
Each condition set is only for one variable.  If a boundary condition is 
applied for the coupled variables, it must be defined twice, and applied to 
each of the variables separately. 
 
If the electric and magnetic domains are not coincident, so are their 
boundaries.  It is important to apply boundary conditions to the boundary of 
the corresponding sub-domains. 
 
Every part of (electric of magnetic) boundary must have one and only one 
condition applied. 
 
On coincident boundaries, the conditions for the two variables must be 
consistent. 
 
For most types of boundary conditions, the boundary curvature is an 
important factor that affects the solution accuracy.  A reasonably fine mesh 
is necessary on curved boundaries.  ADINA-EM computes curvature within 
each boundary condition set.  If a boundary consists of parts that have 
different curvatures, the curvature at the intersection might be incorrectly 
computed.  Therefore, it is necessary that conditions be separately applied 
to each part of the boundary of different curvatures.  
 
In case the parameters in a boundary condition set requires space-varying 
direction (e.g, non-zero E-Parallel condition) or values (e.g. Balloon 
condition), a path data set may be used.  It eases the input of the direction 
and space-varying function.  The path data input is described in detail in 
Chapter 3. 
 

1.7 Units and non-dimensional analysis 
 
The use of a proper unit system can help the solution convergence in 
certain problems.  A general guidance on choosing units is to have solution 
variables ( E H  or φA ) of order one. 
 
It is our intention to leave the choice of unit system to users.  Any unit 
system can be used, provided that units are consistent in the governing 
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equations, through all data input, including material data, boundary 
conditions, etc.  The units of ADINA-EM solutions are consistent with the 
units of input. 
 
In particular, a unit system with dimensionless input can be used.  The 
solution is then in consistent dimensionless form. 
 
ADINA-EM also provides an automatic procedure for using dimensionless 
variables after a model has been created with dimensional data.  In this 
procedure, the user first prepares the model as usual ― all input data are in 
a dimensional unit system.  The user then specifies some independent 
variable scales in the final stage of model preparation.  With those scales, 
ADINA-EM automatically transfers all input data into dimensionless form 
and uses these in the computations.  However, the output solutions are 
seamlessly in the original dimensional unit. 
 
The required variable scales in this procedure are the length ( )*L , 

permeability ( )*µ , permittivity ( )*ε  and magnetic field intensity ( )*H .  
All of them are required even in problems where only one variable is 
active.  In this procedure, the following resultant scales are automatically 
determined and used in ADINA-EM: 
 

( )

* * * *

1
* * * *

0* * * *

0* * *

0* * *

* * * *

* * * *

* * *

1

E H

L
E L

J H L
K E L

L

A H L
E L

µ ε

σ ε µ
ρ ε

ω µ ε

µ
φ

−

=

=
=
=
=

=

=
=

 

 
It is sometimes more efficient to choose σ  instead of ε  as an independent 
scale in problems with conductors present.  In this case, input the 
permittivity scale as 
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( )2* * * �Lε µ σ=  
 
where �σ  is a typical conductivity in the model. 
 
In ADINA-CFD+EM, the automatic nondimensinal procedure is also 
available, in which the length scale *L  is used for both the CFD and EM 
models. 
 

1.8 Solution output 
 
All computed independent solution variables in ADINA-EM are defined at 
the element center.  The output solutions are defined at nodes.  They are 
interpolated using a second-order algorithm using the element center 
solutions.  The interpolation scheme also respects the specified boundary 
conditions on boundary nodes. 
 
In the -E H  mathematical formulation, the solution variables on material 
interfaces are specially interpolated, according to the interface conditions.  
Note that, since we do not introduce double nodes on an interface, the nodal 
solution represents an averaged value of neighboring elements, even if the 
accurate solution is discontinuous.  This interpolated interface solution is 
for visualization purpose only.  It is not, nor affects the computational 
solution that is defined at the element centers.  
 
In the automatic nondimensional procedure, as mentioned previously, the 
solution output is presented in dimensional form that is consistent with the 
original input (default option).  However, if required, the output solution 
can also be in dimensionless form according to the nondimensional system 
used in the computation. 
 

1.9 Model preparation steps 
 
An electromagnetic model is a FEM model.  It consists of all steps and 
ingredients that a FEM model requires, such as geometry input, meshing, 
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etc.  In addition to these standard steps in the FEM procedure, ADINA-EM 
requires a few more input data to generate an EM model.  These steps are 
briefly described hereafter. 
 
! Input global control parameters, including module, analysis type, and 

the parameters that govern the convergence; 
 
! For harmonic analysis, input the frequency; 
 
! If the -A φ  formulation is selected, choose the gauge type; 
 
! Generate element groups, including meshing, input of material data sets 

( , , ,...ε µ σ ), electromagnetic sources ( 0 0 0 0, , ,ρ K J I ), and set active 
variables (electric and/or magnetic); 

 
! Apply boundary conditions; 
 
! Apply other available conditions if needed. 
 

1.10 EM and CFD coupled solutions 
 
The electromagnetic solutions can be coupled with CFD solutions using 
ADINA-CFD+EM.   
 
FCBI-C elements must be used in the CFD models. 
 
The electromagnetic and CFD solutions are coupled in element groups 
where both the electromagnetic and CFD solution variables are active.  The 
Maxwell stress and Joule heating rate are calculated using the EM solutions 
and added into the fluid stress and energy sources, respectively, in the CFD 
solutions. 
 
The same mesh is used for the fluid and electromagnetic variables in the 
coupled element groups. 
 
It is a good idea to always prepare the CFD and EM models separately and 
test them before running a coupled solution. 
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To activate the coupling algorithm, in addition to preparing the CFD and 
EM models, one must (1) turn on EM option in ADINA-CFD+EM; (2) 
choose the methods used in calculating the Maxwell stress and Joule 
heating rate; and (3) set both the fluid and electromagnetic variables active 
in the coupled element groups. 
 
Note that the default element group active variables are different in 
ADINA-EM and ADINA-CFD+EM.  So it is better to explicitly set the 
active/inactive variables, irrespective of the default option, in either 
separate or joined models. 
 
There are three options for calculating Maxwell stress/Joule heating rate, 
and different types may be used for stress and heat source calculation. 
 

(1) Zero stress/heat source (default);  
(2) Averaged over one period in harmonic analysis; and 
(3) Directly computed at a given time. 

 
In CFD-EM coupled problems, the fluid analysis type is defined in the CFD 
model (see ADINA-CFD Theory and Modeling Guide for details), 
irrespective of the analysis type used in the EM model.  For example, the 
CFD model can be transient while the EM model can be static or harmonic.  
However, one must be careful if the CFD solution is steady-state and the 
EM solution is harmonic.  Usually, the averaged EM solution is used for 
computing the Maxwell stress and the heat source. 
 
The following steps set up the coupling of the two models. 
 
