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1.1 Objective of this manual

1. Introduction

1.1 Objective of this manual

The objective of this manual is to give a concise summary and
guide for study of the theoretical basis of the finite element
computer program ADINA Solids & Structures (ADINA in short).
The program ADINA is used for displacement and stress analysis.

Since a large number of analysis options is available in this
computer program, a user might well be initially overwhelmed with
the different analysis choices and the theoretical bases of the
computer program. A significant number of publications referred
to in the text (books, papers and reports) describe in detail the finite
element analysis procedures used in the program. However, this
literature is very comprehensive and frequently provides more
detail than the user needs to consult for the effective use of
ADINA. Furthermore, it is important that a user can identify easily
which publication should be studied if more information is desired
on a specific analysis option.

The intent with this Theory and Modeling Guide is

e To provide a document that summarizes the methods and
assumptions used in the computer program ADINA

e To provide specific references that describe the finite
element procedures in more detail.

Hence, this manual has been compiled to provide a bridge
between the actual practical use of the ADINA system and the
theory documented in various publications. Much reference is
made to the book Finite Element Procedures (ref. KIB) and to
other publications but we endeavored to be specific when
referencing these publications so as to help you to find the relevant
information.

ref. K. J. Bathe, Finite Element Procedures, 2" ed.,
Cambridge, MA: Klaus-Jiirgen Bathe, 2014.

Following this introductory chapter, Chapter 2 describes the
elements available in ADINA. The formulations used for these
elements have been proven to be reliable and efficient in linear,
large displacement, and large strain analyses. Chapter 3 describes
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the material models available in ADINA. Chapter 4 describes the
different contact formulations and provides modeling tips for
contact problems. Loads, boundary conditions and constraints are
addressed in Chapter 5. Eigenvalue type analyses such as
linearized buckling and frequency analyses are described in
Chapter 6. Chapter 7 provides the formulations used for static and
implicit dynamic analysis, while Chapter 8 deals with explicit
dynamic analysis. Several frequency domain analysis tools are
detailed in Chapter 9. Fracture mechanics features are described in
Chapter 10. Additional capabilities such as substructures, cyclic
symmetry, initial conditions, parallel processing and restarts are
discussed in Chapter 11. Chapter 12 describes the heat transfer
capabilities in the ADINA program. Finally, some post-processing
considerations are provided in Chapter 13.

We intend to update this report as we continue our work on the
ADINA system. If you have any suggestions regarding the
material discussed in this manual, we would be glad to hear from
you.

1.2 Supported computers and operating systems

Table 1.2-1 shows all supported computers/operating systems.

2 ADINA Structures — Theory and Modeling Guide
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1.3 Units

When using the ADINA system, it is important to enter all
physical quantities (lengths, forces, masses, times, etc.) using a
consistent set of units. For example, when working with the SI
system of units, enter lengths in meters, forces in Newtons, masses
in kg, times in seconds. When working with other systems of units,
all mass and mass-related units must be consistent with the length,
force and time units. For example, in the USCS system (USCS is
an abbreviation for the U.S. Customary System), when the length
unit is inches, the force unit is pound and the time unit is second,
the mass unit is Ib-sec’/in, not 1b.

Rotational degrees of freedom are always expressed in radians.
Most angular input parameters are expressed in degrees.

Table 1.3-1 gives some of the more commonly used units
needed for ADINA input.

ADINAR & D, Inc.
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Table 1.2-1: Supported computers/operating systems

Platform Operating system Fortran compiler
Linux 2.6.18 and higher, glibc Intel ifort 11.1
x86 64 2.5 and higher,
gee 4.1.2 and higher
Linux 2.6.32 and higher, glibc Intel ifort 14.0.4
86 64, 2.12 and higher,
AVX gce 4.4.6 and higher
extensions
Windows Windows XP, Vista, 7, 8, | Intel Visual Fortran
x86_64 8.1, 10 11
Windows Windows 7, 8, 8.1, 10 Intel Visual Fortran
x86_64, 14
AVX
extensions

1) All program versions are 64-bit, using the x86_64 architecture. The Intel 64 and
AMD Opteron implementations of the x86_64 architecture are supported.
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Table 1.3-1: Units

SI SI (mm) USCS (inch)  USCS (kip)
length meter (m) millimeter inch (in) inch (in)
(mm)
force Newton (N) Newton (N)  pound (Ib) kip (1000 1b)
time second (s) second (s) second (sec)  second (sec)
mass kilogram (kg) ~ N-s*/mm Ib-sec’/in kip-sec’/in
= N-s’/m (note 1)
pressure, Pascal (Pa) = N/mm? psi = Ib/in® ksi = kip/in®
stress, N/m?
Young’s
modulus,
etc.
density kg/m’ N-s*/mm’* Ib-sec?/in* kip-sec”/in*

(note 2)

1) A body that weighs 1 Ib has a mass of 1/386.1 = 0.002590 Ib-sec’/in.
2) A body with weight density 1 Ib/in’ has a density of 0.002590 Ib-sec’/in".

1.4 ADINA System documentation

At the time of printing of this manual, the following documents
are available with the ADINA System:

Installation Notes
Describes the installation of the ADINA System on your
computer. Depending on the platform, the appropriate
installation notes in pdf format can be printed or downloaded
from http://www.adina.com

ADINA Handbook
Written as a task-oriented desktop reference, the ADINA
handbook helps users to quickly and effectively leverage
ADINA's advanced geometric modeling, meshing, and
visualization features.

ADINAR & D, Inc.



Chapter 1: Introduction

ADINA User Interface Command Reference Manual
Volume I: ADINA Solids & Structures Model Definition
Volume II: ADINA Thermal Model Definition

Volume III: ADINA CFD & FSI Model Definition
Volume IV: ADINA EM Model Definition

Volume V: Display Processing

These documents describe the AUI command language. You
use the AUI command language to write batch files for the AUIL.

ADINA Primer

Tutorial for the ADINA User Interface, presenting a sequence
of worked examples which progressively instruct you how to
effectively use the ADINA System.

Theory and Modeling Guide

Volume I: ADINA Solids & Structures

Volume II: ADINA Thermal

Volume I11: ADINA CFD & FSI

Volume IV: ADINA EM

Provides a concise summary and guide for the theoretical basis
of the analysis programs. The manuals also provide references
to other publications which contain further information, but the

detail contained in the manuals is usually sufficient for effective
understanding and use of the programs.

ADINA Verification Manual

Presents solutions to problems which verify and demonstrate the
usage of the ADINA System. Input files for these problems are
distributed along with the ADINA System programs.
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ADINA-Nastran Interface Manual

Describes the ADINA-AUI Nastran Interface. This guide is
available as a pdf file. The Nastran Case Control Commands,
Parameters, and Bulk Data Entries that are supported by the
AUI are documented.

TRANSOR for I-DEAS Users Guide

Describes the interface between the ADINA System and NX
I-deas. This guide is available in html format and is directly
accessible from the TRANSOR interface within [-deas. The use
of TRANSOR for I-deas to perform pre-/post-processing and
ADINA analysis within the I-deas environment, is described.

TRANSOR for Femap Users Guide

Describes the interface between the ADINA System and Femap.
This guide is available as a pdf file. The use of TRANSOR for
Femap to perform pre-/post-processing and ADINA analysis
within the Femap environment, is described.

ADINA System 9.6 Release Notes

Provides a description of the new and modified features of the
ADINA System 9.6.
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2.1 Truss and cable elements

2. Elements

2.1 Truss and cable elements

o This chapter outlines the theory behind the different element
classes, and also provides details on how to use the elements in
modeling. This includes the materials that can be used with each
element type, their applicability to large displacement and large
strain problems, their numerical integration, etc.

2.1.1 General considerations
e The truss elements can be employed as 2-node, 3-node and

4-node elements, or as a 1-node ring element. Fig. 2.1-1 shows the
elements available in ADINA.

foe=

(u, v, w) are global displacement
degrees of freedom (DOF)

(a) 2-, 3- and 4-node elements

i .
Vi

One DOF per node

B
Y

(b) 1-node ring element

ref. KUB
Sections
5.3.1,
6.3.3

Figure 2.1-1: Truss elements available in ADINA
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Chapter 2: Elements

¢ Note that the only force transmitted by the truss element is the
longitudinal force as illustrated in Fig. 2.1-2. This force is constant
in the 2-node truss and the ring element, but can vary in the 3- and
4-node truss (cable) elements.

bl

Z
Y
X
area A
c
Stress constant over
P cross-sectional area

(a) 2-to 4-node elements

Young's modulus E
7 area A

o (hoop stress)

Hoop strain = v/R Elastic stiffness = EA/R (one radian)
Circumferential force P = cA

(b) Ring element
Figure 2.1-2: Stresses and forces in truss elements
e The ring element is formulated for one radian of the structure
(as is the axisymmetric 2-D solid element, see Section 2.2.1), and

this formulation is illustrated in Fig. 2.1-2.

e The local node numbering and natural coordinate system for the
2-node, 3-node and 4-node truss elements are shown in Fig. 2.1-3.
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2.1 Truss and cable elements

r =0 p
r=-1 r=+1 r=-1 ' r=+1
1 2 1 3 2
2-node element 3-node element
=-1/3 ; r=1/3
r=-1 r=1

1 3 4 2

4-node element

Figure 2.1-3: Local node numbering; natural coordinate system
2.1.2 Material models and formulations

e The truss element can be used with the following material
models: elastic-isotropic, nonlinear-elastic, plastic-bilinear,
plastic-multilinear, plastic-cyclic, thermo-isotropic, thermo-
plastic, creep, plastic-creep, multilinear-plastic-creep, creep-
variable, plastic-creep-variable, multilinear-plastic-creep-
variable, viscoelastic, shape-memory alloy, user-coded.

e The truss element can be used with the small or large
displacement formulations. In the small displacement formulation,
the displacements and strains are assumed infinitesimally small. In
the large displacement formulation, the displacements and rotations
can be very large. In all cases, the cross-sectional area of the
element is assumed to remain unchanged, and the strain is equal to
the longitudinal displacement divided by the original length.

All of the material models in the above list can be used with
either formulation. The use of a linear material with the small
displacement formulation corresponds to a linear formulation, and
the use of a nonlinear material with the small displacement
formulation corresponds to a materially-nonlinear-only
formulation.

2.1.3 Numerical integration

e The integration point labeling of the truss (cable) elements is
given in Fig. 2.1-4.

ADINA R & D, Inc. 11



Chapter 2: Elements

r T

D R R
1 1 2
One-point integration Two-point integration
r |—£
F@—éL@—O *-B—R—B—-0
1 2 3 1 2 3 4
Three-point integration Four-point integration

Figure 2.1-4: Integration point locations

e Note that when the material is temperature-independent, the 2-
node truss and ring elements require only 1-point Gauss numerical
integration for an exact evaluation of the stiffness matrix, because
the force is constant in the element. However, 2-point Gauss
numerical integration may be appropriate when a temperature-
dependent material is used because, due to a varying temperature,
the material properties can vary along the length of an element.

2.1.4 Mass matrices

e The consistent mass matrix is calculated using Eq. (4.25) in ref.
KIJB, p. 165, which accurately computes the consistent mass
distribution.

The lumped mass matrix is formed by dividing the element’s mass

4,
among its nodes. The mass assigned to each node is M (flj ,

where M = total mass, L = total element length, ¢, = fraction of
the total element length associated with element node i (i.e., for the

L L
2-node truss element, £, = ) and /, = EX and for the 4-node

L L
truss ¢, =/, 3 and (/, =1/, 25). The element has no

rotational mass.

12
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2.1 Truss and cable elements

2.1.5 Element output

e Each element outputs, at its integration points, the following
information to the porthole file, based on the material model. This
information is accessible in the AUI using the given variable
names.

Elastic-isotropic, nonlinear-elastic: FORCE-R, STRESS-RR,
STRAIN-RR

Elastic-isotropic with thermal effects: FORCE-R, STRESS-RR,
STRAIN-RR, THERMAL STRAIN,
ELEMENT_TEMPERATURE

Thermo-isotropic: FORCE-R, STRESS-RR, STRAIN-RR,
ELEMENT_TEMPERATURE

Plastic-bilinear, plastic-multilinear: PLASTIC FLAG,
FORCE-R, STRESS-RR, STRAIN-RR,
PLASTIC_STRAIN—RR

SMA: EFFECTIVE STRESS, STRESS-RR,

ACCUM EFF TRANSF STRAIN, AUSTENITE FRACTION,
DETWINNED MARTENSITE FRACTION, STRAIN-RR,
THERMAL STRAIN-RR, TRANSFORMATION STRAIN-RR,
TWINNED MARTENSITE FRACTION, SMA FLAG

Thermo-plastic, creep, plastic-creep, multilinear-plastic-creep:
PLASTIC FLAG, NUMBER OF SUBINCREMENTS,
FORCE-R, STRESS-RR, STRAIN-RR,
ACCUMULATED EFFECTIVE PLASTIC STRAIN,
PLASTIC STRAIN-RR, CREEP_ STRAIN-RR,
THERMAL STRAIN-RR, ELEMENT TEMPERATURE,

FE EFFECTIVE STRESS, YIELD STRESS,
EFFECTIVE CREEP STRAIN

Viscoelastic: PLASTIC FLAG, STRESS-RR, STRAIN-RR,
THERMAL STRAIN-RR, ELEMENT TEMPERATURE

User-coded: STRESS-RR, STRAIN-
RR, USER_VARIABLE I, INT USER VARIABLE I

ADINA R & D, Inc.
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Chapter 2: Elements

See Section 13.1.1 for the definitions of those variables that are not
self-explanatory.

2.1.6 Recommendations on use of elements

e Of'the 2-, 3- and 4-node truss elements, the 2-node element is
usually most effective and can be used in modeling truss structures,
cable structures, linear springs (the spring stiffness & is equal to
EA/L where L is the length of the element) and nonlinear elastic
gap elements (see Section 3.3).

e The 3- and 4-node elements are employed to model cables and
steel reinforcement in reinforced concrete structures that are
modeled with higher-order continuum or shell elements. In this
case, the 3- and 4-node truss elements are compatible with the
continuum or shell elements.

e The internal nodes for the 3-node and 4-node truss elements are
usually best placed at the mid- and third-points, respectively, unless
a specific predictive capability of the elements is required (see ref.
KIJB, Examples 5.2 and 5.17, pp. 348 and 370).

e The 1-node ring element is formulated with a single degree of
freedom, corresponding to a displacement in the Y direction.
Therefore the 1-node ring element has no stiffness or mass in the Z
direction. In addtition, if a skew system is assigned to the ring
element node, the skew system is ignored by the ring element.

2.1.7 Rebar elements

e The AUI can generate truss elements that are connected to the
2D or 3D solid elements in which the truss elements lie. There are
several separate cases, corresponding to the type of the truss
element group and the type of the solid element group in which the
truss elements lie.

Axisymmetric truss elements, axisymmetric solid elements: The
AUI can connect axisymmetric truss elements that exist in the
model prior to data file generation to the axisymmetric 2D elements
in which the truss elements lie. The AUI does this connection

14
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2.1 Truss and cable elements

during data file generation as follows. For each axisymmetric truss
element that lies in an axisymmetric 2D element, constraint
equations are defined between the axisymmetric truss element node
and the three closest corner nodes of the 2D element.

Axisymmetric truss element Constraint equation

”~
N

®© poigl

ZAxisymmetric 2D solid element

(a) Before data file generation (b) After data file generation

Figure 2.1-5: Rebar in axisymmetric truss, 2D solid elements

3D truss elements, planar 2D solid elements: The AUI can
generate 3D truss elements and then connect the truss elements to
the planar 2D elements in which the truss elements lie. The AUI
does this during data file generation as follows. For each rebar
line, the AUI finds the intersections of the rebar line and the sides
of the 2D elements. The AUI then generates nodes at these
intersections and generates truss elements that connect the
successive nodes. The AUI also defines constraint equations
between the generated nodes and the corner nodes of the 2D
elements.

Rebar line Truss element
\ \ \
] /\ \_/ | __— 4 ,\4/ s\\\\%‘ < -
/ J /
/ Planar 2D solid element Constraint equation
(a) Before data file generation (b) After data file generation

Figure 2.1-6: Rebar in 3D truss, planar 2D solid elements

3D truss elements, 3D solid elements: The AUI can generate 3D
truss elements and then connect the truss elements to the 3D
elements in which the truss elements lie. The AUI does this during
data file generation as follows. For each rebar line, the AUI finds
the intersections of the rebar line and the faces of the 3D elements.

ADINA R & D, Inc.
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Chapter 2: Elements

The AUI then generates nodes at these intersections and generates
truss elements that connect the successive nodes. The AUI also
defines constraint equations between the generated nodes and three
closest corner nodes of the 3D element faces.

Rebar line

Constraint equation

Truss element

(a) Before data file generation (b) After data file generation

Figure 2.1-7: Rebar in 3D truss, 3D solid elements

e The rebar option is intended for use with lower-order solid
elements (that is, the solid elements should not have mid-side
nodes).

e For 3D truss element generation, if the rebar lines are curved,
you should specify enough subdivisions on the rebar lines so that
the distance between subdivisions is less than the solid element
size. The more subdivisions that are on the rebar lines, the more
accurately the AUI will compute the intersections of the rebar lines
and the solid element sides or faces.

e To request the connection:

AUI: Click the Define Element Group icon to open the Define
Element Group window. In this window, check that the Element
Type has been set to “Truss”. Click on the Advanced tab. Select
the “Use as Rebars” option from the Element Option drop-down,
and then fill in the Rebar-Line Label box below the Element
Option drop-down box.

Command Line: Set OPTION=REBAR in the EGROUP TRUSS
command. For 3D truss elements, use the REBAR-LINE command
and RB-LINE parameter of the EGROUP TRUSS command to
define the rebar lines.

16
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2.2 Two-dimensional solid elements

2.2 Two-dimensional solid elements

2.2.1 General considerations

ref. KUB
Sections 5.3.1
and 5.3.2

o The following kinematic assumptions are available for two-
dimensional elements in ADINA: plane stress, plane strain,
axisymmetric , generalized plane strain and 3-D plane stress
(membrane). Figures 2.2-1 and 2.2-2 show some typical 2-D
elements and the assumptions used in the formulations.

[} ¢ | L
- Recommendation:
“h WL > 1/10

(a) 8- & 9-node elements

ANAWINFAN

(b) 3-&4-nodeelements  (c) 6- & 7-node triangles

Figure 2.2-1: 2-D solid elements

e The plane stress, plane strain, generalized plane strain, and
axisymmetric elements can be defined in the X-Y, Y-Z or X-Z
planes. The axisymmetric element can have x or y or z as the
rotating axis and does not need to be located in the +X, +Y or +Z
half planes.

e The 3-D plane stress element can lie in general three-
dimensional space. The element can be initially flat or can be
curved. This element is sometimes called a membrane element.

e The axisymmetric element represents one radian of the
structure. The stiffness, mass and loads are defined accordingly.
Hence, when this element is combined with other elements, or
when concentrated loads are defined, these must also refer to one
radian, see ref. KIB, Examples 5.9 and 5.10, p. 356.

ADINA R & D, Inc.
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Chapter 2: Elements

VA Ox — 0 Exx = 0
I V/
X y Gxy = 0 ny = O
Oxz = 0 X y YXZ = 0
a) Plane stress element b) Plane strain element
iny-zplane iny-zplane
Exx = Uy €, = function of (y, z),

(linear analysis) see text

Z z
Yxy =0 Yxy =0
x> Yxz =0 x> Yxz =0
¢) Axisymmetric element d) Generalized plane strain
iny-zplane iny-zplane
Z Ox =0 (Stresses computed
A Gy =0 inelementlocal
X Y 6. = coordinatesystem)

e) 3-D plane stress (membrane) element
Figure 2.2-2: Basic assumptions in 2-D analysis

e The plane strain element represents a unit thickness of the
structure. The stiffness, mass and loads are defined accordingly.

e The plane stress element is either a constant thickness element
or a varying thickness element. In a varying thickness element, the
thickness at each element local node can be different.

e The generalized plane strain element is intended to be used to
model beam-like structures which have a constant cross-section and
are submitted to a loading independent of the axial coordinate of
the beam. In such cases, the deformations of the structure are
independent of the axial coordinate of the structure. This situation
is shown in Fig. 2.2-7(d).

The solution is valid only for the section of the structure that are
far enough from the ends; otherwise local 3-D effects usually
render the generalized plane strain assumptions invalid.

e The elements usually used in ADINA are isoparametric
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2.2 Two-dimensional solid elements

displacement-based finite elements, and their formulation is
described in detail in ref. KJB, Section 5.3.

e The basic finite element assumptions are, see Fig. 2.2-3, for the
coordinates

q

= ihiyi s Z :zhizi
i1

i=1

for the displacements in plane stress, plane strain, and
axisymmetric elements

o
h

i=1 i=1
for the displacements in generalized plane strain elements

u=xU"-x(y-y,)®. +x(z—z,)P}

L 1
V= Zhv+ P03 w:;:hiwi—gxz@f

where
h{r,s) = interpolation function corresponding to node i
(r,s) = isoparametric coordinates
g = number of element nodes, 3 < ¢ <9, excluding
auxiliary node in generalized plane strain
¥, z; = nodal point coordinates
v;, w; = nodal point displacements

U?,®7,0 = degrees of freedom of the auxiliary node

Xp, Vp» Zp = coordinates of the auxiliary node

o For generalized plane strain the elements are assumed to have a
constant curvature in the X-direction, and to lie between two planes
that can move relative to each other. One plane must be the X =0
plane where the elements must be located. The location of the other
plane is specified via the auxiliary point which must lie on that
plane.

An axial force and bending moments can be applied to the
auxiliary point, and these forces/moments can be used to model the

ADINA R & D, Inc.
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Chapter 2: Elements

corresponding forces/moments acting onto the beam structure.

Z)

Y
Y4

a) Plane strain, plane stress, and axisymmetric elements

Section of the structure

(must lie in Y-Z plane) ®
%)A

The coordinates of the auxiliary node Ny are (xp, Yp, Zp)-

The element has unit length in the X direction.

b) Generalized plane strain element

Figure 2.2-3: Conventions used for the nodal coordinates and
displacements of the 2-D solid element

The displacements in the element can be interpreted as the sum

20 ADINA Structures — Theory and Modeling Guide



2.2 Two-dimensional solid elements

of the 2-D in-plane displacements (due to in-plane forces and
boundary conditions) plus additional displacements which come
from the out-of-plane rigid body motions of the cross-section (due
to the axial force and bending moments applied to the structure).

From the displacement interpolations, the out-of-plane normal
strain is seen to be

£, =U"—(y—y,)P! +(z—z,)®}

e In addition to the displacement-based elements, special mixed-
interpolated elements are also available, in which the displacements
and pressure are interpolated separately. These elements are
effective and should be preferred in the analysis of incompressible
media and inelastic materials (specifically for materials in which
Poisson's ratio is close to 0.5, for rubber-like materials and for
elasto-plastic materials). The mixed formulation is only available
for the plane strain, axisymmetric and generalized plane strain
elements. It is not available (and not needed) for plane stress and
3-D plane stress (membrane) elements.

e The mixed formulation is the default setting for the materials in
which either the entire response is incompressible (for example, the
rubber material models), or in which the inelastic response is
incompressible (for example, the plastic and creep material
models).

e Table 2.2-1 shows the default number of pressure degrees of
freedom for each 2-D element type. For more details on the mixed
interpolation of pressure and displacement degrees of freedom for
3-D solids, see Section 4.4.3, p. 276, and Tables 4.6 and 4.7,
pp-292-295 in ref. KJB.
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Table 2.2-1: Mixed formulation settings for 2-D solid elements

2-D solid element N;?;E:irzf];i gf;};ﬂt
3-node triangle 1"
4-node quadrilateral (4/1) 1
6-node triangle (6/3) 3
7-node triangle (7/3) 3
8-node quadrilateral (8/3) 3
9-node quadrilateral (9/3) 3

" To use this element, the user must use the displacement-
based element with 1-point integration.

e The default number of pressure degrees of freedom shown in
Table 2.2-1 is optimal for most applications. However, it can be
modified if needed. In some problems where rubber is subjected to
severe compression, numerical instability can be avoided by using
4 pressure degrees of freedom for the 8 and 9-node quadrilaterals.

e The following choices for the number of pressure degrees of
freedom are valid; 1 for a constant pressure, 3 for additional linear
pressure terms, 4 for an additional bilinear pressure term (involving
rs), and 6 for additional quadratic pressure terms (involving r°, s%).

e In general, using too many pressure degrees of freedom leads to
volumetric locking, while using too few pressure degrees of
freedom leads to spurious zero-energy modes. See Sections 4.4.2
and 4.5 in ref. KJB for more details.

ref.  T. Sussman and K.J. Bathe, "A Finite Element
Formulation for Nonlinear Incompressible Elastic and

Inelastic Analysis," J. Computers and Structures, Vol.
26, No. 1/2, pp. 357-409, 1987.

¢ In addition to the displacement-based and mixed-interpolated
elements, ADINA also includes the possibility of including
incompatible modes in the formulation of the 4-node element.

22
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2.2 Two-dimensional solid elements

4-node elements,

no incompatible modes\&% 134.5 Hz
4-node elements,\ﬁm

incompatible modes
8-node elements — |

Plane strain conditions,
beam length =5 m
beam height =0.5 m

Within this element, additional displacement degrees of freedom
are introduced. These additional displacement degrees of freedom
are not associated with nodes; therefore the condition of
displacement compatibility between adjacent elements is not
satisfied in general. However the additional displacement degrees
of freedom increase the flexibility of the element, especially in
bending situations.

Figure 2.2-4 shows a situation in which the incompatible modes
elements give an improved solution.

For theoretical considerations, see reference KJB, Section 4.4.1.
Note that these elements are formulated to pass the patch test. Also
note that element distortions deteriorate the element performance.

The incompatible modes feature cannot be used in conjunction
with the mixed-interpolation formulation.

The incompatible modes feature is only available for the 4-node
element; in particular note that the incompatible modes feature is
not available for the 3-node triangular element.

First bending mode Second bending mode

W 358.0 Hz

W 294.0 Hz
W 279.9 Hz

First axial mode

108.6 Hz

/M107.1 Hz

Third bending mode

beam width=1.0 m

E=2.07x 1011 N/m?2
v=0.29
p = 7800 kg/m3

MLy easne
’m 566.3 Hz
AL Ty sisons

LITTIITTI] s406H2
LITIITITTTT s405Hz
FIEEiesst s37omz

Figure 2.2-4: Frequency analysis of a free-free beam
with three types of finite elements

e The elements can be used with 3 to 9 nodes. The interpolation
functions are defined in ref. KJB, Fig. 5.4, p. 344.

ref. KUB d
Section 5.3.2

Triangular elements are formed in ADINA by assigning the

ADINA R & D, Inc.
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Chapter 2: Elements

same global node number to all the nodes located on one side. It is
recommended that this "collapsed" side be the one with local end
nodes 1 and 4.

The triangular elements can be of different types:

» A collapsed 6-node triangular element with the strain

1
singularity T (see Chapter 10)
r

1
» A collapsed 8-node element with the strain singularity —
r

(see Chapter 10)
» A collapsed 6-node spatially isotropic triangular element
» A collapsed 7-node spatially isotropic triangular element

These element types are described on pp. 369-370 of ref. KIB. The
strain singularities are obtained by collapsing one side of an 8-node
rectangular element and not correcting the interpolation functions.

The 6-node spatially isotropic triangle is obtained by correcting
the interpolation functions of the collapsed 8-node element. It then
uses the same interpolation functions for each of the 3 corner nodes
and for each of the midside nodes. Note that when the corrections
to the interpolation functions are employed, only the element side
with end nodes 1 and 4 can be collapsed.

The 3-node triangular element is obtained by collapsing one
side of the 4-node element. This element exhibits the constant
strain conditions (except that the hoop strain in axisymmetric
analysis varies over the element) but is usually not effective.

e Linear and nonlinear fracture mechanics analysis of stationary
or propagating cracks can be performed with two-dimensional
elements (see Chapter 10).

2.2.2 Material models and formulations
e The 2-D elements can be used with the following material

models: elastic-isotropic, elastic-orthotropic (with or without
wrinkling), nonlinear-elastic, plastic-bilinear, plastic-
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2.2 Two-dimensional solid elements

multilinear, Drucker-Prager, Mroz-bilinear, plastic-
orthotropic, thermo-isotropic, thermo-orthotropic, thermo-
plastic, piezoelectric, creep, plastic-creep, multilinear-plastic-
creep, concrete, curve-description, Ogden, Mooney-Rivlin,
Arruda-Boyce, hyper-foam, Sussman-Bathe, creep-variable,
plastic-creep-variable, multilinear-plastic-creep-variable,
Gurson-plastic, Cam-clay, Mohr-Coulomb, viscoelastic, creep
irradiation, gasket, shape-memory alloy, plastic-cyclic, user-
coded.

¢ In plane strain, generalized plane strain and axisymmetric
analysis, the mixed interpolation formulation should be used (and
is the default) whenever using the plastic-bilinear, plastic-
multilinear, Mroz- bilinear, plastic-orthotropic, thermo-plastic,
creep, plastic-creep, multilinear-plastic-creep, Ogden, Mooney-
Rivlin, Arruda-Boyce, Sussman-Bathe, creep-variable, plastic-
creep-variable, multilinear-plastic-creep-variable, plastic-cyclic or
viscoelastic material models.