• Turn on the EM option (the default option is a pure CFD model in 

ADINA-CFD+EM); 
 
• Choose the methods for calculating the Maxwell stress and Joule 

heating rate; 
 
• Activate both the fluid and electromagnetic variables in the coupled 

element groups. 
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Chapter 2 Electromagnetic governing equations 
 

2.1 Original Maxwell equations 
 
The original first-order full Maxwell equations, in general time-varying 
fields, can be written as the Faraday law and the Maxwell-Ampere law 
 

ein∇× =−E K Ω  (2.1) 
 

min∇× = ΩH J  (2.2) 
 
together with the Gauss laws respectively for the electric and magnetic 
fields 
 

*
0 einρ∇ = ΩDi  (2.3) 

 
0 min∇ = ΩBi  (2.4) 

 
where, 
 

* *ε
µ
=
=

D E
B H  (2.5) 

 
and 
 

0

0

m

m e

e
m e

t

t

σ
Ω

Ω Ω

Ω
Ω Ω

⎛ ⎞∂ ⎟⎜= + + ⎟⎜ ⎟⎟⎜⎝ ⎠∂

∂= +
∂

DJ J E

BK K

∩

∩
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From now on, we will neglect the subscripts , etc., that indicate the sub-
domains. 

eΩ

 
In harmonic analysis, since the variables are expressed as ( )Re i tfe ω  as 

shown in Eq.(1.1), t iω∂ ∂ ≡ , we have 
 

*
0

0

i
i
ω
ω

= +
= +

J J D
K K B  (2.6) 

 
In static analysis, Eq.(2.6) becomes 
 

0

0

σ= +
=

J J E
K K  (2.7) 

 

2.2 E-H formulation of second-order Maxwell equations 
 
The second order equation system is obtained by applying the operator 

 to Eqs. (2.1-2.2), ∇×
 

ein∇×∇× =−∇× ΩE K  
 

min∇×∇× =∇× ΩH J  
 
By introducing  
 

*
0p

q
ρ ε=∇ −

=∇
E
H
i
i  

 
the second order equations become 
 

( )( *
0 0 e)p inρ ε∇ + −∇ + × = ΩI E I Ki  (2.8) 
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( ) 0 mq∇ −∇ − × = ΩI H I Ji in  (2.9) 
 
Eqs. (2.3-2.9) form the  mathematical formulation used in ADINA-
EM. 

-E H

 
In electric-only E-H modules ( E03D and all E02D ), Eqs. (2.4) and (2.9) 
are omitted, while in magnetic-only modules ( 0H3D and all 0H2D ), Eqs. 
(2.3) and (2.8) are omitted.  The simplest  modules, in terms of 
number of equations, are the static E02DH and 0H2DE models.  They are 
the Poisson equations governing the scalar variable  and  
respectively. 

-E H

xE xH

 
The second-order equation system is equivalent to the first-order system, if 
proper boundary conditions are used. 
 

2.3 A-φ  potential formulation of electromagnetic equations 
 
Introducing the electric and magnetic potentials 
 

t
φ ∂=−∇ −
∂

=∇×

AE

B A
 (2.10) 

 
and assuming 
 

Ag∇ =Ai  (2.11) 
 
where 
 

*

0
A

Coulomb gauge approximation
g

Lorentz gauge approximation
t
φµε

⎧⎪⎪⎪⎪= ⎨ ∂⎪−⎪⎪ ∂⎪⎩
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Eqs.(2.1) and (2.4) are automatically satisfied (assuming ), and 
Eqs.(2.2-2.3) become, respectively, 

0 =K 0

)

)

)

 
( )( *

0iε φ ω ρ∇ − ∇ + =Ai  (2.12) 
 

( ) (1 *
0 i iµ ωε φ ω−∇× ∇× = − ∇ +A J A  (2.13) 

 
Eqs. (2.11-2.13) form the  mathematical formulation for harmonic 
analysis used in ADINA-EM.  For static analysis, Eqs.(2.12) and (2.13) 
become, respectively, 

-A φ

 
( ) 0ε φ ρ∇ − ∇ =i  (2.12�) 

 
and 
 

( )1
0µ σ φ−∇× ∇× = − ∇A J  (2.13�) 

 
In the electric-only  modules (F03D and all F02D), Eqs. (2.11) and 
(2.13) are omitted, while in the magnetic-only modules (0A3D and all 
0A2D), Eqs. (2.13) and (2.15) are omitted.  The simplest  modules, in 
terms of number of equations, are the static F02DE and 0A2DH models.  
They are Poisson equations governing the scalar variable  and  
respectively. 

-A φ

-A φ

φ xA

 

2.4 Three-dimensional models 
 
All 3D models are associated with 3D meshes in the ( , ,x y z  Cartesian 
coordinate system.  
 
In general, the above-described governing equations are for all models.  In 
particular, they are valid for 3D models. 
 
In the  and  formulations, any one or both of the two variables -E H -A φ
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may be active.  For example, we may want to solve the magnetic field 
intensity only, with a specified eddy-current.  It is clear then that there are 
six 3D modules, namely EH3D (coupled E and H), E03D (E-only), 0H3D 
(H-only), FA3D (coupled A and φ ), F03D ( ) and 0A3D (A-only).  
They are listed in the first part of Table (1.1). 

-onlyφ

 
In 3D models, all vector variables and vector sources are in 3D space. 
 

2.5 Two-dimensional models 
 
All 2D models are associated with 2D meshes in the ( ),y z  plane Cartesian 
coordinate system. 
 
There are two different 2D models: in the electric plane (E-plane) and in 
the magnetic plane (H-plane). 
 
In the E-plane models, the electric field intensity is a vector in the ( ),y z  
plane, while the magnetic field intensity is a scalar along the x-axis.  
Similarly, 2D H-plane modules are defined if the magnetic field intensity is 
a vector and the electric field intensity is a scalar. 
 
This definition is also valid for the  formulation.  Recalling the 
definition of these potentials, in the 2D E-plane modules, the magnetic 
potential is a vector in the (

-A φ

),y z  plane (since the magnetic filed intensity is 
a scalar), and in the 2D H-plane modules, the magnetic potential is a scalar 
along the x-axis (since the magnetic filed intensity is a vector).  Note that 
the electric potential is always a scalar. 
 
There are totally six 2D E-plane modules, namely EH2DE (coupled E and 
H), E02DE (E-only), 0H2DE (H-only), FA2DE (coupled A and φ ), F02DE 
( ) and 0A2DE (A-only).  They are listed in the second part of Table 
(1.1). 

-onlyφ

 
However, there are only four 2D H-plane modules, namely EH2DH 
(coupled E and H), E02DH (E-only), 0H2DH (H-only) and 0A2DH (A-
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only).  It is understandable that modules FA2DH (coupled A and φ ) and 
F02DH do not exist, since a scalar E indicates a known .  They are listed 
in the last part of Table (1.1). 

φ

 
2.5.1 2D E-H formulation in the E-plane 

 
 

In 2D E-plane modules, E is assumed 
vector in the y-z plane, while H is 
assumed a scalar along the x-axis.  In E-
H formulation, we solve for 

.   ( )xH, ,y zE E
 
 

Figure 2.1  Illustration of 2D E-plane modules  

 
As an example, we present the first-order Maxwell equations in harmonic 
analysis 
 

( ) ( )
0

* *

0

yz
x x

y z

EE K i H
y z

E E
y z

ωµ

ε ε
ρ

∂∂ − =− −
∂ ∂

∂ ∂
+ =

∂ ∂

 (2.14) 

 
and 
 

*
0

*
0

x
y y

x
z z

H J i E
z

H J i E
y

ωε

ωε

∂ = +
∂
∂− = +
∂

 (2.15) 

 
As we can see, the source  is a scalar and (  is a vector, 

consistent with the solution variable assumptions. 
0xK )0 0,y zJ J

E
z

xH=H ex

y  
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In modules E02DE, Eq.(2.15) is omitted and in 0H2DE, Eq.(2.14) is 
omitted.  In the two cases, the solution variables become ( )  and  

respectively. 