In addition the mixed interpolation formulation should be
used (but is not the default) when using the elastic-isotropic
material and the Poisson’s ratio is close to 0.5.

¢ The two-dimensional elements can be used with a small
displacement/small strain, large displacement/small strain or a
large displacement/large strain formulation.

The small displacement/small strain and large
displacement/small strain formulations can be used with any
material model, except for the Ogden, Mooney-Rivlin, Arruda-
Boyce, hyper-foam and Sussman-Bathe material models. The use
of a linear material with the small displacement/
small strain formulation corresponds to a linear formulation, and
the use of a nonlinear material with the small displacement/small
strain formulation corresponds to a materially-nonlinear-only
formulation. The program uses the TL (total Lagrangian)
formulation when you choose a large displacement/small strain
formulation.

The large displacement/large strain formulations can be used
with the plastic-bilinear, plastic-multilinear, Mroz-bilinear, plastic-
orthotropic, thermo-plastic, creep, plastic-creep, multilinear-plastic-
creep, creep-variable, plastic-creep-variable, multilinear-plastic-
creep-variable, viscoelastic, plastic-cyclic and user-coded material

ADINA R & D, Inc.
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ref. KUIB
Sections 6.2 and
6.3.4

ref. KUIB
Section 6.8.1

models. The program uses either a ULH or ULJ formulation when
you choose a large displacement/large strain formulation with these
material models.

A large displacement/large strain formulation is used with the
Ogden, Mooney-Rivlin, Arruda-Boyce, hyper-foam and Sussman-
Bathe material models. The program uses a TL (total Lagrangian)
formulation in this case.

e The basic continuum mechanics formulations are described in
ref. KIB, pp. 497-537, and the finite element discretization is given
in ref. KJB pp. 538-542, 549-555.

e Note that all these formulations can be used together in a single
finite element mesh. If the elements are initially compatible, then
they will remain compatible throughout the complete analysis.

2.2.3 Numerical integration

ref. KUB
Sections 5.5.3,
5.5.4and 5.5.5

e For the calculation of all element matrices and vectors,
numerical Gauss integration is used. You can use from 2x2 to 6x6
Gauss integration. The numbering convention and the location of
the integration points are given in Fig. 2.2-5 for 2x2 and 3x3 Gauss
integration. The convention used for higher orders is analogous.
The default Gauss integration orders for rectangular elements are
2x2 for 4-node elements and 3x3 otherwise.

26
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2.2 Two-dimensional solid elements

INS=3
INS=2

b) Triangular elements

Figure 2.2-5: Integration point positions for 2-D solid elements

¢ For the 8-node rectangular element, the use of 2x2 Gauss
integration corresponds to a slight under-integration and one
spurious zero energy mode is present. In practice, this particular
kinematic mode usually does not present any problem in linear
analysis (except in the analysis of one-element cases, see ref. KIB,
Fig. 5.40, p. 472) and thus 2x2 Gauss integration can be employed
with caution for the 8-node elements.
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ref. KUB
Section 6.8.4

¢ The 3-node, 6-node and 7-node triangular elements are spatially
isotropic with respect to integration point locations and
interpolation functions (see Figure 2.2-5).

o The integration order used for triangular elements depends upon
the integration order used for rectangular elements as follows.
When rectangular elements use 2x2 Gauss integration, triangular
elements use 4-point Gauss integration; when rectangular elements
use 3x3 Gauss integration, triangular elements use 7-point Gauss
integration; when rectangular elements use 4x4 Gauss integration
or higher, triangular elements use 13-point Gauss integration.

However, for 3-node triangular elements, when the
axisymmetric subtype is not used, then 1-point Gauss integration is
always used.

¢ Note that in geometrically nonlinear analysis, the spatial
positions of the Gauss integration points change continuously as
the element undergoes deformations, but throughout the response
the same material particles are at the integration points.

e The order of numerical integration in the large displacement
elastic analysis is usually best chosen to be equal to the order used
in linear elastic analysis. Hence, the program default values should
usually be employed. However, in inelastic analysis, a higher order
integration should be used when the elements are used to model
thin structures (see Fig. 6.25, p. 638, ref. KIB), or large
deformations (large strains) are anticipated.

2.2.4 Mass matrices

e The consistent mass matrix is always calculated using either
3x3 Gauss integration for rectangular elements or 7-point Gauss
integration for triangular elements.

e The lumped mass matrix of an element is formed by dividing
the element’s mass M equally among its n nodes. Hence, the mass
assigned to each node is M /n. No special distributory concepts
are employed to distinguish between corner and midside nodes, or
to account for element distortion.

e Note that n is the number of distinct non-repeated nodes in the

28
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2.2 Two-dimensional solid elements

element. Hence, when a quad element side is collapsed to a single
node, the total mass of the element is equally distributed among the
final nodes of the triangular configuration.

2.2.5 Element output

You can request that ADINA either print or save stresses or forces.

Stresses: Each element outputs, at its integration points, the
following information to the porthole file, based on the material
model. This information is accessible in the AUI using the given
variable names.

Notice that for the orthotropic and piezoelectric material
models, you can request that the stresses and strains be saved in the
material coordinate system.

For the 3-D plane stress (membrane) elements, results with
indices YY, ZZ, etc are saved in the element local coordinate
system (see Figure 2.2-6).

Z The local y direction
is determined by local
v nodes 1 and 2.
V4
X x

The local z direction

lies in the plane defined
by local nodes 1, 2, 3,

and is perpendicular to the
local y direction.

Figure 2.2-6: Local coordinate system for 3-D plane stress
(membrane) element

Elastic-isotropic, elastic-orthotropic (no wrinkling, results saved in
global system): STRESS (XYZ), STRAIN(XYZ)

Elastic-isotropic with thermal effects: STRESS (XYZ),
STRAIN (XYZ), THERMAL_STRAIN,
ELEMENT TEMPERATURE

ADINA R & D, Inc.
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Elastic-orthotropic (no wrinkling, results saved in material system):
STRESS (ABC), STRAIN (ABC)

Thermo-isotropic, thermo-orthotropic (results saved in global
system): STRESS (XYZ), STRAIN(XYZ),
THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE

Piezoelectric (results saved in global system): STRESS (XYZ) ,
STRAIN(XYZ), ELECTRIC FIELD-Y,

ELECTRIC FIELD-Z,

ELECTRIC DISPLACEMENT FIELD-Y,

ELECTRIC DISPLACEMENT FIELD-Z.

Piezoelectric (results saved in material system) :

STRESS (ABC), STRAIN (ABC), ELECTRIC_FIELD—A,
ELECTRIC FIELD-B,
ELECTRIC_DISPLACEMENT_FIELD—A,
ELECTRIC_DISPLACEMENT_FIELD—B.

Curve description: CRACK_FLAG, STRESS (XYZ),

STRAIN (XYZ), FE_SIGMA—PI, FE_SIGMA—PZ,

FE SIGMA-P1 ANGLE, GRAVITY IN-SITU PRESSURE,
VOLUMETRIC_STRAIN

Concrete: CRACK_FLAG, STRESS(XYZ), STRAIN(XYZ),
FE SIGMA-Pl, FE SIGMA-P2, FE SIGMA-P1 ANGLE,
FATILURE STRESS, ELEMENT TEMPERATURE,

THERMAL STRAIN (XYZ)

Small strains: Plastic-bilinear, plastic-multilinear, Mroz-bilinear:
PLASTIC_FLAG, STRESS (XYZ), STRAIN (XYZ),
PLASTIC_STRAIN(XYZ), FE EFFECTIVE STRESS,
YIELD STRESS,
ACCUMULATED_EFFECTIVE_PLASTIC_STRAIN,
THERMAL_STRAIN(XYZ), ELEMENT TEMPERATURE

SMA: EFFECTIVE STRESS, STRESS-XX, STRESS-YY,
STRESS-YZ, STRESS-7Z7Z,

ACCUM EFF TRANSEF STRAIN, AUSTENITE FRACTION,
DETWINNED MARTENSITE FRACTION, STRAIN-XX,
STRAIN-YY, STRAIN-YZ, STRAIN-ZZ,

THERMAL STRAIN-XX, THERMAL STRAIN-YY,
THERMAL STRAIN-ZZ, TRANSFORMATION STRAIN-XX,
TRANSFORMATION STRAIN-YY,
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2.2 Two-dimensional solid elements

TRANSFORMATION STRAIN-YZ,
TRANSFORMATION STRAIN-Z7Z,
TWINNED MARTENSITE FRACTION, SMA FLAG

Large strains: Plastic-bilinear, plastic-multilinear, Mroz-bilinear:
PLASTIC FLAG, STRESS(XYZ),

DEFORMATION GRADIENT (XYZ),

FE EFFECTIVE STRESS, YIELD STRESS,
ACCUMULATED EFFECTIVE PLASTIC STRAIN,
THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE

Small strains: Anand Model

STRESS (XYZ), STRAIN(XYZ),
VISCOPLASTIC_STRAIN (XYZ),

FE EFFECTIVE STRESS,
ACCUMULATED_EFFECTIVE_VISCOPLASTIC_STRAIN,
EFFECTIVE_VISCOPLASTIC_STRAIN_RATE,
THERMAL_STRAIN(XYZ), ELEMENT TEMPERATURE

Large strains: Anand Model

STRESS (XYZ), DEFORMATION GRADIENT (XYZ),

FE EFFECTIVE STRESS,
ACCUMULATED EFFECTIVE VISCOPLASTIC STRAIN,
EFFECTIVE VISCOPLASTIC STRAIN RATE,
THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE

Plastic-orthotropic (results saved in global system):

PLASTIC FLAG, STRESS(XYZ), STRAIN(XYZ),
PLASTIC STRAIN(XYZ), HILL EFFECTIVE STRESS,
YIELD STRESS,
ACCUMULATED EFFECTIVE PLASTIC STRAIN,
THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE

Plastic-orthotropic (results saved in material system):
PLASTIC FLAG, STRESS(ABC), STRAIN(ABC),
PLASTIC STRAIN(ABC), HILL EFFECTIVE STRESS,
YIELD STRESS,

ACCUMULATED EFFECTIVE PLASTIC STRAIN,
THERMAL STRAIN(ABC), ELEMENT TEMPERATURE
Small strains: Drucker-Prager: PLASTIC FLAG,

PLASTIC FLAG-2, STRESS (XYZ), STRAIN(XYZ),
PLASTIC STRAIN(XYZ), CAP LOCATION,

YIELD FUNCTION
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Large strains: Drucker-Prager: PLASTIC FLAG,
PLASTIC FLAG-2, STRESS (XYZ),

DEFORMATION GRADIENT (XYZ), CAP LOCATION,
YIELD FUNCTION

Small strains: Thermo-plastic, creep, plastic-creep, multilinear-
plastic-creep, creep-variable, plastic-creep-variable, multilinear-
plastic-creep-variable: PLASTIC FLAG,
NUMBER OF SUBINCREMENTS, STRESS (XYZ),
STRAIN(XYZ), PLASTIC STRAIN(XYZ),

CREEP STRAIN (XYZ), THERMAL STRAIN(XYZ),
ELEMENT TEMPERATURE,
ACCUMULATED EFFECTIVE PLASTIC STRAIN,

FE EFFECTIVE STRESS, YIELD STRESS,
EFFECTIVE CREEP STRAIN

Large strains: Thermo-plastic, creep, plastic-creep, multilinear-
plastic-creep, creep-variable, plastic-creep-variable, multilinear-
plastic-creep-variable: PLASTIC FLAG,
NUMBER OF SUBINCREMENTS, STRESS (XYZ),
DEFORMATION GRADIENT (XYZ),

FE EFFECTIVE STRESS, YIELD STRESS,
ACCUMULATED EFFECTIVE PLASTIC STRAIN,
THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE,
EFFECTIVE CREEP STRAIN

Mooney-Rivlin , Ogden, Arruda-Boyce, hyper-foam (strains
saved): STRESS (XYZ), STRAIN(XYZ)

Mooney-Rivlin, Ogden, Arruda-Boyce, hyper-foam (deformation
gradients saved): STRESS (XYZ),
DEFORMATION GRADIENT (XYZ) .

Small strains: User-supplied: STRESS (XYZ), STRAIN(XYZ),
USER VARIABLE I

Large strains: User-supplied: STRESS (XYZ) ,
DEFORMATION GRADIENT (XYZ), USER VARIABLE I

Elastic-orthotropic (wrinkling, results saved in global system):
WRINKLE FLAG, STRESS (XYZ), STRAIN(XYZ)
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Elastic-orthotropic (wrinkling, results saved in material system):
WRINKLE FLAG, STRESS(ABC), STRAIN (ABC)

Thermo-orthotropic (results saved in material system):
STRESS (ABC), STRAIN (ABC),
THERMAL STRAIN (ABC), ELEMENT TEMPERATURE

Small strains: Gurson plastic: PLASTIC FLAG,

STRESS (XYZ), STRAIN(XYZ),

PLASTIC STRAIN(XYZ), FE EFFECTIVE STRESS,
YIELD STRESS,
ACCUMULATED EFFECTIVE PLASTIC STRAIN,
THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE,
VOID VOLUME FRACTION

Large strains: Gurson plastic: PLASTIC FLAG,

STRESS (XYZ), DEFORMATION GRADIENT (XYZ),
FE EFFECTIVE STRESS, YIELD STRESS,
ACCUMULATED EFFECTIVE PLASTIC STRAIN,
THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE,
VOID VOLUME FRACTION

Small strains, Cam-clay: PLASTIC FLAG, STRESS (XYZ),
STRAIN (XYZ), PLASTIC_STRAIN(XYZ),
YIELD_SURFACE_DIAMETER_P, YIELD_FUNCTION,
MEAN_STRESS, DISTORTIONAL_STRESS,
VOLUMETRIC_STRAIN, VOID_RATIO,

EFFECTIVE STRESS RATIO, SPECIFIC VOLUME

Large strains, Cam-clay: PLASTIC FLAG, STRESS (XYZ),
DEFORMATION_GRADIENT(XYZ),
YIELD_SURFACE_DIAMETER_P, YIELD_FUNCTION,
MEAN_STRESS, DISTORTIONAL_STRESS,
VOLUMETRIC_STRAIN, VOID_RATIO,

EFFECTIVE STRESS RATIO, SPECIFIC VOLUME

Mohr-Coulomb: PLASTIC FLAG, STRESS (XYZ),
STRAIN (XYZ), PLASTIC_STRAIN(XYZ),
YIELD_FUNCTION

Small strains, viscoelastic: STRESS (XYZ), STRAIN (XYZ),
THERMAL_STRAIN(XYZ), ELEMENT_TEMPERATURE
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Large strains, viscoelastic: STRESS (XYZ) ,
DEFORMATION_GRADIENT(XYZ),
THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE

Small strains: creep-irradiation: STRESS (XYZ) ,
STRAIN (XYZ), PLASTIC_STRAIN(XYZ),
CREEP_STRAIN(XYZ), THERMAL_STRAIN(XYZ),
ELEMENT_TEMPERATURE,
ACCUMULATED_EFFECTIVE_PLASTIC_STRAIN,
EFFECTIVE STRESS, YIELD STRESS,
EFFECTIVE_CREEP_STRAIN,
IRRADIATION_STRAIN(XYZ).