,y zE E xH

 
2.5.2 2D E-H formulation in the H-plane 

 
 
 

In 2D H-plane modules, E is 
assumed a scalar along the x-axis, 
while H is assumed a vector in the 
y-z plane.  In the E-H formulation, 
we solve for ( ), ,x yE H zH .   

 
 

Figure 2.2  Illustration of 2D H-plane modules  

 
The equations in harmonic analysis are 
 

0

0

x
y y

x
z z

E K i H
z

E K i H
y

ωµ

ωµ

∂ =− −
∂
∂− =− −
∂

 (2.16) 

 
and 
 

( ) ( )

*
0

0

yz
x x

y z

HH J i E
y z

H H
y z

ωε

µ µ

∂∂ − = +
∂ ∂

∂ ∂
+ =

∂ ∂

 (2.17) 

 
Note that the source (  is a vector while  is a scalar.  )0 0,y zK K 0xJ

H
z

y

xE=E ex
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Similarly, Eq.(2.17) is omitted in module E02DH, and Eq.(2.16) is omitted 
in 0H2DH.  In the two cases, the solution variables become  and 

 respectively. 
xE

( ,y zH H )
 

2.5.3 2D A-φ  formulation in the E-plane 

 
Since the electric field intensity is a vector while the magnetic filed 
intensity is a scalar, in this coupled model, we solve ( ) .  The 

governing equations are, for example, for static analysis, 

, ,y zA Aφ

 

0y y z z
φ φε ε

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎟⎜ ⎟⎜⎟− − =⎟⎜ ⎜⎟ ⎟⎟⎜ ⎜⎟⎜ ⎝ ⎠∂ ∂ ∂ ∂⎝ ⎠
ρ  (2.18) 

 
and 
 

( )

( )

1
1 1

0

1
1 1

0

A y y
y

A z z
z

y z
A

g A A
J

y y y z z

g A A J
z y y z z

A A g
y z

µ φµ µ σ

µ φµ µ σ

−
− −

−
− −

⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂⎟ ⎟⎜ ⎜⎟ ⎟− − = −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∂ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎟⎜ ⎟⎜⎟− − = −⎟⎜ ⎜⎟ ⎟⎟⎜ ⎜⎟⎜ ⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠
∂ ∂+ =
∂ ∂

y

z

∂
∂

∂

)

 (2.19) 

 
Note that the source (  is a vector.  In module F02DE, Eq.(2.19) is 

omitted and in 0A2DE, Eq.(2.18) is omitted.  The solution variables are, 
respectively in the two modules, φ  and ( ) . 

0 0,y zJ J

,y zA A
 

2.5.4 2D A-φ  formulation in the H-plane 

 
In this model, since E is a scalar and H is a vector, only a scalar  is the 
unknown solution variable.  The governing equation is  

xA
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1 1
0

x x
x

A A J i
y y z z

φµ µ ωε− −
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎟⎜ ⎟⎜⎟− − = −⎟⎜ ⎜⎟ ⎟⎟⎜ ⎜⎟⎜ ⎝ ⎠∂ ∂ ∂ ∂ ∂⎝ ⎠

*

x  (2.20) 

 
In which, xφ∂ ∂  must be an imposed quantity.  Furthermore, since all the 
terms in the right hand side of Eq.(2.20) must be specified, they can be 
combined into one variable.  So the input of the value of  physically 

represents 
0xJ

*
0xJ iωε φ− ∂ ∂x . 

 

2.6 Selection of mathematical model 
 
The following global parameters control the selection of the mathematical 
model and the analysis process.  
 

• Module module type, EH3D, EH2DE, etc. in ADINA-EM, 
this parameter must be input. 

• Analysis analysis type, static or harmonic.  The default option 
is static.  

 
Module is a 4-5 character string, indicating the mathematical formulation, 
space dimensions, active/inactive solution variables and, for 2D cases, the 
vector plane.  All available modules are given in the Table (1.1). 
 
If the  mathematical formulation is selected in module, the gauge type 
must be input 

-A φ

 
• Gauge gauge type, Coulomb or Lorentz approximation.  The 

default type is Coulomb.  
 
If harmonic is selected in analysis, the frequency and its associated time 
function must be input. 
 

• Frequency , the value of frequency.  In harmonic analysis, this 
parameter must be specified. 
ω
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• Nfrequency time function for  in harmonic analysis.  The 
default is 0 (indicating a constant frequency).  

ω

 
Note that, in harmonic analysis, solution variables, sources and boundary 
condition values include both real and imaginary components.  
Accordingly, the total number of degrees of freedom (DOF) or number of 
equations is double that in static analysis. 
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Chapter 3 Path 
 
Path is a tool in ADINA-EM to ease the input of space-dependent 
directions and space-varying data.  They are referred to in the input of 
sources and boundary conditions.  Currently there are three types of path 
available: point, line and line-extruded. 
 

3.1 Definition and input of path 
 
A path is a data set. 
 
A point-path is a single point in space 1

pr . 
 
A line-path is a series of oriented points 1 2

p p p
n→ → →r r r! .  The values 

of 1
pr  and p

nr  may be coincident, forming a closed path.  A line path is 
generated in the same way as a line mesh.  Line-path should be long 
enough to cover the domain to which it is applied.  The segment length 
should be small enough to represent the path�s curvature, yet large enough 
to maintain computational efficiency.  For example, two points are the best 
choice to define a straight line-path.  For a curved line-path, on the other 
hand, the segment length should be about half the element length. 
 
A line-extruded-path is the surface generated when a line-path is extruded 
infinitely in the specified directions e±d .  Note that the size of the surface 
in the line direction is the same as the line size, and is of infinite length in 
both extruded directions. 



Chapter 3: Path 
 

point-path

line-path line-extruded-path

de

_ de

dl

dl

 
 

Figure 3.1  Illustration of paths  

 
3.2 Direction definition 

 
In this section, various direction types are described.  These directions may 
require path data and be used in input of source and boundary conditions. 
 
Consider a point p in space (as appearing in source set) or on a boundary 
(as appearing in boundary condition set).  There are four basic directions at 
this point: (1) a fixed input direction ; (2) the direction  from a path 
to the point p (in shortest distance); (3) the line direction  of a line-path 
or a line-extruded-path; and (4) the outward normal direction n on the 
boundary.  Together with all the pairs of these directions, we define 
additional directions.  They are types of directions available in ADINA-
EM. 

0d rd

ld

 
The simplest direction is given by the input one 
 

0 0type D= =d d  
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If the point p is on a boundary, n is available, so that two more direction 
types can be defined 
 

0 0
type NR
type D XNR

⎧ =⎪⎪= ⎨⎪ × =⎪⎩

n
d

d n  

 
The type characters are self-explanatory.  For example, D0XNR represents 
D0 �cross� NR.  Note that the above three types of direction do not require 
path. 
 