Large strains: creep-irradiation: STRESS (XYZ) ,
DEFORMATION GRADIENT (XYZ),

THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE,
ACCUMULATED EFFECTIVE PLASTIC STRAIN,
EFFECTIVE STRESS, YIELD STRESS,
EFFECTIVE CREEP STRAIN,
IRRADIATION STRAIN (XYZ) .

In the above lists,

STRESS (XYZ) = STRESS-YY, STRESS-ZZ, STRESS-
YZ, STRESS-XX

STRESS (ABC) = STRESS-AA, STRESS-BB, STRESS-
AB, STRESS-CC

with similar definitions for the other abbreviations used above. But
the variable DEFORMATION GRADIENT (XYZ) is interpreted as
follows:

DEFORMATION GRADIENT (XYZ) =
DEFORMATION GRADIENT-YY,
DEFORMATION GRADIENT-ZZ,
DEFORMATION GRADIENT-XX,
DEFORMATION GRADIENT-YZ,
DEFORMATION GRADIENT-ZY

Also note that you can request stretches instead of deformation
gradients, and in this case STRETCH (XYZ) replaces
DEFORMATION GRADIENT (XYZ) in the above lists.

34 ADINA Structures — Theory and Modeling Guide



2.2 Two-dimensional solid elements

ref. KUIB
Section 4.2.1,
6.6.3

See Section 13.1.1 for the definitions of those variables that are
not self-explanatory.

e In ADINA, the stresses are calculated using the strains at the
point of interest. Hence, they are not spatially extrapolated or
smoothed. However, the AUI can be employed to calculate
smoothed stresses (see Section 13.1.3).

e You can also request that strain energy densities be output along
with the stresses.

Variable categories
The variables are grouped into the following categories.

Stress (no saving, basic saving, all saving), default all
saving

Strain (no saving, all saving), default no saving
Inelastic (no saving, basic saving, all saving), default basic
saving

Thermal (no saving, basic saving, all saving), default basic
saving

Energy (no saving, all saving), default no saving
Electromagnetic (no saving, all saving), default no saving

User-coded variables (no saving, all saving), default no
saving

Misc (no saving, all saving), default no saving

Notice that some categories allow "basic" saving, namely only
those results that are commonly used in post-processing are saved.

e The intent of the variable category feature is to decrease the
number of results written to the porthole file. In particular notice

that not all results are saved to the porthole file by default.

e The RESULTS-ELEMENT command is used to control the

ADINA R & D, Inc.
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saving of each variable category. To set the saving for a given 2D
solid element group in the model, use the command RESULTS-
ELEMENT ... GROUP=(group number). To set the saving for all
remaining element groups in the model, use the command
RESULTS-ELEMENT ... GROUP=0.

o The category saving feature can be turned off using the
command PORTHOLE ... RESULTS-ELEMENT=NO. When
PORTHOLE ... RESULTS-ELEMENT=NO, all results are saved at
each element integration point. The default is PORTHOLE ...
RESULTS-ELEMENT=YES, so that the category saving feature is
used by default.

¢ In order to save all results, either set each category in
RESULTS-ELEMENT to "all", or use the command PORTHOLE
... RESULTS-ELEMENT=NO.

Nodal forces: The nodal forces which correspond to the element
stresses can also be requested in ADINA. This force vector is
calculated in a linear analysis using

F =jBTrdV
14

where B is the element strain displacement matrix, and T is the
stress vector. The integration is performed over the volume of the
element; see Example 5.11 in ref. KJB, pp. 358-359.

The nodal forces are accessible in the AUI using the variable
names NODAL FORCE-X, NODAL FORCE-Y,
NODAL FORCE-Z.

o The same relation is used for the element force calculation in a
nonlinear analysis, except that updated quantities are used in the
integration.

2.2.6 Recommendations on use of elements

e The 9-node element is usually most effective (except in explicit
dynamic analysis).
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e The 8-node and 9-node elements can be employed for analysis
of thick structures and solids, such as (see Fig. 2.2-7):

Thick cylinders (axisymmetric idealization)

Dams (plane strain idealization)

Membrane sheets (plane stress idealization)

Turbine blades (generalized plane strain idealization)

vV vyYyy

and for thin structures, such as (see Fig. 2.2-8):

» Plates and shells (axisymmetric idealization)
» Long plates (plane strain idealization)
» Beams (plane stress idealization)

e The 8- and 9-node elements are usually most effective if the
element is rectangular (non-distorted).

e The 4-node rectangular and 3-node triangular elements should
only be used in analyses when bending effects are not significant.
If the 4-node rectangular elements are used when bending effects
are significant, consider the use of the incompatible modes element
(see above).

e When the structure to be modeled is axisymmetric and has a
dimension which is very small compared with the others, e.g., thin
plates and shells, the use of axisymmetric shell elements is more
effective (see Section 2.5).

¢ Geometrically nonlinear incompatible modes elements with
large aspect ratio should not be used, because spurious modes may
be present in the finite element solution.

ADINA R & D, Inc.
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|~ Axis of revolution
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a) Thick cylinder (axisymmetric idealization)

b) Long dam (plane strain idealization)

L7

O
|

t

f

c) Sheet in membrane action (plane stress idealization)

Figure 2.2-7: Use of 2-D solid element for
thick structures and solids
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2.2 Two-dimensional solid elements

d) Turbine blade (generalized plane strain idealization)

Figure 2.2-7: (continued)
1 radian 1 radian

T &

Mt

Circular plate Spherical shell

a) Axisymmetric idealizations

L

b) Plane strain idealization (long plate) ¢) Plane stress idealization (cantilever)

Figure 2.2-8: Use of 2-D solid element for thin structures
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2.3 Three-dimensional solid elements
2.3.1 General considerations

o The three-dimensional (3-D) solid element is a variable 4- to
20-node or a 21- or 27-node isoparametric element applicable to
general 3-D analysis. Some typical 3-D solid elements are shown
in Fig. 2.3-1.

(a) 20-,21- & 27-node elements

1 v

(b) 8-node elements

ANYANTAY

(c) 4-, 10- and 11-node tetrahedral elements

Figure 2.3-1: Some 3-D solid elements

e The 3-D solid element should be employed in analyses in which
the three-dimensional state of stress (or strain) is required or in
which special stress/strain conditions, such as those given in
Section 2.2, do not exist (see Figs. 2.3-2 and 2.3-3).

40
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2.3: Three-dimensional solid elements

) A

(d) 6-and 15-node prisms

(e) Elements for transition zones

(f) 5-, 13-, and 14-pyramid elements
() 5, 13-node and 14-node pyramid elements
Figure 2.3-1 (continued)

ref kg ® The elements usually used are isoparametric displacement-based
Section 5.3
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finite elements, and the formulation of the elements used in
ADINA 1is described in ref. KJB, Ch. 5.

e The basic finite element assumptions are (see Fig. 2.3-4):

for the

coordinates

q
Y= Z hy,
i=1

(a)

Physical problem considered

p
*——p
< L l >
| ;
(b) 1-D model
- P

7

oA
(¢) 3-D model

Plane sections remain

plane. & is constant
for the entire section.

Plane sections do
not remain plane.

oA # 0B

Figure 2.3-2: Illustration of use of 3-D elements

and for the displacements

42
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where

h; (v, s, t) = interpolation function corresponding to node i

r, s, t = isoparametric coordinates

g = number of element nodes, 4 < g <27

X, ¥» zz = nodal point coordinates

u;, vi, w; = nodal point displacements
No axial displacement
should be possible Line loads One quarter of

(uniform) the structure
is modeled
—_——
X
7 | 2-D model
Y

a) Plane strain 2-D analysis applicable

One quarter of the
structure is modeled

\

Fixed end
z 3-D model

b) Three-dimensional model is used

Figure 2.3-3: Examples of 3-D solid modeling versus
2-D solid modeling
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e In addition to the displacement-based elements, special mixed-
interpolated elements are also available, in which the displacements
and pressure are interpolated. These elements are effective and
should be preferred in the analysis of incompressible media and
inelastic materials (specifically for materials in which Poisson's
ratio is close to 0.5, for rubber-like materials and for elasto-plastic
materials).

e The mixed formulation is the default setting for the materials in
which either the entire response is incompressible (for example, the
rubber material models), or in which the inelastic response is
incompressible (for example, the plastic and creep material
models).

e Table 2.3-1 shows the default number of pressure degrees of
freedom for each 3-D element type. For more details on the mixed
interpolation of pressure and displacement degrees of freedom for
3-D solids, see Section 4.4.3, p. 276, and Tables 4.6 and 4.7,
pp.292-295 in ref. KJB.

e The default number of pressure degrees of freedom shown in
Table 2.3-1 is optimal for most applications. However, it can be
modified if needed. In some problems where rubber is subjected to
severe compression, numerical instability can be avoided by using
8 pressure degrees of freedom for the 20, 21 and 27-node bricks.

e For brick elements, the following choices for the number of
pressure degrees of freedom are valid; 1 for a constant pressure, 4
for additional linear pressure terms, 7 for additional bilinear
pressure terms (involving rs, rt, st), 8 for an additional tri-linear
pressure term (involving rst), and 20 for additional quadratic
pressure terms (involving 8% tz). For tetrahedral elements, the
following choices for the number of pressure degrees of freedom
are valid; 1 for a constant pressure, 4 for additional linear pressure
terms, 10 for additional quadratic terms, 11 for an additional
“bubble” term at the center of the element and 15 for additional
cubic terms.

o In general, using too many pressure degrees of freedom leads to
volumetric locking, while using too few pressure degrees of
freedom leads to spurious zero-energy modes. See Sections 4.4.2

44
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and 4.5 in ref. KJB for more details.

Table 2.3-1: Mixed u/p formulations available for 3-D solid elements

Number of default
pressure DOFs

s

3-D solid element

4-node tetrahedron 1
10-node tetrahedron (10/4)
11-node tetrahedron (11/4)

6-node prism
15-node prism
21-node prism

8-node brick (8/1)

20-node brick (20/4)
21-node brick
27-node brick (27/4)
5-node pyramid
13-node pyramid

A& A - B B A = B B = B b

14-node pyramid

" To use this element, the user must use the displacement-
based element with 1-point integration.
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Structure and loading are axisymmetric . .
Axisymmetric elements

A
== 1 radian
Z A of structure
is modeled
X Ll
—_—
i Y
7 Axisymmetric model
Y ¢) Axisymmetric analysis applicable
Structure axisymmetric,
loading non-axisymmetric 3-D elements
<[> <
X
7 One quarter
of structure
Y is modeled

d) Three-dimensional model is used

Figure 2.3-3: (continued)

¢ In addition to the displacement-based and mixed-interpolated
elements, ADINA also includes the possibility of including
incompatible modes in the formulation of the 8-node element. The
addition of the incompatible modes increases the flexibility of the
element, especially in bending situations. This element is
analogous to the 4-node 2-D solid element with incompatible
modes discussed in Section 2.2.1, see the comments in that section
for theoretical considerations.

The incompatible modes feature cannot be used in conjunction
with the mixed-interpolation formulation.
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t

Ys

X

Figure 2.3-4: Conventions used for the nodal coordinates
and displacements of the 3-D solid element

The incompatible modes feature is only available for the 8-node
element, and elements degenerated from the 8-node element,
except for the 4-node tetrahedral element.

e The elements can be used with 4 to 20 or with 21 or 27 nodes
(tetrahedra, pyramids or prisms are derived from the degeneration
of the 4 to 20-node rectangular elements, see Example 5.16 on pp.
366-367, ref. KIB). The interpolation functions for ¢ < 20 are
shown in Fig. 5.5, ref. KJB, p. 345.

e Degenerated elements such as prisms, pyramids or tetrahedra
are formed in ADINA by assigning the same global node to the
local element nodes located along the same side or on the same
face.

The triangular prism as a degenerated 20-node element (see Fig.
2.3-1(d)) can be used in ADINA in three different ways:

» As a 15-node triangular prism with the strain singularity

1
N

. This is an extension of the techniques described on pp.

ADINA R & D, Inc.
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368-376 of ref. KIB (see also Chapter 10);

1
» As a20-node triangular prism with the strain singularity —
B

(see also Chapter 10);

» As a spatially isotropic triangular prism where corrections
are applied to the interpolation functions of the collapsed 20-
node element.

The 10-node tetrahedron (see Fig. 2.3-1(c)) is obtained by
collapsing nodes and sides of rectangular elements. A spatially
isotropic 10-node tetrahedron is available in ADINA. Similarly, an
11-node spatially isotropic tetrahedron is available in ADINA.

The 13-node pyramid and the 14-node pyramid (see Fig. 2.3-
1(f)) are degenerate solid elements from 20-node and 21-node
bricks, respectively. They can be used as spatially isotropic
elements.

The 4-node tetrahedron (see Fig. 2.3-1(¢c)) is obtained by
collapsing nodes and sides of the 8-node rectangular element. This
element exhibits constant strain conditions.

The elements in Fig. 2.3-1(e) are not spatially isotropic and
should usually only be employed in transition regions.

e Linear and nonlinear fracture mechanics analysis of stationary
cracks can be performed with three-dimensional elements (see
Chapter 10).

2.3.2 Material models and nonlinear formulations

e The 3-D elements can be used with the following material
models: elastic-isotropic, elastic-orthotropic, nonlinear-elastic,
plastic-bilinear, plastic-multilinear, Drucker-Prager, Mroz-
bilinear, plastic-orthotropic, thermo-isotropic, thermo-
orthotropic, thermo-plastic, piezoelectric, creep, plastic-creep,
multilinear-plastic-creep, concrete, curve-description, Ogden,
Mooney-Rivlin, Arruda-Boyce, hyper-foam, Sussman-Bathe,
creep-variable, plastic-creep-variable, multilinear-plastic-
creep-variable, Gurson-plastic, Cam-clay, Mohr-Coulomb,
viscoelastic, irradiation creep, gasket, shape-memory alloy,
plastic-cyclic, user-coded.
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ref. KUB
Sections 6.2
and 6.3.5

¢ The mixed interpolation formulation should be used (and is the
default) whenever using the plastic-bilinear, plastic-multilinear,
Mroz- bilinear, plastic-orthotropic, thermo-plastic, creep, plastic-
creep, multilinear-plastic-creep, Ogden, Mooney-Rivlin, Arruda-
Boyce, Sussman-Bathe, creep-variable, plastic-creep-variable,
multilinear-plastic-creep-variable, plastic-cyclic or viscoelastic
material models.