Associated with a path, we have another three directions 
 

0 0
r

r

r

type DR
type D XDR
type DRXNR

⎧ =⎪⎪⎪⎪= × =⎨⎪⎪⎪ × =⎪⎩

d
d d d

d n
 

 
In case the path is line or line extruded, we can also use the line direction 

 to have additional types.  They are ld
 

0 0
l

l

r l

l

type DL
type D XDL
type DRXDL
type NRXDL

⎧ =⎪⎪⎪⎪ × =⎪⎪= ⎨⎪ × =⎪⎪⎪ × =⎪⎪⎩

d
d d

d
d d
n d

  

 
All the direction ingredients are illustrated in the following figure. 
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line-extruded-path
de

dr

dl

p
n

boundary

line-path

 

ed

ld
p

rd p
n

 = extruded direction 
 = path direction 

  = current point 
 = direction from path to  

  = boundary normal 
 
 
 
 

Figure 3.2  Various ingredients associated with path 

 
Here are some examples. 
 

Example 3.1:  A boundary normal direction is defined as type=NR.  
 

Example 3.2:  A 2D boundary tangential direction is defined as 
 (type=D0XNR) with 0= ×τ d n ( )0 1,0,0=d . 

 
 

n

t

d0

 

Example 3.3:  A 3D boundary 
Cartesian coordinate system can be 
defined by an input d  on the 
boundary surface, normal n  
(type=NR) and tangential  
(type=D0XNR). 

0

=τ 0×d n
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Example 3.4:  Defining a path as 
the center point of a polar 
coordinate system ( , r-
direction is defined as type=DR, 
and  is defined as 
type=D0XDR with 

),r θ

-directionθ
( )0 1,0,0=d . 

 
 

 

r

point-path

θ
d0

y

z

Example 3.5:  Defining a path as 
the z-axis in a cylindrical 
coordinate system ( ) , r-
direction is defined as type=DR, 
z-direction is the path direction 

, and θ  is 

, defined as opposite 
direction of that given by 
type=NRXDL. 

, ,r zθ

(0,l =d -direct

l− ×n d
)0,1 ion

 

rθ

line-path

dl

z

y
x

 

 
 
 
 
 

ADINA R &
n

line-path dl

dl

d

Example 3.6:  Defining the 
Equator as a path on earth, then 
latitude and longitude directions 
are respectively d  and 

 (type=NRXDL).  
Together with the surface normal, 
they form a natural Cartesian 
coordinate system on earth. 

l

= ×d n ld
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3.3 Space-varying function 
 
ADINA-EM allows certain types of space-varying data input.  For an input 
parameter , its space-varying data is defined as S
 

( )S S rλ←  
 
where the function ( )rλ  is associated with a path set and uniquely defined 
as 
 

( )
3

max1

max0

ie
ii

a r if r R
r

if r R
λ =

⎧⎪ ≤⎪⎪= ⎨⎪ >⎪⎪⎩

∑
 (3.4) 

 
where, ,  and ia ie maxR  are input constants, and  is the shortest distance 
from the path to the current point.  Those constants are input in the data set 
where the path is referred.  The default values of them are all zero, except 

 and , so that 

r

1 1a = 21
max 10R += ( ) 1rλ ≡ . 

 
Note that this space function can represent some commonly used 
polynomial bases.  For examples,  etc. 1 2, 1, , ,r r r− −
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Chapter 4 Modeling data in element group 
 
In the input for ADINA-EM, a parameter p  is normally input via its 

multiplier mp  and the time function number  of its associated time 
function 

n
( )nf t , so that its value is ( )m

np p f t= .  This does not mean the 
parameter is time-varying.  The function is introduced for the purpose of 
ease of input for multiple step solutions.  As default,  indicating a 
constant .  Usually,  has the same unit as 

0n=
mp p= mp p  and the values of 

time function is dimensionless. 
 

4.1 Input of material data 
 
The material data set of  and σ  are required in each element group.  
Different data sets may be assigned in different element group. 

,ε µ

 
4.1.1 Constant material 

 
To define a material set of constants data, input them directly 
 

• Epsilon permittivity ε .  No default value is assumed. 
• Mu permeability .  No default value is assumed. µ
• Sigma conductivity σ .  No default value is assumed. 

 
4.1.2 Time-dependent material 

 
To define time-dependent material, in addition to the constants, input the 
numbers of their associated time functions as well. 
 

• Nepsilon associated time function of permittivity. 
• Nmu associated time function of permeability. 
• Nsigma associated time function of conductivity. 
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Accordingly, the material parameters become 
 

( ) ( ), ,Nmm mf t m ε µ σ← =  
 

4.2 Input of sources 
 
A Source is a data set, representing one of the charges,  and  
as defined in the governing equations.  Source sets are applied to element 
groups.  In harmonic analysis, they have both real and imaginary 
components.  A source may be a scalar as , or a vector. 

0 0, ,ρ K J0 0I

0ρ
 

4.2.1 Source in harmonic and static analyses 
 
In harmonic analysis, the source has two components: real and imaginary.  
Recall the definition of them in Eq.(1.1), the coefficients of the basic 
functions  and are real and imaginary components 
respectively.   

cos tω sin tω−

 
Example 4.1:  The real and imaginary components of the electric charge 
density ρ ω  are 0.9 and  
respectively. 

0 0.9 cos 0.1 sint tω= × + × 0.1−

 
Example 4.2:  The real and imaginary components of the electric charge 
density ( ) ( )1 1

0 2 20.1 sin 0.9 cost tπ ω π= × + + × +ρ ω  are 0.1 and 

0.9 respectively, since ( )1
2sin cost tω π+ = ω  and 

( )1
2cos sint tω π ω+ =− . 

 
In static analysis, only the real component is required. 
 

4.2.2 Constant scalar source 
 
To define a constant scalar source , input the following parameters S
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• Type indicates type of source,  or . 0 0, ,ρ K J0 0I
• Component indicates the component of the source, real or 

imaginary.  
• S multiplier of the source component 
• Eg_i the element groups to which the source is applied. 

 
4.2.3 Time-dependent scalar source 

 
A time-varying source is obtained by multiplying the value of a time 
function 
 

( )nS Sf t←  
 
The time function number defines the time function 
 

• Ns source associated time function number.  The default 
value is 0, meaning no time function associated with. 

 
4.2.4 Vector source 

 
A vector source  is a scalar source  multiplied by a direction  S ,S d
 

S=S d  
 
where the direction  is explained in Path section.  The following 
parameters define the direction: 

d

 
• DirTyp direction type 
• DX,DY,DZ a constant direction  0d
• Path path set number 

 
Depending on the direction type,  and/or path may not be required.  See 
details in Chapter 3 on the direction definition. 

0d
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4.2.5 Space-varying source 
 
Except the electric current , all sources can be varying in space.  A path 
must be defined prior to this stage and referred to here, so that the space 
function 

0I

( )rλ  in Eq.(3.4) can be defined (see details in Chapter 3 on the 
Space-varying function). 
 