In addition the mixed interpolation formulation should be
used (but is not the default) when using the elastic-isotropic
material and the Poisson’s ratio is close to 0.5.

e The 3-D elements can be used with a small displacement/small
strain, large displacement/small strain or a large displacement/
large strain formulation.

The small displacement/small strain and large
displacement/small strain formulations can be used with any
material model, except for the Ogden, Mooney-Rivlin, Arruda-
Boyce, hyper-foam and Sussman-Bathe material models. The use
of a linear material with the small displacement/
small strain formulation corresponds to a linear formulation, and
the use of a nonlinear material with the small displacement/small
strain formulation corresponds to a materially-nonlinear-only
formulation. The program uses the TL (total Lagrangian)
formulation when you choose a large displacement/small strain
formulation.

The large displacement/large strain formulations can be used
with the plastic-bilinear, plastic-multilinear, Mroz-bilinear, plastic-
orthotropic, thermo-plastic, creep, plastic-creep, multilinear-plastic-
creep, creep-variable, plastic-creep-variable, multilinear-plastic-
creep-variable, viscoelastic, plastic-cyclic and user-coded material
models. The program uses either a ULH or ULJ formulation when
you choose a large displacement/large strain formulation with these
material models.

A large displacement/large strain formulation is used with the
Ogden, Mooney-Rivlin, Arruda-Boyce, hyper-foam and Sussman-
Bathe material models. The program uses a TL (total Lagrangian)
formulation in this case.

e The basic continuum mechanics formulations are described in
ref. KIB, pp. 497-568. The finite element discretization is
summarized in Table 6.6, p. 555, ref. KJB.

ADINA R & D, Inc.

49



Chapter 2: Elements

ref. KUIB
Section 6.8.1

¢ Note that all these formulations can be used in one finite
element mesh. If the elements are initially compatible, then they
will remain compatible throughout the analysis.

2.3.3 Numerical integration

ref. KUB
Sections 5.5.3,
5.5.4 and 5.5.5

Hexahedral (brick) elements, including collapsed hexahedral
elements

e For the calculation of element matrices, Gauss numerical
integration is used. The same integration order (RSINT) is always
assigned to the r- and s-directions, and can be from 2 to 6. The
integration order in the t-direction (TINT) can, however, be
assigned independently, and can also be from 2 to 6. The default
Gauss integration orders are 2x2x2 for the 8-node (cube or prism)
elements and 3x3x3 otherwise, except for tetrahedra.

o Except for the 4-node, 10-node and 11-node tetrahedra, the
convention for the integration point numbering used in the stress
output is as follows: The first integration point is the point with the
most negative location inr, s and t. The next integration points are
located by increasing t (and label INT) successively up to its
maximum positive value, then increasing s (and label INS) one
position towards positive and varying t again from its maximum
negative to its maximum positive values, and so on (Fig. 2.3-5).
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INR=1,INS=L,INT=3

INR=1,INS=L,INT=1

INR=2,INS=1,INT=1

Integration order in r-s plane=2
Integration order in t-direction=3

a) All elements except tetrahedra

Figure 2.3-5: Example of integration point labeling for
3-D solid elements

4,10 and 11-node tetrahedral elements

e Tetrahedral elements are spatially isotropic with respect to
integration point locations and interpolation functions (see Figure
2.3-5(b)). For the 4-node tetrahedral element, 1-point Gauss
integration is used. For the 10-node and 11-node tetrahedral
elements, TETINT Gauss integration points are used, where
TETINT canbe 1, 4, 5, 17.

TETINT=DEFAULT is also allowed, and is the default. When
TETINT=DEFAULT, the number of tetrahedral integration points
is set based on the maximum number of nodes for any element in
the element group:

Max number of nodes  Max number of nodes in TETINT
in any brick element any tetrahedral element

<8 <4 1
<20 <10
<27 <11 17
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ref. KUB
Section 6.8.4

1-point

17-point (unfolded) (Point 1 at centroid not shown)

b) Tetrahedral elements

Figure 2.3-5: (continued)
General Comments

¢ Note that in geometrically nonlinear analysis, the spatial
positions of the Gauss integration points change continuously as
the element undergoes deformations, but throughout the response
the same material particles are at the integration points.

o The order of numerical integration in large displacement elastic
analysis is usually best chosen to be equal to the order appropriate
in linear elastic analysis. Hence the default values are usually
appropriate. However, in certain inelastic analyses, a higher order
should be used (see Fig. 6.25, p. 638, ref. KIB).
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2.3.4 Mass matrices

¢ The consistent mass matrix is always calculated using 3x3x3
Gauss integration except for the tetrahedral 4-node, 10-node and
11-node elements which use a 17-point Gauss integration.

¢ The lumped mass matrix of an element is formed by dividing
the element’s mass M equally among each of its » nodal points.
Hence the mass assigned to each node is M /n. No special
distributory concepts are employed to distinguish between corner
and midside nodes, or to account for element distortion.

e Note that n is the number of distinct non-repeated nodes in the
element. Hence, when an element side or face is collapsed to a
single node, the total mass of the element is divided among the
unique nodes in the element.

¢ For the following element shapes, the lumped mass is divided
among the collapsed nodes: 4-node tetrahedron, 10-node
tetrahedron, 11-node tetrahedron, 5-node pyramid, 13-node
pyramid, 14-node pyramid, 6-node prism, 15-node prism, 21-node
prism. For example, in the 4-node tetrahedron, each of the four
nodes has one quarter of the total mass.

2.3.5 Element output

¢ You can request that ADINA either print or save stresses or
forces. However ADINA cannot output both stresses and forces in
the same run.

Stresses

Each element outputs the following information to the porthole file,
based on the material model. This information is accessible in the
AUI using the given variable names.

Notice that for the orthotropic and piezoelectric material models,
you can request that the stresses and strains be saved in the material
coordinate system.
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Elastic-isotropic, elastic-orthotropic (results saved in global
system): STRESS (XYZ), STRAIN (XYZ)

Elastic-isotropic with thermal effects: STRESS (XYZ),
STRAIN (XYZ), THERMAL_STRAIN,
ELEMENT TEMPERATURE

Orthotropic (results saved in material system): STRESS (ABC) ,
STRAIN (ABRC)

Thermo-isotropic, thermo-orthotropic (results saved in global
system): STRESS (XYZ), STRAIN(XYZ),
THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE

Piezoelectric (results saved in global system): STRESS(XYZ),
STRAIN(XYZ), ELECTRIC FIELD-X, ELECTRIC FIELD-Y,
ELECTRIC FIELD-Z, ELECTRIC DISPLACEMENT FIELD-X,
ELECTRIC DISPLACEMENT FIELD-Y,

ELECTRIC DISPLACEMENT FIELD-Z.

Piezoelectric (results saved in material system): STRESS(ABC),
STRAIN(ABC), ELECTRIC FIELD-A, ELECTRIC FIELD-B,
ELECTRIC FIELD-C, ELECTRIC DISPLACEMENT FIELD-A,
ELECTRIC DISPLACEMENT FIELD-B,

ELECTRIC DISPLACEMENT FIELD-C.

Curve description: CRACK_FLAG, STRESS (XYZ),
STRAIN (XYZ), FE SIGMA-P1, FE SIGMA-P2,
FE SIGMA-P3, GRAVITY IN-SITU PRESSURE,
VOLUMETRIC STRAIN, FE SIGMA-P1 DIRECTION-X,
FE SIGMA-P1 DIRECTION-Y,

FE SIGMA-P1 DIRECTION-Z,

FE SIGMA-P2 DIRECTION-X,

FE SIGMA-P2 DIRECTION-Y,

FE SIGMA-P2 DIRECTION-Z,

FE SIGMA-P3 DIRECTION-X,

FE SIGMA-P3 DIRECTION-Y,

FE SIGMA-P3 DIRECTION-Z

Concrete: CRACK_FLAG, STRESS (XYZ), STRAIN(XYZ),
FE SIGMA-P1, FE SIGMA-P2Z2, FE SIGMA-P3,
FATLURE STRESS, ELEMENT TEMPERATURE,FE SIGMA-
P1 DIRECTION-X,
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FE SIGMA-P1 DIRECTION-Y,
FE SIGMA-P1 DIRECTION-Z,
FE SIGMA-P2 DIRECTION-X,
FE SIGMA-P2 DIRECTION-Y,
FE SIGMA-P2 DIRECTION-Z,
FE SIGMA-P3 DIRECTION-X,
FE SIGMA-P3 DIRECTION-Y,
FE SIGMA-P3 DIRECTION-Z, THERMAL STRAIN (XYZ)

Small strains: Plastic-bilinear, plastic-multilinear, Mroz-bilinear :
PLASTIC FLAG, STRESS(XYZ), STRAIN(XYZ),
PLASTIC_STRAIN(XYZ), FE_EFFECTIVE_STRESS,
YIELD_STRESS,

ACCUMULATED EFFECTIVE PLASTIC STRAIN,
THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE

Large strains: Plastic-bilinear, plastic-multilinear, Mroz-bilinear :
PLASTIC FLAG, STRESS(XYZ),

DEFORMATION GRADIENT (XYZ),

FE EFFECTIVE STRESS, YIELD STRESS,
ACCUMULATED EFFECTIVE PLASTIC STRAIN,
THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE

SMA: EFFECTIVE STRESS, STRESS-XX, STRESS-XY,
STRESS-XZ, STRESS-YY, STRESS-YZ, STRESS-ZZ,
ACCUM EFF TRANSEF STRAIN, AUSTENITE FRACTION,
DETWINNED MARTENSITE FRACTION, STRAIN-XX,
STRAIN-XY, STRAIN-XZ, STRAIN-YY, STRAIN-YZ,
STRAIN-ZZ, THERMAL STRAIN-XX, THERMAL STRAIN-
YY, THERMAL STRAIN-ZZ, TRANSFORMATION STRAIN-
XX, TRANSFORMATION STRAIN-XY,

TRANSFORMATION STRAIN-X7Z,

TRANSFORMATION STRAIN-YY,

TRANSFORMATION STRAIN-YZ,

TRANSFORMATION STRAIN-ZZ,

TWINNED MARTENSITE FRACTION, SMA FLAG

Small strains: Anand Model

STRESS (XYZ), STRAIN(XYZ),
VISCOPLASTIC_STRAIN (XY2z),

FE EFFECTIVE STRESS,
ACCUMULATED_EFFECTIVE_VISCOPLASTIC_STRAIN,
EFFECTIVE_VISCOPLASTIC_STRAIN_RATE,
THERMAL_STRAIN(XYZ), ELEMENT TEMPERATURE
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Large strains: Anand Model

STRESS (XYZ), DEFORMATION GRADIENT (XYZ),

FE EFFECTIVE STRESS,
ACCUMULATED EFFECTIVE VISCOPLASTIC STRAIN,
EFFECTIVE VISCOPLASTIC STRAIN RATE,
THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE

Plastic-orthotropic (results saved in global system):

PLASTIC FLAG, STRESS(XYZ), STRAIN(XYZ),
PLASTIC STRAIN(XYZ), HILL EFFECTIVE STRESS,
YIELD STRESS,
ACCUMULATED EFFECTIVE PLASTIC STRAIN,
THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE

Plastic-orthotropic (results saved in material system):
PLASTIC FLAG, STRESS(ABC), STRAIN(ABC),
PLASTIC STRAIN(ABC), HILL EFFECTIVE STRESS,
YIELD STRESS,
ACCUMULATED EFFECTIVE PLASTIC STRAIN,
THERMAL STRAIN (ABC), ELEMENT TEMPERATURE

Small strains: Drucker-Prager: PLASTIC FLAG,

PLASTIC FLAG-2, STRESS(XYZ), STRAIN(XYZ),
PLASTIC STRAIN(XYZ), CAP LOCATION,

YIELD FUNCTION

Large strains: Drucker-Prager: PLASTIC FLAG,
PLASTIC FLAG-2, STRESS (XYZ),

DEFORMATION GRADIENT (XYZ), CAP_ LOCATION,
YIELD FUNCTION

Small strains: Thermo-plastic, creep, plastic-creep, multilinear-
plastic-creep, creep-variable, plastic-creep-variable, multilinear-
plastic-creep-variable: PLASTIC FLAG,
NUMBER OF SUBINCREMENTS, STRESS (XYZ),
STRAIN (XYZ), PLASTIC STRAIN(XYZ),

CREEP_ STRAIN (XYZ), THERMAL STRAIN(XYZ),
ELEMENT TEMPERATURE,

ACCUMULATED EFFECTIVE PLASTIC STRAIN,

FE EFFECTIVE STRESS, YIELD STRESS,
EFFECTIVE CREEP STRAIN
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Large strains: Thermo-plastic, creep, plastic-creep, multilinear-
plastic-creep, creep-variable, plastic-creep-variable, multilinear-
plastic-creep-variable: PLASTIC FLAG,
NUMBER OF SUBINCREMENTS, STRESS (XYZ),
DEFORMATION GRADIENT (XYZ),

THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE,
ACCUMULATED EFFECTIVE PLASTIC STRAIN,

FE EFFECTIVE STRESS, YIELD STRESS,
EFFECTIVE CREEP STRAIN

Mooney-Rivlin , Ogden, Arruda-Boyce, hyper-foam (strains
saved): STRESS (XYZ), STRAIN(XYZ)

Mooney-Rivlin , Ogden, Arruda-Boyce, hyper-foam (deformation
gradients saved): STRESS (XYZ) ,
DEFORMATION GRADIENT (XYZ)

Small strains: User-supplied: STRESS (XYZ), STRAIN (XYZ),
USER_VARIABLE I

Large strains: User-supplied: STRESS (XYZ) ,
DEFORMATION GRADIENT (XYZ), USER VARIABLE I

Thermo-orthotropic (results saved in material system):
STRESS (ABC), STRAIN (ABC),

THERMAL STRAIN(ABC), FE EFFECTIVE STRESS,
ELEMENT TEMPERATURE

Small strains: Gurson plastic: PLASTIC FLAG,

STRESS (XYZ), STRAIN(XYZ),
PLASTIC_STRAIN(XYZ), FE_EFFECTIVE_STRESS,
YIELD_STRESS,

ACCUMULATED EFFECTIVE PLASTIC STRAIN,
THERMAL_STRAIN(XYZ), ELEMENT_TEMPERATURE,
VOID_VOLUME_FRACTION

Large strains: Gurson plastic: PLASTIC FLAG,

STRESS (XYZ), DEFORMATION GRADIENT (XYZ),
FE EFFECTIVE STRESS, YIELD STRESS,
ACCUMULATED EFFECTIVE PLASTIC STRAIN,
THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE,
VOID VOLUME FRACTION
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Small strains: Cam-clay: PLASTIC FLAG, STRESS (XYZ),
STRAIN (XYZ), PLASTIC_STRAIN(XYZ),

YIELD SURFACE DIAMETER P, YIELD FUNCTION,
MEAN_STRESS, DISTORTIONAL_STRESS,
VOLUMETRIC_STRAIN, VOID_RATIO,

EFFECTIVE STRESS RATIO, SPECIFIC VOLUME

Large strains: Cam-clay: PLASTIC FLAG, STRESS (XYZ),
DEFORMATION GRADIENT (XYZ),

YIELD SURFACE DIAMETER P, YIELD FUNCTION,
MEAN STRESS, DISTORTIONAL STRESS,
VOLUMETRIC STRAIN, VOID RATIO,

EFFECTIVE STRESS RATIO, SPECIFIC VOLUME

thPCOMOmb:PLASTIC_FLAG, STRESS (XYZ) ,
STRAIN (XYZ), PLASTIC STRAIN(XYZ),
YIELD FUNCTION

Small strains: viscoelastic: STRESS (XYZ), STRAIN(XYZ),
THERMAL_STRAIN(XYZ), ELEMENT TEMPERATURE

Large strains: viscoelastic: STRESS (XYZ) ,
DEFORMATION_GRADIENT(XYZ),
THERMAL_STRAIN(XYZ), ELEMENT_TEMPERATURE

Small strains: creep-irradiation: STRESS (XYZ) ,
STRAIN (XYZ), PLASTIC_STRAIN(XYZ),
CREEP_STRAIN(XYZ), THERMAL_STRAIN(XYZ),
ELEMENT TEMPERATURE,

ACCUMULATED EFFECTIVE PLASTIC STRAIN,
EFFECTIVE_STRESS, YIELD_STRESS,
EFFECTIVE_CREEP_STRAIN,
IRRADIATION_STRAIN(XYZ).