A space-varying source is obtained by multiplying the value of the function  
 

( )S S rλ←  
 
The following parameters define the shape function ( )rλ  
 

• Path path number. 
• A1,A2,A3 constants  1 2 3, ,a a a
• EN1,EN2,EN3 constants  1 2 3, ,e e e
• Rmax constant maxR . 

 
See detail explanation of these constants in Chapter 3. 
 

4.2.6 Electric current source 
 
An electric current source  specifies the current flow through a conductor 
cross-section.  Unlike other types of sources that can be space-varying, it 
can only be constant or time-varying in the element group. 

0I

 
The electric current source is only available for the 2D magnetic plane 
modules EH2DH, 0H2DH and 0A2DH.  In these modules, some element 
groups represent the modeled conductors, and the area is the conductor�s 
cross-section.  Furthermore, in these modules, is always in the x-
direction. 

0I

 
In addition to the governing equations, a constraint equation is imposed in 
each element group with a current present 
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0
i

iA
dV =∫ J I  

 
where the subscript i indicates the element group, and  is the surface 
occupied by element group i. 

iA

 
4.2.7 Notes on sources 

 
Multiple sources can be input in one element group.  The sources of the 
same type are added up to obtain the final source shown in the governing 
equations.  To be more specific, we write a source in the general form 
 

( ) ( )
jj n j j jj

S f t rλ=∑S d  
 
where the subscript  refers to each source set.  Of course, for scalar 

source, d  is not required and for the electric current source, 

j

( )j jrλ  is 1.0. 

 

4.3 Input of other parameters in element groups 
 
The following parameters must also be input in element groups. 
 

• Electric indicates whether the electric variable is active.  In 
ADINA-EM, the default option follows the global 
parameter module selected.  That is, it is 
active/inactive if the module indicates it is 
active/inactive.  In ADINA-CFD+EM, the default 
option is inactive. 

• Magnetic indicates whether the magnetic variable is active.  In 
ADINA-EM, the default option follows the global 
parameter module selected.  That is, it is 
active/inactive if the module indicates it is 
active/inactive.  In ADINA-CFD+EM, the default 
option is inactive. 
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• EM-Material specifies the electromagnetic material set number.  It 
must be set if either the electric or magnetic variable 
is active. 

• EM-Source specifies the electromagnetic source set numbers.  If 
omitted, zero sources are assumed.  Multiple sources 
of various types can be input. 

 
In ADINA-EM, the default option follows the global parameter module 
selected.  That is, the electromagnetic variables are active/inactive if the 
module indicates they active/inactive. 
 
In ADINA-CFD+EM, however, a pure CFD model is assumed as default.  
The electromagnetic variables are then, by default, inactive.  The active 
fluid variable here means an incompressible or compressible fluid, porous 
medium or even a solid element group.  For solid element groups, only the 
temperature is computed. 
 
If it is necessary in modeling, the fluid variable can be turned inactive.  
Thus, the element group becomes a pure electromagnetic group and no 
CFD-EM coupling is presented in this group. 
 

• Fluid indicates whether the fluid variable is active. 
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Chapter 5 Boundary conditions 
 

5.1 Introduction 
 
To ensure uniqueness and accuracy of electromagnetic field solutions, the 
application of proper boundary conditions is one of the most important 
steps.  In many cases, improper conditions will result in solution divergence 
or an even wrong solution. 
 

5.1.1 General rules of boundary conditions 
 
Although boundary conditions of the coupled two variables are always 
related to each other in physics, it is a good idea to consider them 
separately at the stage of applying boundary conditions.  It is also a good 
idea to separate the two sub-domains where the two variables are defined.  
In other words, apply the conditions of one variable at a time, to the 
boundary of the corresponding sub-domain.  This statement is particularly 
important if the two domains are not coincident, since the boundaries  
and  are at different locations.  The following figure illustrates the sub-
domains and their boundaries.   

eS

mS

 
 
 
                = pure magnetic domain mΩ
               = electric-magnetic joint domain emΩ
                = boundary of magnetic domain mS
                = boundary of electric domain eS
 
 
 

Figure 5.1  Illustration of electric and magnetic boundaries 

Wm

Wem

Sm

Se
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Based on the above explanations, we can describe a general rule for one 
variable: all parts of the boundary must have one and only one condition 
applied.  This statement is true for both electric and magnetic variables.   
 
Next, the boundary conditions of the two variables must be compatible and 
consistent with their governing equations.  This is particularly difficult yet 
important in  mathematical formulation.  Some examples are 
presented here: 

-E H

 
Example 5.1:  E-Normal and H-Parallel conditions, and H-Normal and 
E-Parallel conditions are always consistent. 
 
Example 5.2:  In harmonic analysis, H-Parallel condition is consistent 
with E-Dirichlet or E-Natural condition.  Similarly E-Parallel condition 
is consistent with H-Dirichlet or H-Natural condition. 
 
Example 5.3:  In static analysis, E-Parallel condition is consistent with 
H-Dirichlet or H-Natural condition on a conductor boundary ( ) .  
However, H-Parallel condition is usually not consistent with E-Natural 
condition. 

0σ>

 
Example 5.4:  Natural and Normal conditions are usually not consistent. 
 

In ADINA-EM, a boundary condition set is only applicable for one variable 
.  If a physical condition must be applied for both variables 

it must be applied separately for each of them.  This condition may be 
modeled by the same or different boundary condition sets.  Examples are 
given below: 

( , , orφE H A)

 
Example 5.5:  Impedance condition is for both E and H.  The boundary 
condition must be defined twice, once for E and once for H, with input 
of the same sZ , and applied separately on the same boundary. 

 
Example 5.6:  Perfect E-symmetry condition consists of a zero E-
Parallel condition set and a zero H-normal condition set.  
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Example 5.7:  Perfect H-symmetry condition consists of a zero H-
Parallel condition set and a zero E-normal condition set.  

 
5.1.2 Boundary curvature 

 
The curvature plays an important role in boundary conditions.  The solution 
accuracy depends on it too. 
 
In ADINA-EM, the curvature is approximately computed for each 
boundary where a condition set is applied.  Therefore, it is necessary to 
apply the condition to boundary that has naturally similar curvature.  If a 
boundary consists of different geometries, split it into a few boundary parts 
following the geometries, and then apply the same condition to each of 
them. 
 
 

In the figure (left), boundary conditions 
must be applied separately onto the 
surfaces  and , even the physical 
conditions are the same.  If  is in 
one condition set, the curvature on the 
joint line l  will be incorrectly 
computed.  

1S S

1S S∪
2

2

 

Figure 5.2  Curvatures of abutting boundary surfaces 

 
5.1.3 Default boundary conditions 

 
On a boundary, if no condition is assigned for a variable, a default one will 
be assigned for that variable.  However, since these boundaries are not 
explicitly defined, the curvature cannot be computed correctly.  ADINA-
EM assumes therefore that the boundary is flat.  It is important to be aware 
of that no default conditions should be assumed on curved boundaries.  In 
other words, every curved boundary must be assigned conditions for all 
variables (even if the condition is the same as the default).  
 
The default conditions are listed in the table below. 

S2
S1

l

 

 
ADINA R & D, Inc. 47 



Chapter 5: Boundary conditions 
 

 
Variable Default boundary condition 
E  Natural condition on flat boundary 
H  Natural condition on flat boundary 
A  Zero Parallel condition on flat boundary 
φ  Zero Normal condition on flat boundary 

 
The details of the default conditions are described in separate sections in 
this Chapter. 
 

5.1.4 Boundary conditions in harmonic and static analyses 
 
In harmonic analysis, the input condition has two components: real and 
imaginary.  Recall the definition of them in Eq.(1.1), the coefficients of the 
basic functions cos  and are real and imaginary components 
respectively.   

tω sin tω−

 
Example 5.7:  The real and imaginary components of the value 

 are 0.9 and  respectively. 0.1 sin 0.9 cosv t tω ω= × + × 0.1−
 
Example 5.8:  The real and imaginary components of the value 

 are 9 and  respectively, 

since  and . 

( ) ( )0.1 sin 9 cosv t tω π ω π= × + − × + 0.1

( )sin sint tω π ω+ =− ( )cos cost tω π ω+ =−
 
Example 5.9:  In general case, the real and imaginary components of the 
value v a  are  and 

 respectively. 
( ) ( )sin cost b tω θ ω θ= + + +
θ

sin cosa bθ θ+
sin cosb aθ−

 
In static analysis, only the real component is required. 
 

5.2 Interface condition in E-H formulation 
 
On a material interface, ADINA-EM applies the following interface 
condition in the  mathematical formulation.  The user has no access to -E H
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alter this condition.  The formulae presented here are for informational 
purpose. 
 
 

L RfL fR

interface f

hRhL

 

( ) ( )
( ) ( )

fL fR

fL fR

fL fR

fL fR

d d

µ µ

× = ×
× = ×

=

=

n E n E
n H n H

n E n E

n H n H

i i

i i

 

 
 
 

Figure 5.3  Illustration of interface condition 

 
where,  and  for static and harmonic analyses respectively, the 
subscripts 

d ε= *ε
fL  and fR  indicate the face values of the two contiguous 

media abutting the interface. 
 
Be aware of the difference of the element and nodal solution variables.  The 
computed solution (defined at the element centers) is obtained directly from 
the solution algorithm, so it is accurate in terms of numerical solution.  The 
nodal solution, on the other hand, is interpolated and output for 
visualization purpose only.  It is not, nor affects the computed solution. 
 
In theory, the nodal solution along material interface may be discontinuous.  
Since we do not introduce double nodes, the interface nodal solution 
represents an averaged value of variables on abutting elements.  A special 
algorithm (described below) is used to interpolate for interface nodal 
solution. 
 
The face solution is computed as, by integrating the corresponding 
governing equations properly, 
 

( ),f f f= − × × =R nn R n n R R E Hi  
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where 
 

( )

( ) ( )
( ) ( )

* *
01

2 * *

1
2

1 0 0

1 0 0

1

1

L L R R
f

L R

L L R R
f

L R

f pf

f p

h

ab a

ab b

ε ε ρ
ε ε

µ µ
µ µ

−

−

+ −∆
=

+
+=
+

× × = − × +

× × = − × −

n E n E
n E

n H n Hn H

n n E n E H

n n H n H E

i i
i

i i
i

pf

f pf

 

 
and 
 

( ) ( )
( ) ( )
( )
( )

( ) ( ) ( )

0 1 1
02 2

0 *1 1
02 2

1
4

*1
4

pf L R

pf L R

R L

h i

h i

a i h

b i h

ωµ

ωε

ω µ

ω ε

1
2

1
2

⎡ ⎤= × + +∆ +⎢ ⎥⎣ ⎦
⎡ ⎤= × + −∆ +⎢ ⎥⎣ ⎦

= ∆

= ∆

∆ = −

E n E E K H

H n H H J E

i i i

 

 
where, the subscripts f , and  and L R  indicate the values at the interface, 
and of the two contiguous media abutting the interface, and  is the 
distance from the element center to the interface. 

h

 

5.3 Dirichlet conditions 
 
This condition can be written as 
 

( ), , ,bv v v φ= = E H A  
 
It allows the user to directly prescribe solution variables on boundary.  The 
variable can be a scalar as φ  or a vector. 
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5.3.1 Constant condition for scalar variable 

 
To input a constant scalar condition, specify the following parameters: 
 

• VAR indicates the variable type the condition is applied 
for.  It can be any active variable. 

• Vr, Vi multipliers of the real and imaginary components of 
the variable .  The default values are all zero. v

 
5.3.2 Condition for time-varying scalar variable 

 
A time-varying value is obtained by multiplying a time function 
 

( )nv vf t←  
 
The following integers define the associated time functions  
 

• Nr, Ni the function numbers associated with Vr and Vi 
respectively.  The default values are all zero. 

 
5.3.3 Condition for vector variable 

 
A vector variable  is a scalar v , multiplied by a direction d  v
 

v=v d  
 
where the direction  is explained in the path section.  The following 
parameters define the direction: 

d

 
• DirTyp direction type 
• DX,DY,DZ a constant direction  0d
• Path path set number 

 
Depending on the direction type, a path may not be required.  See details in 
Chapter 3 on the direction definition. 
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5.3.4 Condition for space-varying variable 

 
A path set must be defined prior to this stage.  The set number will be 
referred here, so that the space function ( )rλ  in Eq.(3.4) is defined (see 
details in Chapter 3 on the Space-varying function).  The variable value is 
then multiplied by this factor 
 

( )v v rλ←  
 
The following parameters define the shape function ( )rλ  
 

• Path path number 
• A1,A2,A3 constants  1 2 3, ,a a a
• EN1,EN2,EN3 constants  1 2 3, ,e e e
• Rmax constant maxR  

 
See Chapter 3 for detail explanation of these constants. 
 

5.3.5 Similar conditions 
 
By proper defining a path and the constants , in the definition of ,i ia e ( )rλ  
shown in Eq.(3.4), this condition can represent a large number of 
conditions.  For example, a balloon condition where the solution decreases 
as  can be realized by the input of a point-path (center point) and 

. 

kr−

1 11,a e= =−k
 

5.4 Normal conditions 
 
This condition is applicable to the solution variables  and φ .  It 
allows the user to prescribe solution variables in the normal direction of the 
boundary. 

, ,E H A
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5.4.1 Constant normal condition 

 
A constant normal condition, when applied for a vector variable, is defined 
as 
 

( ), ,v= =n v v E H Ai  
 
In the  mathematical formulation, an E-normal condition applied to 
the electric potential naturally implies, for static analysis 

-A φ

 

n v
t

φ ∂−∇ − =
∂
A

 

 
To input this condition, specify the following parameters: 
 

• VAR indicates the variable type the condition is applied 
for.  It can be any active variable. 

• Vr, Vi multipliers of the real and imaginary components of 
the variable .  The default values are all zero. v

 
5.4.2 Time-varying normal condition 

 
See section 5.3.2. for the input of time functions ( )nf t . 
 

5.4.3 Space-varying normal condition 
 
See section 5.3.4. for the input of space-varying function ( )rλ . 
 

5.4.4 Similar conditions 
 
Together with the parallel condition, we can have symmetry conditions of 
coupled variables.  For examples, a perfect E-symmetry condition is a 
combination of  for H and  for E, and a perfect H-0=n Hi × =n E 0
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symmetry condition is a combination of  for E and  for 
H. 