Large strains: creep-irradiation: STRESS (XYZ) ,
DEFORMATION GRADIENT (XYZ),

THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE,
ACCUMULATED EFFECTIVE PLASTIC STRAIN,
EFFECTIVE STRESS, YIELD STRESS,
EFFECTIVE CREEP STRAIN,
IRRADIATION STRAIN (XYZ) .

In the above lists,
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STRESS (XYZ) = STRESS-XX, STRESS-YY, STRESS-
77, STRESS-XY, STRESS-XZ, STRESS-YZ

STRESS (ABC) = STRESS-AA, STRESS-BB, STRESS-
CC, STRESS-AB, STRESS-AC, STRESS-BC

with similar definitions for the other abbreviations used above. But
the variable DEFORMATION GRADIENT (XYZ) is interpreted as
follows:

DEFORMATION GRADIENT (XYZ) =
DEFORMATION GRADIENT-XX,
DEFORMATION GRADIENT-XY,
DEFORMATION GRADIENT-XZ,
DEFORMATION GRADIENT-YX,
DEFORMATION GRADIENT-YY,
DEFORMATION GRADIENT-YZ,
DEFORMATION GRADIENT-ZX,
DEFORMATION GRADIENT-ZY,
DEFORMATION GRADIENT-ZZ,

Also note that you can request stretches instead of deformation
gradients, and in this case STRETCH (XYZ) replaces
DEFORMATION_GRADIENT(XYZ)inﬂmzmoveﬁﬁ&

See Section 13.1.1 for the definitions of those variables that are not
self-explanatory.

You can also request that strain energy densities be output along

with the stresses.
Variable categories

The variables are grouped into the following categories.

Stress (no saving, basic saving, all saving), default all
saving

Strain (no saving, all saving), default no saving

Inelastic (no saving, basic saving, all saving), default basic
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ref. KUIB
Section 4.2.1

saving

Thermal (no saving, basic saving, all saving), default basic
saving

Energy (no saving, all saving), default no saving
Electromagnetic (no saving, all saving), default no saving

User-coded variables (no saving, all saving), default no
saving

Misc (no saving, all saving), default no saving

Notice that some categories allow "basic" saving, namely only
those results that are commonly used in post-processing are saved.

e The intent of the variable category feature is to decrease the
number of results written to the porthole file. In particular notice
that not all results are saved to the porthole file by default.

e The RESULTS-ELEMENT command is used to control the
saving of each variable category. To set the saving for a given 3D
solid element group in the model, use the command RESULTS-
ELEMENT ... GROUP=(group number). To set the saving for all
remaining 3D solid element groups in the model, use the command
RESULTS-ELEMENT ... GROUP=0.

e The category saving feature can be turned off using the
command PORTHOLE ... RESULTS-ELEMENT=NO. When
PORTHOLE ... RESULTS-ELEMENT=NO, all results are saved at
each element integration point. The default is PORTHOLE ...
RESULTS-ELEMENT=YES, so that the category saving feature is
used by default.

e In order to save all results, either set each category in
RESULTS-ELEMENT to "all", or use the command PORTHOLE
... RESULTS-ELEMENT=NO.

e In ADINA, the stresses are calculated using the strains at the
point of interest. The stresses are not smoothed. The AUI can be
employed to calculate smoothed stresses from the results output by
ADINA.

60

ADINA Structures — Theory and Modeling Guide



2.3: Three-dimensional solid elements

Locations where results are saved

The results are saved either at the element integration points or at
the element corner nodes. When the results are saved at the
integration points, the stresses are calculated using the strains at the
point of interest. Hence, they are not spatially extrapolated or
smoothed. The AUI can be employed to calculate smoothed
stresses from the results output by ADINA.

o When the results are saved at the element corner nodes, the
number of points per element at which results are saved is
significantly reduced. For example, if results are saved at the corner
nodes of a 27-node brick element, there are 8 points per element, as
opposed to 27 integration points; and if results are saved at the
corner nodes of an 11-node tetrahedral element, there are 4 points
per element, as opposed to 17 integration points.

e The RESULTS-ELEMENT command is used to control where
the results are saved. The default is to save the results at the
element integration points.

Nodal forces

The nodal forces that correspond to the element stresses can also be
requested in ADINA. This force vector is calculated in a linear
analysis using

F=[B'tdV
v
where B is the element strain-displacement matrix and T is the

stress vector. The integration is performed over the volume of the
element; see Example 5.11 in ref. KJB, pp. 358-359.

The nodal forces are accessible in the AUI using the variable names
NODAL FORCE-X, NODAL FORCE-Y, NODAL FORCE-Z.

¢ The same relation is used for the element force calculation in a
nonlinear analysis, except that updated quantities are used in the
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integration.

2.3.6 Recommendations on use of elements

e The 27-node element is the most accurate among all available
elements. However, the use of this element can be costly.

e The 20-node element is usually the most effective (except in

wave propagation analysis using the central difference method and
a lumped mass idealization, see Chapter 7).

e The 20-node element can be employed for analysis of thick
structures and solids; some examples are given in Fig. 2.3-6.

e The 20-node element is usually most effective if the element is
rectangular (undistorted).

e The 11-node tetrahedral element should be used when
tetrahedral meshing is used and a mixed interpolated formulation is
required (as in incompressible analysis).

'g';v

g
¢
[
[
]
’
/

Vessel

Tunnel %

Figure 2.3-6: Some structures for which 3-D solid
elements can be used

e The 8-node brick element and 4-node tetrahedral element
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should only be used in analyses when bending effects are not
significant. If the 8-node brick element must be used when
bending effects are significant, consider the use of the incompatible
modes element.

¢ Geometrically nonlinear incompatible modes elements with
large aspect ratio should not be used, because spurious modes may
be present in the finite element solution.

e When the structure to be modeled has a dimension which is
extremely small compared with the others, e.g., thin plates and
shells, the use of the 3-D solid element usually results in too stiff a
model and a poor conditioning of the stiffness matrix. In this case,
the use of the shell or the plate/shell elements (see Sections 2.7 and
2.6) is more effective.

2.4 Beam elements

e The beam element is a 2-node Hermitian beam with a constant
cross-section. The element is initially straight.

e The beam element can be employed in the following analysis
conditions:

» Linear analysis, in which case the displacements, rotations
and strains are infinitesimally small, and the material is linear
elastic.

» Materially nonlinear only analysis, in which case the
displacements, rotations and strains are infinitesimally small,
but the material is nonlinear.

» Large displacement/large rotation analysis, in which case the
displacements and rotations can be large, but the strains are

small. The material can either be linear or nonlinear.

e The beam element can be used in statics, implicit dynamics,
explicit dynamics and frequency analysis.

e The material behavior of the beam can be described using either
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a cross-section shape and a material model, or a moment-curvature
input.

e The beam element can optionally include warping degrees of
freedom. This option is suitable when modeling thin-walled cross-
sections, especially when the angle of twist per unit length is not
constant along the beam.Throughout this section, the beam element
without warping degrees of freedom is referred to as the standard
beam element, and the beam element with warping degrees of
freedom is referred to as the warping beam element.

e The available beam capabilities are summarized in Table 2.4.1.

e The beam element can optionally include a bolt feature. The
bolt feature is fully described in Section 11.17.

o Throughout this section, the element formulations of the current
ADINA system are described. It is, however, possible to choose the
element formulations used in ADINA version 8.7, using the
command KINEMATICS BEAM-ALGORITHM=V87. (However,
if the elasto-plastic material model is chosen, then the current beam
element kinematics and material algorithms are always used.)

The results obtained will vary depending upon whether the
current formulations or the 8.7 formulations are used.
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Table 2.4-1: Table of beam capabilities

Formulation
and material
model

Cross-section
PROPERTIES

Cross-sections

RECTANGULAR,

PIPE

Cross-
section
BOX

Cross-
sections
U LL

Linear
elastic

v 2

/3

/4

Large
displacement
elastic

MNO plastic

Large
displacement
plastic

MNO
moment-
curvature

Large
displacement
moment-
curvature

1. Either the standard or warping beam can be used. However, if the properties
correspond to an open thin-walled section, the warping beam is recommended for

general use.

2. Only the standard beam can be used.

3. Either the standard or warping beam can be used.

4. Either the standard or warping beam can be used, however the warping beam
element is recommended for general use.
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2.4.1 Beam geometry

e Fig 2.4-1 shows the beam element along with its local
coordinate system (7,s,7). The r direction always lies along the
neutral line of the beam. The orientations of the s and ¢ directions
are defined using either an auxiliary node K (as in Fig. 2.4-1(a)) or
an orientation vector (XO0,YO,ZO) (as in Fig. 2.4-1(b)). I[f node K
is specified in the input, it is always used as the auxiliary node. If
node K is not specified, then the orientation vector is used.

When the orientation vector is used, the components
(X0,Y0,Z0) are interpreted either in the skew system of local
node 1 (the default), or in the global system.

Notice that, for the Hermitian beam element, (7,s,¢) are not
isoparametric coordinates, rather (7,s,7) have the same units as the
global coordinates.

Fig 2.4-1 also shows the degrees of freedom at the local nodes.
These degrees of freedom are defined in the local coordinate
system. The « degree of freedom is used only for the warping
beam element.

e The forces/moments in the beam element are shown in Fig. 2.4-
2. These forces/moments are also defined in the element local
coordinate system. The bimoment forces are used only for the
warping beam element.

e The s and ¢ directions give the orientation of the beam element
cross-section. Care must be used in defining the s and ¢ directions
so that the beam element cross-section has the desired orientation.
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The s-direction lies in the plane defined by
nodes 1, 2, K, and the #-direction is perpendicular
to the r-s plane.

o : warping DOF

(a) Geometry definition, using auxiliary node K

Orientation vector (X0,Y0,ZO) a6

The s-direction lies in the plane defined by nodes 1, 2
and the orientation vector. The z-direction is perpendicular
to the r-s plane.

(b) Geometry definition, using orientation vector

Figure 2.4-1: Degrees of freedom and local axes for beam element
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S = r-direction force at node 1 (axial force, positive in compression)
S = s-direction force at node 1 (shear force)

S3 = t-direction force at node 1 (shear force)

Sy = r-direction moment at node 1 (torsion)

S5 = s-direction moment at node 1 (bending moment)

S¢ = t-direction moment at node 1 (bending moment)

S, = r-direction force at node 2 (axial force, positive in tension)
Sg = s-direction force at node 2 (shear force)

Sq = t-direction force at node 2 (shear force)

Sio = r-direction moment at node 2 (torsion)

Sy; = s-direction moment at node 2 (bending moment)

S}, = t-direction moment at node 2 (bending moment)

S|3 = bimoment at node 1
S;4 = bimoment at node 2

Figure 2.4-2: Element end forces/moments

e The beam element cross-section with its coordinate system is
shown in Fig. 2.4-3. The cross-section coordinate system has its
origin on the line connecting the beam end-nodes. (Note that the
cross-section coordinate system uses the same letters (s,¢) as the
beam element coordinate system, however this should not cause
confusion.)

68 ADINA Structures — Theory and Modeling Guide



2.4: Beam elements

t

Node 1

Node 2

(a) Isometric view

C: Centroid of the cross-section
P: Shear center of the cross-section

(b) s-t plane view, showing location of shear center

Figure 2.4-3: Beam cross-section coordinate system

Fig 2.4-3(b) shows the cross-section with its centroid and shear
center. The centroid of the cross-section is assumed to be at the
origin of the (s,7) system. Also notice that a coordinate system
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(8,1) is introduced, with origin at the shear center. The (§,7)
system is always parallel to the (s,¢) system, and the origin of the

(8,1) is located at (s,2) =(c,,c,) .
e The shear center is also the center of twist.

2.4.2 Beam cross-section geometric properties

The following cross-sectional geometric properties are listed here
for reference.

¢,, ¢,: s and f coordinates of the shear center with respect to the
centroid (terms CSOFFSET, CTOFFSET)

sh sh : . .
A", A" effective shear cross-section areas in the s and ¢

directions (terms SAREA, TAREA) . Note, these terms are actual
areas, with units of length squared.

@ = @(s,t) : warping function, see description below.
Governing equations for location of beam centroid:
[sda=[tda=0 (2.4-1)
Normalization equation for warping function:
[pda=0 (2.4-2)
Governing equations for location of beam shear center:
[spaa=[tpda=0 (2.4-3)

A : Cross-sectional area (term AREA)
A= J'dA (2.4-4)

I : Inertia for bending about the s-axis (term SINERTIA):
I, =[fda (2.4-5)
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1, : Inertia for bending about the t-axis (term TINERTIA):
= jssz (2.4-6)

I, : Product of inertia (term STINERTIA):
I, = j stdA (2.4-7)

J : Saint-Venant torsional constant (term RINERTIA):
J= j( +(g,+5) )dA (2.4-8)

(do not confuse the Saint-Venant torsional constant with the polar
moment of inertia)

I, : Warping constant (term WINERTIA):
I, = j¢2dA (2.4-9)

(this term is also referred to as C, in handbooks)

A, Wagner effect constant (term RRINERTIA)
Ay = [ (8 +17)da (2.4-10)

A, : Wagner effect constant (term SRINERTIA)
Ay = IS(§2 +i%)dA (2.4-11)

A, : Wagner effect constant (term TRINERTIA)
A= [t(8 +17)da (2.4-12)

A,s: Wagner effect constant (term WRINERTIA)
A= [g(5+7 (2.4-13)

A, : Wagner effect constant (term DRINERTIA)
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A= (8 +i%) dA (2.4-14)

The term names are the names used in the CROSS-SECTION
PROPERTIES command. Also note that the terminology
o() o()
0,=—=0,=—7
Os ot

1s used.

2.4.3 Beam formulation

2.43.1

¢ The formulation of the beam is a generalization of the Euler-
Bernoulli beam formulation.

e The cross-section of the beam is assumed to be rigid in its own
plane so no distortion of the cross-section is considered. However,
the cross-section can warp out of its plane.

e The two nodes and the origin of the local coordinate system
(s,t) are located at the centroid of the beam cross-section. The

local coordinate system of the element may or may not be
coincident with the principal planes of inertia of the cross-section.

A brief summary of the beam formulation derivation is now given.
Beam displacements

¢ The beam displacements in the beam local coordinate system
are u (axial r-direction displacement), v (transverse s-direction
displacement) and w (transverse ¢-direction displacement).

e The displacements at an arbitrary point on the beam cross-
section can be written in terms of the displacements, rotations and
warping measured at the beam neutral axis:

u=u,—s6 +t0, +da
v=v, —t6. (2.4-15)
w=w, +s6.

In this expression, u, is the average longitudinal displacement of
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the cross-section, v, , w, are the displacements of the beam neutral

axis (corresponding to point C in Fig. 2.4-3), 6., 6., 0, are the
rotations of the section about the 7, s, f axes, @ = @(s,?) is the

warping function, and & is the warping function multiplier. The
warping function and warping function multiplier will be discussed
in greater detail below.

Equation (2.4-15) is seen to include the assumptions that the
cross-section translates rigidly, rotates rigidly and warps (due to the
warping function). In all cases, the translations and rotations, with
respect to the beam local coordinate system, are assumed to be
small. (Later on, we will allow for large displacements by allowing
the local coordinate system to translate and rotate.)

¢ Under the assumption of unit warping, the axial displacement
due to torsion is given by

u=¢(s,0)0., (2.4-16)

20

where (), =—=. Hence a = 6., and (2.4-15) can be written
- ,
u=u,—s6,+10, +¢0,

v=v, —t6. (2.4-17)

w=w, +s6.
The dimension of & is seen to be [L].

o It will be convenient to express the transverse displacements in
terms of the transverse displacements at the shear center. The
transverse displacements at the shear center (corresponding to point
P in Fig. 2.4-3) are

v, =v,—c0,
(2.4-18)
w,=w,+c0,

Therefore
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v=v, —16,
A (2.4-19)
w=w, +50,

e We now introduce the assumption that the cross-section remains
normal to the shear center axis:

0.=-w,,
P (2.4-20)
0,=v,,

This assumption corresponds to the use of Euler-Bernoulli beam
theory, however here the shear center axis is used instead of the
more commonly-used neutral axis. This choice will be explained

below.
2.4.3.2 Displacement derivatives and strains

The derivatives of the displacements with respect to the r, s, ¢
directions are

u :u(),l‘ _Set,l" +t0§,l" +¢0r,rr

Na

u,=-6,+¢.0., (2.4-21)
u,t = 03 + ¢,t0r,r
V,r =Y _fer,r
v, =0 (2.4-22)
v, =-0.
W, ==0,+30,
w, =6, (2.4-23)
w,=0

in which (2.4-20) has been used.
Considering only engineering strains for now,
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2.4.3.3

2434

2.4.3.5

e)’?‘ = u,r = u(),)" _Set,r + tes,r + ¢0}’

e

Vo=t +v,=(4,-1)0,, (2.4-24)

u,+w, = (¢t + §) 0.,

Ve

Equations (2.4-24) show that shear strains arise only due to torsion.
This is the reason that we have used the shear center instead of the
neutral axis in the above developments.

Stresses

It is assumed that the only nonzero stresses are 7,.,7, ,7,,. The

rr2 s Tt
stresses are computed from the strains using the material law, either
elastic or elasto-plastic. For a linear elastic material

., =Fe

o Cps = Gyrs’ Ty = G]/rt (24-25)

rt

where E, G are the Young's and shear moduli, respectively.

Principle of virtual work

The virtual work can be written
W = j (7,5, +7,5,, +7,07, )dV (2.4-26)

The force vector and stiffness matrix can be derived from this
expression, once a beam interpolation has been chosen. In general,
numerical integration must be used, however when the material is
linear elastic, the integrals are evaluated analytically.

Torsional response
In order to gain additional insight into the torsional response, we

consider a beam loaded by an external axial torque. The
displacements of the beam are
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u = ¢9","
v=i6, (2.4-27)
w=-50

the corresponding engineering strains are
err = ¢Hr,rr
yrs = (¢,s - f)er,r (24_28)

]/rt = (¢,t +§)9r,r
and the principle of virtual work can be written
I(rrr§err +7.0y,, +7,07, )d V=T686. é (2.4-29)

where T is the externally applied torque at the ends of the beam.
The left-hand-side terms can be written as

. Se,dV =7, 40  dV (2.4-30)
J J

r,rr

[(z.07, +7,07,)dV = [rm (¢, -7)+7,(¢, +§)]59,,,dV
(2.4-31)

Define

M,=[z,pdd. F,=[(r,0,+7,9,)dA,
M, = [(-zi+1,5)d4
(2.4-32a,b,c)

where M, is the bimoment (some authors insert a minus sign), £}

is the bishear and M, is the torque calculated from the shear
stresses. Then the principle of virtual work can be written
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~[[F+M,~M,,] 86,dr=|T~(F,+M,-M,,)|o0,

2.4.3.6

[(M,86,,, +(F,+M,)36,,)dr =736, (2.4-33)

r,rr

Using the calculus of variations, the principle of virtual work can
be rewritten as

L L
0 0

- Mbé‘er,r
(2.4-34)

and we see the following:

1) The bimoment is energy-conjugate to the warping multiplier
(recall =0, )

2) If the warping multiplier is free at an end, the bimoment is zero
at that end.

3) The torque is equilibrated by the quantity F, + M, - M, .

4) If the warping multiplier is free at both ends, the bimoment is
zero throughout and the external torque is equilibrated by the sum
of the bishear and the torque calculated from the shear stresses.

Strain energy for a linear elastic material

We now return to Section 2.4.3.4 and consider a linear elastic
material. The strain energy in the beam can be written

W=LE[edv+3G([y2+y2)av (2.4-35)
Substituting from (2.4-24) gives
W=1E[(u,,—s6, +16,,+¢0,,) dv
> 5 (2.4-36)
+4G[((0,~7) + (g, +3) )2, av

This can be expanded to give
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W= %E{ [u2,av-2[u,,0, sav+2[u, 0, av+2[u,,0,,paV
+ (65" dv -2[6,,0,,stdv -2[6,,6, ,spdV
+ |60 dv+2[6,,6,,pdv

S,y r,mr

[0, av}
+%GJ‘6?,2J ((¢S —f)z +(¢, +§)2)dV

(2.4-37)

We now recognize that J-d V= J.J-dAdr , where J-dA represents

an integral over the beam cross-section. Also since all terms such
as u,,, 0 ,etc. are constant over the cross-section, (2.4-37) can
be written as

W=1E{[dA[u}, dr—2[sdA[u, 0, dr+2[wdA[u,,6,, dr+2[pdA[u,,6,,, dr

o, ~r,rr

+[5°aA[ 0}, dr—2[stdA[6,,0,, dr—2[s¢dA[,,0,,, dr

t,rs,r t,rr,rr

+[aa[ 0}, dr+2[tpdA[0,,0,, dr

+[paafe?, dr}
+%GI((¢,S —5)2 +(g,+5) )dAI 6>, dr
(2.4-38)
By definition of the neutral axis, '[S dA = J‘t dA =0, and by

definition of the warping function, J.¢ dA = J.S¢ dA = jt(ﬁ dA=0.

Therefore, in terms of the geometric properties given in Section
2.4.2, the strain energy of the beam can be written

W=LE{A[ul dr +1,[6, dr-21,[0,0, dr+1,[0, dr+1,[0, dr]
+1GJ|[6; dr
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(2.4-39)

This expression can be integrated analytically once beam
interpolations are introduced (see Section 2.4.4). And the force
vector and stiffness matrix are obtained by taking variations of the
strain energy.

2.4.3.7 Wagner effect

H. Wagner discussed the mechanics of thin-walled open sections in
the following reference:

ref. Wagner, H., Verdrehung und Knickung von offenen
Profilen (Torsion and Buckling of Open Sections), 25"
Anniversary Publication, Technische Hochschule, Danzig,
1904-1929, translated as N.A.C.A. Technical
Memorandum No. 807, National Committee for
Aeronautics, 1936.

The following observation in this paper is of significance: Consider
a beam carrying axial stress, and consider a small twist of the
beam. The axial stress now has a transverse component due to the
twist. The resultant of all of the transverse components of axial
stress acting on a cross-section has a non-zero twisting moment.

For brevity, we term the above observation, the "Wagner
effect”.

Fig. 2.4-4 shows a schematic. The beam carries an initial axial
stress (this stress can vary from point to point in the cross-section).
For the material fiber shown in the figure, this stress has magnitude

7, =T and is oriented in direction (1,0,0). Now suppose that the

cross-section undergoes a small twist, of magnitude & per unit
length. After deformation, the material fiber has the orientation

(1,—fa,Sar) and the Cauchy stress tensor corresponding to 7T is

1 —fta Sa
t=|—ta 0 0 |T (2.4-40)
sa 0
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After twist
. ?
rdr S \(-toa, sa)T
ad; Before twist
8
(a) Isometric view (b) In plane of cross-section

Figure 2.4-4: Wagner effect

The twisting moment in the plane of the cross-section due to the
stress at the point (8,7) is M, = (5* +7°)Ta, and the virtual work
done by a virtual twist o« is

M ba =" +i)Tada (2.4-41)
This result can also be obtained by using the proper continuum
mechanics stress and strain measures. Following standard

continuum mechanics procedures, the Green-Lagrange strain
component in the axial direction, due to the twist « , is

g, =1 +1%)a’ (2.4-42)

rr

and the 2™ Piola-KirchhofT stress tensor is

(2.4-43)

w
Il
o o =
o o o
o o o
~

Thus the work done by the axial stress as a result of the twist is
simply

S oc, =8 +i)Tada (2.4-44)
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Since (2.4-41) and (2.4-44) are equal, the Wagner effect can be
included simply by using the Green-Lagrange strain tensor instead
of the small strain tensor, and interpreting the stresses as 2" Piola-
Kirchhoff stresses instead of Cauchy stresses.

o Itis clear that the Wagner effect is a geometrically nonlinear
effect. The Wagner effect is included only in conjunction with the
large displacement formulation described in Section 2.4.5.3.

e The procedure of using the Green-Lagrange strain tensor instead
of the small strain tensor, and interpreting the stresses as 2" Piola-
Kirchhoff stresses instead of Cauchy stresses, works extremely
well when used in the large displacement/small strain formulations
for continuum finite elements. However, it should be remembered
that the geometry of continuum elements is completely specified by
the nodes, whereas the geometry of beam elements is specified in

terms of cross-sectional properties such as 4, I, etc. Including

ss 2
all terms in the Green-Lagrange strain tensor leads to a very large
number of cross-sectional properties.

o Therefore we focus on including only the minimum number of
additional terms in the strain tensor so that the Wagner effect is
properly included. Recalling that the components of the Green-
Lagrange strain tensor are

g, =e, +%(u2r +v? + wzr)
2e =y, +(u AV Y+ W,rW,s) (2.4-45)

26, =y, + (u,ru,, +Vv,v, + w’rw,t)

we will assume that all products in £, &, can be neglected

rs> >t

compared to 7, ,7,,, and that uzr can be neglected compared to

e, .
¢ In order to neglect additional terms, we need to use the fact that
the Wagner effect is implemented along with the large

displacement formulation described in Section 2.4.5.3. In the large
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displacement formulation, all angles are measured with respect to a
coordinate system attached to the beam. In the limit of mesh
refinement, these angles can be made arbitrarily small (again,
measured with respect to the coordinate system attached to the
beam).

Now consider the term v} =6’ —276,6,  +7°6°, . In the limit
of mesh refinement, 6, becomes arbitrarily small, however 6, ,

cannot be made arbitrarily small by mesh refinement. A similar
statement can be used for term wi .