0=n Ei × =n H 0

 

5.5 Parallel conditions 
 
This condition is applicable to the solution variables  and .  It 
allows the user to prescribe solution variables in the tangential directions to 
the boundary. 

,E H A

 
5.5.1 Constant parallel condition 

 
In a constant parallel condition, a boundary variable �parallel� component 
and an associated direction are specified 
 

( ), ,v× = =n v d v E H A  
 
To input this condition, specify the following parameters: 
 

• VAR indicates the variable the condition is applied for.  It 
can be any active variable. 

• Vr, Vi multipliers of the real and imaginary components of 
the variable .  The default values are all zero. v

• DirTyp direction type 
• DX,DY,DZ a constant direction  0d
• Path path set number 

 
Depending on the direction type, a path may not be required.  See details in 
Chapter 3 on the direction definition. 
 
Note that the �parallel� component of  is not the tangential component of 

, the latter one being precisely defined as . 
v

v ( )− × ×n n v
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n
v

vnX-nX
vnX

vn.n 
 

The figure (left) illustrates the 
mathematical and geometric 
ingredients associated with parallel 
boundary condition. 

 
 
 
 

5.5.2 Time-varying parallel condition 
 
See section 5.3.2. for the input of time functions ( )nf t . 
 

5.5.3 Space-varying normal condition 
 
See section 5.3.4. for the input of space-varying function ( )rλ . 
 

5.5.4 Similar conditions 
 
Zero parallel E/H are also called perfect E/H plane condition. 
 
Together with the parallel condition, we can have symmetry conditions of 
coupled variables.  For examples, a perfect E-symmetry condition is a 
combination of  for H and  for E, and a perfect H-
symmetry condition is a combination of  for E and  for 
H. 

0=n Hi × =n E 0
0=n Ei × =n H 0

 

5.6 Natural conditions 
 
This condition is applicable to the solution variables E  and .  In this 
condition, ADINA-EM solves the related first order equation system on the 
boundary.  Specifically, the E-Natural condition is equivalent to Eqs. (2.1-
2.2) and the H-Natural condition is equivalent to Eqs. (2.3-2.4). 

H
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No parameters are required in this condition. 
 
The Natural condition is usually used together with the Dirichlet or 
Parallel condition in harmonic analysis.  In static analysis, the H-Natural 
condition is usually used together with the E-Dirichlet or E-Parallel 
condition to a conductor boundary ( ). 0σ>
 

5.7 Impedance conditions 
 

5.7.1 Condition definition 
 
This condition is applicable to the solution variables  and  in 
harmonic analysis.  It allows the user to prescribe a known impedance to 
the solution variable. 

,E H A

 
In the E-H mathematical formulation, this condition is expressed as 
 

(sZ× =− × ×n E n n H)  (5.1) 
 
where sZ  is the surface impedance (a complex number).  Eq.(5.1) is 

equivalent to (obtained by applying  to it) 1
sZ− ×n

 
(1

sZ−× = × ×n H n n E)  (5.2) 
 
Eqs.(5.1) and (5.2) are used respectively for H- and E-boundary equations. 
 
In terms of physics, the impedance condition with the same sZ  is used for 
both E and H.  In ADINA-EM, each boundary condition set is only for one 
variable.  Therefore, if both E and H are active, the same impedance 
boundary conditions (meaning the same sZ ) must be applied twice, once 
for E and once for H. 
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By substituting Eq.(2.11) into Eq.(5.1), the impedance condition for the 
magnetic potential  is obtained A
 

( ) (( )1
sZ iµ φ ω−× ∇× =− × × ∇ +n A n n )A  

 
The input parameters are 
 

• VAR indicates the variable the condition is applied for.  It 
can be E, H or A. 

• Vr, Vi multipliers of the real and imaginary components of 
the impedance sZ . Non-zero value must be input. 

• Nr, Ni the function numbers associated with Vr and Vi 
respectively.  The default values are all zero. 

 
5.7.2 Similar conditions 

 
The impedance condition originated from the assumption that the tangential 
component of the boundary solution variable decays as 
 

( ) ( )( )( )1 , ,i
Be δ− += = × ×

x n

v v v n n E H A
i

 
 
where  is skin depth.  Therefore, it also covers some other practical 
conditions. 

δ

 
One of them is the Finite conductivity condition that is used to model 

imperfect conductors.  In this case, ( )
1
2δ ω µσ
−

=  and the impedance is 

given by ( )( ) ( )( )
1
211 1sZ i iδσ ω µ σ−= + = + . 

 
Another one is the Lumped RLC boundary condition that is used to model a 
lumped resistor, inductor etc.  The user should calculate the �impedance� 
based on the values of R, L and C.  For a series device, 
 

( )1s L CZ R i b b⎡ ⎤= + −⎣ ⎦  
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and for a parallel device, 
 

( )
( )

1 1

21 1

1

1
L C

s

L C

i b b
Z R

b b

− −

− −

+ −
=

+ −
 

 
where 
 

( )1
L

C

b L R
b C

ω
ω

=
= R  
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Chapter 6 Solution of linear equation 
 

6.1 Introduction 
 
The linear electromagnetic equation system can be written as 
 

AX B=  (6.1) 
 
where x  consists of all solution variables at the element centers, B  
consists of terms from sources and boundary conditions, and  is the 
coefficient matrix. 

A

 
In order to obtain the solution efficiently, we apply to system Eq.(6.1), a 
general pre-conditioner  that is close to  but occupies much less 
memory.  We then use an iterative solver for the modified equation.  The 
final algorithm becomes 

*A A

 
( ) (1

* 0,1,2,...,k kR A B AX k k−= − = )max  (6.2) 
 
where kx  and  are the approximate solution and residual, respectively, 
after the k-th iteration, and  is the maximum number of iterations 
allowed.  The solution is obtained if .  The next sections describe on 
how the iteration algorithm is controlled in ADINA-EM. 

kr

maxk
0kr →

 

6.2 Input of control parameters 
 
In order to properly control the solution convergence, the following global 
control parameters must be input 
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• Solver the solver used for inversing the pre-conditioning 
matrix .  Either SPARSE solver or AMG solver 
can be selected.  The default is SPARSE. 

*A

• Tolerance tolerance , used for control solution iteration.  The 
default value is . 

ε
610−

• MaxIte allowed maximum iteration number . maxk
• Vcycle maximum number of V-cycles used in AMG solver. 

The AMG solver returns  either the iteration 
converged or maximum number of V-cycles has been 
reached. 

1
*A−

 
The functioning of the tolerance  can be roughly explained as the 
tolerance in convergence criterion 

ε

 
kB AX

B
ε

−
≤  

 
However, we have used some other criteria too, with additional tolerances 
that are all proportional to .  The detail is given in the next section. ε
 

6.3 Convergence criteria 
 
The convergence criteria are explained in a few steps. 
 
Firstly, we define the criteria bounds (the superscript f e v= , standing 
for equation/variable respectively), 
 

  minimum relative tolerance   min
fε ε=

  maximum relative tolerance  { }2 1
max minmin 10 ,10f fε ε −=

  minimum absolute tolerance   16
min 10f −=E

  maximum absolute tolerance { }max

min

8
max minmin ,10

f

f
f f ε

ε
−=E E  
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Secondly, we define the residuals and scales for each variable (the subscript 
g e m= , standing for electric/magnetic variables respectively), 
 

  absolute e-residue    
1kg kgE R=  

  absolute v-residue   ( )1 1kg kg k gV X X −= −  

  e-scale    { }{ }maxmax max , e
kg igi k

E E
≤

= E  

  v-scale    { }{ }max1
max max , v

kg igi k
V X

≤
= E  

 
The overall residuals are defined as 
 

  absolute e-residue     { }max ,k e ke mE Eλ λ= kmE

kmV  absolute v-residue    { }max ,k e ke mV Vλ λ=

  relative e-residue   { }max ,k ke ke kme E E E= kmE  

  relative v-residue   { }max ,k ke ke kmv V V V= kmV  

  relative e-residue increment { }10 4
maxk k i ki

e e e− − −≤ <
∆ = − i  

  relative v-residue increment { }10 4
maxk k i ki

v v v− − −≤ <
∆ = − i  

 
in which, the constant parameters  and  are automatically chosen 
parameters based on the model, so that the terms are unit-consistent. 

eλ mλ

 
Thirdly, we define the criteria as follows 
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Then, with the formulae defined, the linear equation system Eq.(6.2) is 
considered converged if any one of the following conditions is satisfied 
 

(1) both criteria [ ]  are satisfied [ ]andke

(2) both criteria [ ] [ ]andkE kV

0

1

]
]
]kv

 are satisfied 

(3) either criterion [ ]  is satisfied. [ ]0 ore E

(4) either criterion [ ]  is satisfied. [ ]1 orv V

(5) both criteria [ ]  are satisfied [min maxandk ke v

(6) both criteria [ ]  are satisfied [min maxandk kv e

(7) both criteria [ ]  are satisfied. [andke∆ ∆
 
The iteration history is printed in the format 
 
EM-IT  ek vk  dek  dvk  Eke  Vke  EBe  VBe  Ekm  Vkm  EBm  VBm 
 
where 
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  EM-IT   = k , iteration number 
  ek, vk   =  ,k ke v
  dek, dvk   =  ,k ke v∆ ∆
  Eke, Vke, Ebe, VBe = , , ,ke ke ke keE V E V  

  Ekm, Vkm, EBm, VBm = , , ,km km km kmE V E V  
 

6.4 Selection of solver 
 
The most stable solver is sparse matrix solver.  However, this solver is not 
suitable for very large problems that require large amounts of memory and 
CPU. 
 
The second choice is to select AMG solver with default setting of V-
cycle=1.  This solver uses much less memory and converges faster for 
stable problems.  It may have difficulty in convergence or even diverge for 
high-frequency problems or the problems with poor meshes. 
 
Note that the high-frequency problems are characterized by the 
nondimensional number ( 2)xµε ω∆ .  This number should always be less 
than 1.  When it is close to 1, numerical instability may occur.  In this case, 
the mesh should be refined. 
 
An improvement to the default AMG solver is to increase the number of V-
cycles.  We refer this cycle as the inner iteration.  A large V-cycle number  
(say 999) allows the inner iteration converge so that the outer iteration may 
behave like that using the sparse solver.  However, attention should be 
made because too much inner iteration may slow down the overall 
convergence too. 
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Chapter 7 EM solutions coupled with CFD solutions 
 
In ADINA-CFD+EM, electromagnetic solutions can be coupled with CFD 
solutions. 
 
The coupling occurs within the element groups for which both fluid and 
electromagnetic variables are active.  In these groups, the Maxwell stress 
and Joule heating rate are calculated and added to the fluid stress and the 
energy source, respectively, in the CFD solution procedure.  
 
In the EM-CFD coupled model, FCBI-C elements must be used in the 
ADINA-CFD models. 
 
The EM solution can be applied to both transient and steady-state CFD 
models, irrespective of the analysis type in the electromagnetic model, as 
decided by the user.  For example, if the EM model is static analysis, then 
the electromagnetic force and heat source are the same at every time step in 
the CFD model (if the sources and boundary conditions are constant).  But 
one should be careful if the CFD model is steady and the EM model is 
harmonic.  Usually the averaged EM force should be selected, unless the 
force at the phase represented at that particular time is the EM force used 
for the CFD solution. 
 

7.1 Lorentz force and Maxwell stress 
 
The Lorentz body force  per unit volume can be expressed in terms of 
the Maxwell stress 

em
bf

 
em em em
b b=∇ +f Ti T  

 
where, the Maxwell stress  and  are emT em

bT
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In the E-H formulation, the variables are directly applicable in Eq.(7.1).  In 
the -A φ  formulation, the field intensities are calculated using Eq.(2.10) 
and then used in Eq.(7.1). 
 
In the element groups with only active electric and CFD variables, mT  and 
em
bT  are omitted.  Similarly, if only magnetic and CFD variables are 

coupled, eT  and em
bT  are omitted.  In ADINA-CFD solid element groups, 

since no fluid velocity and pressure variables are active, the Maxwell stress 
is omitted. 
 

7.2 Joule heating rate 
 
The heat source generated by electromagnetic variables is calculated as, 
according to the Joule�s law 
 

1em
b c cq σ−= J Ji  (7.2) 

 
In element groups with electric variable inactive, 0=J J  is used in 
Eq.(7.2). 
 

7.3 Direct-computed and averaged stress and heat source 
 
In harmonic analysis, the Maxwell stress and Joule heating rate are time 
varying, so they can be directly computed at any specified time.  According 
to the definition in Eq.(1.1), 
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and 
 

( ) ( )1 Re Reem i t i t
b c cq e eω ωσ−= J Ji  

 
On the other hand, for steady or even transient CFD problems, the time-
averaged values (over one period) can be used for many problems 
 

( )
2

1
2 0

f fd t
π

π ω= ∫  
 
By use of the time-averaging method, Eqs.(7.1) and (7.2) become, 
respectively, 
 

( ) ( )
( ) ( )

1 1
2 4

1 1
2 4

em e m

e
r r i i r r i i

m
r r i i r r i i

em
b

= +
= + − +

= + − +

=

T T T
T D E D E D E D E I

T B H B H B H B H I

T 0

i i

i i  

 
and 
 

( )11
2

em
b c c c cr r i iq σ−= +J J J Ji i  

 

7.4 Input of coupling parameters 
 
The coupled model must be analyzed using ADINA-CFD+EM that 
contains both CFD and EM programs. 
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To activate the coupling algorithm, the user must firstly turn on the EM 
option by selecting �EM-MODEL=EM� in the master command or its 
corresponding dialog box. 
 
The user then select the methods for calculating the Maxwell stress and 
Joule heating rate, by input of the following parameters 
 

• Force indicates how the Maxwell stress is computed.  It can 
be no force, averaged or directed.  The default is no 
force.  

• Energy indicates how the Joule heating rate is computed.  It 
can be no source, averaged or directed.  The default 
is no source.  

 
We note that, although unusual, different methods can be used for the stress 
and heat source computations. 
 
Finally, the user has to set both the fluid and electromagnetic variables 
active in the coupled element groups.  Note that pure CFD or EM element 
groups are allowed. 
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