So we use the approximations

v, =10,
’2 —” ’2 (2.4-46)
w,. =S50

’ r,r

e The result is that the components of the Green-Lagrange strain
tensor are approximated by

~ 1( a2 22 2 _ 1( a2 22 2
grr ~ err + 2 (S +1 )gr,r - uo,r Set,r +t9s,r +¢0r,rr + 2 (S +1 )gr,r
28;@ ~ 7/rs = (¢,s _t)gr,r

26, ~7,=(4,+3)6,
(2.4-47)

and the virtual work becomes
oW = (8,06, + 5,87, +5,67,dV (2.4-48)

¢ Constructing the strain energy (for a linear elastic material)
using the procedure given above leads to additional terms in the
strain energy:
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W=+ E{[(°+1)da[u,,0",dr

0,1 71,1

~[s(5*+*)a4[6,,6?, dr

+[t(32+i%)daf6,, 6] dr (2.4-49)
+[g(8+1%)dAo,,, 6., dr

r,rr r,r

s1[(5+2)aaf e, dr}

where the ... are the terms from the small strain theory (2.4-38).
Using the geometric properties given in Section 2.4.2, the strain
energy for a linear elastic material can be written

W= %E{A.[uirdr +1,[00 dr=21,[0,0,, dr+1,[07, dr+1, (6] dr}

r,rr

+LE{4s[u, 00 dr—4;[0,0], dr+ 4]0, 0 dr+ A 0., 07, dr

o,r —r,r tror,r S,r r,r r,rr r,r

S dr}

+1GJ |6}, dr

(2.4-50)

This expression can be integrated analytically once beam
interpolations are introduced (see Section 2.4.4). And the force
vector and stiffness matrix are obtained by taking variations of the
strain energy.

e The Wagner effect is implemented for inelastic materials simply
by computing the strains using (2.4-47), and by including the
proper geometrically nonlinear terms in the stiffness matrix.

e As avery simple example in which the Wagner effect is
important, consider the axial loading of an elastic beam, in which
bending is suppressed but in which torsion is allowed. For

simplicity the angle of twist per unit length &, , is assumed to be

constant. (2.4-50) becomes
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W =LEA[u}, dr+3EA[u, 07, dr+5GJ [0 dr+LEA [ 6!, dr

2.4.3.8

o,r " r,r

(2.4-51)

Taking the variation of W with respect to 6, , and using

~ S, =Eu,, gives
oW =([(4sz, +GJ )0, dr + L EA [0}, dr) 50, (24-52)

For small twist, the Hf’r term can be neglected. Equation (2.4-52)

J
shows that for stress 7, <G ——, the equation of motion
15
becomes unstable, that is, torsional buckling can occur. The ratio

—— influences how important the Wagner effect is for a given
15

cross-section. For a pipe section, both J and A4, are equal to the

polar moment of inertia of the section, so torsional buckling can
only occur for compressive stresses that are much larger than can
reasonably be expected. On the other hand, for a thin-walled open

: . J .
section, the ratio — can be much smaller than unity, then
15
torsional buckling can occur for much smaller compressive
stresses.
Of course, the simplifications that we made in obtaining (2.4-

J . . . .
52) mean that 7,, = —G—— is not the torsional buckling load in
15
general. For actual formulas involving torsional and flexural
buckling loads, see references such as

ref. A. Gjelsvik, The Theory of Thin Walled Bars, John Wiley &
Sons, 1981

Kinetic energy and the mass matrix

The kinetic energy of the beam can be written
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2.43.9

K:%pj-(dz +07 ) dV (2.4-53)
Substituting from (2.4-17) gives
K =4plAf(a2+v2+)dr +1,[(62+67)dr—21,[6,6, dr

+ Issj(éf +6’ ) dr+1, J.éf,r dr}
(2.4-54)

The mass matrix is obtained from (2.4-54), once a beam
interpolation has been introduced.

o The rotary inertias and the warping constant can have a
significant effect on the torsional response of the beam, particularly
for thin-walled open sections.

The warping function

e The torsional response of beams significantly depends on the
type of their cross-section (e.g., solid section, thin-walled open
section, thin-walled closed section).

e The torsional response is closely related to the displacements of
the beam cross-section that are out of the plane of the cross-section
(see Fig. 2.4-5). These displacements are termed "warping
displacements", since torsion causes warping of the beam (see Fig.
2.4-5).

e The warping displacements are included in the beam
formulation though the use of the warping function ¢(s,¢) . The

warping function must be determined in advance for each cross-
section.

o For circular cross-sections, torsion does not cause warping
displacements, thus the warping function is zero for circular cross-
sections.

¢ For the solid rectangular section undergoing plasticity, warping
is accounted for as discussed in Section 2.4.6.2. Note that it is not
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allowed to fix the warping displacements in the solid rectangular
section.

0

Front view Side view

Figure 2.4-5: Torsional warping of an I-beam subjected to pure torsion

e In the following discussion, we focus on warping functions for
thin-walled sections. The theory of the warping function for thin-
walled sections can be found in several references, including

ref. A. Gjelsvik, The Theory of Thin Walled Bars, John Wiley &
Sons, 1981

A brief summary of the theory follows, in which we have adjusted
the notations so as not to conflict with the notations used in the rest
of this section.

Open thin-walled sections

Consider a generic open thin-walled section (Fig 2.4-6). The
centerline of the section is called the contour. The coordinate
through the section thickness is denoted p and the coordinate along
the contour is denoted g.
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We introduce an additional point, not necessarily in the cross-
section, called a pole (Fig 2.4-7). Corresponding to a point in the
cross-section and the pole P, there is a coordinate system p,q, in

which p is parallel to dp and ¢ is parallel to dg.

Contour branch

I I
IT dq _Contour I
I I
| Contour origin, g=0  EE——
p
t |
| |
I I
| .
’_ | p=0 on contour
(a) Contour coordinate ¢ (b) Thickness coordinate p

Figure 2.4-6: Cross-section coordinate system
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t . dg fdp
. v\. ’ /Cross—section
N Contour, p =0
t
R P
q
c,—+ T
! Pole P Q
1
C c s

Figure 2.4-7: Notation used in construction of warping function

Now consider a rigid body rotation of the cross-section about
pole P (Fig 2.4-7). Clearly

u, =—t0.,
: (2.4-55)

where u;, u, are the displacements in the §,t directions. Also

u[) = _qur7
) (2.4-56)
u, = po

q r

where u;, u, are the displacements in the P, q directions. Since

P, q are parallel to dp, dq ,

u,=-q0.,

o (2.4-57)
u, = po,
are the displacements perpendicular to and parallel to the contour.

From this information, we can construct an approximate
warping function @(s,?) . First consider the shear strain

88

ADINA Structures — Theory and Modeling Guide



2.4: Beam elements

Vg =U.,+U,, (2.4-58)

where u, is the displacement out of the plane of the cross-section
(the warping displacement). The choice

u,,=-u, =-po, (2.4-59)

(2.4-60)
The choice

u,,=-u, =40 (2.4-61)

rp r,r

sets 7, = 0 along lines perpendicular to the contour. Since the

cross-section is thin, ¢ is constant along these lines, so

Uyl t P4 0., (2.4-62)

and therefore

q ~ ~
“r (r.a) (_J-o pdg+ pq)gr,r (2.4-63)
From this expression, we observe that the warping function is

d(s.0)==[" pdg+pg (2.4-64)

Thus the total warping is composed of two contributions, the first
contribution along the centerline, called contour warping, and the
second contribution through the thickness, called thickness
warping.

From the above conditions on the shear strain, the shear strain
caused by torsion is aligned with the ¢ direction and proportional to
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p-

o If'the cross-section of the beam only consists of thin rectangular
plates all intersecting at a common point, then the contour warping
is zero and the warping function only contains thickness warping
(see Fig. 2.4-8).

(@) (b)

Figure 2.4-8: Sections with negligible contour warping

e At a sharp corner or branch in the cross-section, the warping
function is continuous along the contour (p = 0), but is not

continuous for other values of p.

e The warping function is not exact in the sense of the St. Venant
warping function. The St. Venant warping function satisfies

[(#+8; 19, +54,)da=0 (2.4-65)
but the thin-walled warping function used here has
J(2+6; -9, +5p,)da=[2p"dd (2.4-66)

¢ For additional insight into the torsional response described in
Section 2.4.3.5, consider the torsional response under elastic
conditions. The bishear can then be written

F, =GO, [((4.-7)4.+(4, +3)g,) 4

(2.4-67)
=GO, [(¢:+4; g, +34,)dA
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If we had used the exact St Venant warping function, this term
would be equal to zero, implying that the external torque in a beam
free to warp is equilibrated entirely by the torque calculated from
the shear stresses.

But because we use the approximate warping function given
above, the bishear is nonzero. It turns out that, in an open thin-
walled section, the bishear and torque calculated from the shear
stresses can be written

F, =G0, [2p’d4, M, =GO, [2p°d4  (24-68a)b)

so that each term equilibrates one-half of the external torque. The
torsional rigidity can then be observed from the expression

T=F,+M, =G0, [4p’d1=GJo,, (2.4-69)

implying J = I4 p>dA . For a cross-section with constant thickness

1
a and length b, this formula gives J = E a’b , which is the textbook

solution for the torsional rigidity of a thin plate.
Closed thin-walled sections

We consider here only closed sections with just one closed circuit
in the contour. It is assumed that the shear strain flow , b is equal

to K., on the contour, where b is the cross-section thickness

and K is a constant to be determined. Thus
u., tu,, =—~0, (2.4-70)

As in the open cross-section theory, u, = PO, , thus

“(K .
., {! (3— p]dqjem (2.4-71)

r
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The constant K is determined by noting that the change in
warping displacement resulting from one complete circuit must be
zero, therefore

gﬁpdq 24
95 dg §,da

where A is the area enclosed by the contour.

(2.4-72)

Using 7, = 0 along lines perpendicular to the contour, the

warping displacement is

o K . N
Uelip) = [fo (;—pjdq + qu 0., (2.4-73)

and the warping function is

o K . o
o(s,t) = .[0 [?—pjdq +pq (2.4-74)

Again the total warping is composed of two contributions, the
contour warping and the thickness warping.

Open and closed thin-walled sections

Up to now, we have not considered the location of pole P
relative to the origin. And we have also not considered the origin of
the p,g coordinate system. Different choices of contour origin and
pole origin give different warping functions.

However, we fix the contour and pole origin using the
conditions (2.4-2) and (2.4-3) and it turns out that the pole origin
fixed using these conditions is the shear center of the cross-section.

It may be of interest to observe that the choice of contour and
pole origins does not affect the torsional rigidity

J= J-( ¢ + S) )dA ; however the warping constant
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I, = I ¢2dA is minimized by fixing the contour and pole origin
using conditions (2.4-2) and (2.4-3).

2.4.4 Beam interpolations
2.4.4.1 Standard beam

The displacements and rotations are interpolated from the nodal
displacements and rotations using

u, = Lu' + Lu’
v, =Hyv, +H,0 +Hy, +H,0; (2.4-75)
w, =Hw, —H,0, + Hyw’ — H,0’

and

0.=L06 +L,6’

0, =—-H, w,+H, 60 —H, w +H, 0 (2.4-76)
et = Hl,rviz + HZ,rgtl + H3,rv121 + [_14,r0t2

where the nodal displacements and rotations are
(ul viow . 6,6 Hl) for node 1 and (u2 v, w,60,6° 6’2) for
s Vpr WpsroYss Yy s Vps Wpsty s

st

node 2, and in which
, L, =— (2.4-77)

are the linear interpolation functions and

2 3 2 3

H=1-32+2 g =2 +Z
: r L L I

e e P (2.4-78)
=g =y
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2.4.4.2

are the cubic interpolation functions (Hermitian displacement
functions).

¢ Notice that the Euler-Bernoulli condition (2.4-20) is satisfied by
the choice (2.4-75) and (2.4-76).

o It is seen that the transverse shear center axis displacements v,
and w, are cubic and that the axial displacement u, and torsional

rotation &, are linear.

e We refer the transverse displacements to the neutral axis using
(2.4-18):

1 1 1 2 2 2
v,=v,—¢0, v,=v, —cb.
I I 172 2 2 (2.4-79)
w,=w,+c, w,=w,+c0

and we can then write the nodal degrees of freedom as
( 1.1 1 gl gl pl 2.2 .2 02 n2 2
u ,vn,wn,@,,ﬁs,a) for node 1 and (u Vo,w,,07,07,0, ) for

node 2. In this way, all nodal quantities are referred to the neutral
axis. The forces and moments at the beam element nodes
(energetically conjugate to the nodal displacements) are also all
referred to the neutral axis.

o It should be clear from the above that warping effects are
included in the standard beam. It should also be clear that pure
torsion will cause the transverse displacements at the neutral axis to

be non-zero, due to the shear center offsets (c,,c,). And,

conversely, transverse forces will cause torsion.
Warping beam

The axial rotation is interpolated using a cubic interpolation
function and the axial rotation and warping degrees of freedom:

0.=HO +H,a'+H,0 +H,a’ (2.4-80)
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2.4.4.3

Evaluating @, atnodes 1 and 2 gives the result 6. e a' and
> >* Inode

similar for node 2. Hence &', a” are the warping function
multipliers evaluated at nodes 1, 2.

The remaining displacements and rotations are interpolated as in
(2.4-75) to (2.4-78). Thus the nodal degrees of freedom

are(u1 viow'.o'.6'. 6 al) for node 1 and

s Vs Wyo VsV Uy

(uz,vj , Wj, 49,2, 6’,6° az) for node 2. Again, the nodal quantities

s27t

are referred to the neutral axis using (2.4-79).

e The force conjugate to the warping degree of freedom is the
bimoment, see the discussion in Section 2.4.3.5. The dimension of
the bimoment is [FL?]. The bimoment is included in the global
force vector.

e The warping degree of freedom can be fixed or left free, and
depending upon the physical situation, it may or may not be
appropriate to fix the warping degree of freedom, see discussion in
Section 2.4.9.1.

e The standard beam element is not recovered by fixing the
warping degrees of freedom at all nodes in the beam. This is
because the interpolation of axial rotations in (2.4-80) remains
cubic when the warping degrees of freedom are fixed.

Comparison of standard beam and warping beam

¢ The motivation for introducing the warping beam element is as
follows. As seen above, warping is assumed in the standard beam
element through the terms J, /. However the term 6, = is always

zero in the standard beam element, by construction, so warping
through term /, does not contribute to the strain energy (but

warping through term 7, contributes to the kinetic energy). More
importantly, the warping displacements between adjacent elements
are not compatible in the standard beam element. This is because
the term @@, which expresses the longitudinal displacement due

to warping, is constant in each element and in general different
between adjacent elements.

.
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o In the warping beam, term @6, , is continuous between adjacent

elements, thus this element could also be called a "compatible
warping beam" element.

¢ Due to the incompatibility of the warping displacements in the
standard beam element, the results obtained from the standard
beam element will be incorrect in the general case.

e However, it should be noticed that there are some important
special cases in which the standard beam gives correct results:

1) Warping function is zero or negligible. This occurs for
circular cross-sections.

2) Angle of twist per unit length is constant along the length of
the beam assemblage. This occurs in many static problems, e.g.
bending and torsion of a straight beam. This situation also occurs in
problems in which torsion is not present, for example, in-plane
deformations.

3) Warping, although present, does not affect the solution (other
than the torsional response) significantly. This occurs for solid
sections and possibly also for closed thin-walled sections.

¢ In general, for the solid and closed thin-walled sections, the
standard beam can be used without significant error. However for
the open thin-walled sections, the warping beam should be used. It
is allowed, however, to use the open thin-walled sections with the
standard beam, and, as long as the angle of twist per unit length is
constant along the beam, the warping beam and standard beam will
give exactly the same results.

2.4.5 Beam element implementation

o The stiffness matrix, mass matrix and force vector are
formulated in the local degrees of freedom (in the 7, s, ¢ axes).
These matrices and vectors are then transformed to the nodal
degrees of freedom (either global or skew) and assembled into the
global system matrices.
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2.4.5.1

2.4.5.2

2.4.5.3

Linear formulation

o Itis assumed that the displacements, rotations, and strains are
infinitesimally small, and the elastic-isotropic material is used. The
Wagner effect is not included.

Materially-nonlinear-only formulation

e It is assumed that the displacements, rotations, and strains are
infinitesimally small. Either the elastic-isotropic material is used
(for example, in conjunction with element birth-death), the plastic
material models are used, or the moment-curvature material model
is used. The Wagner effect is not included.

Large displacement formulation

e Itis assumed that large displacements/rotations can occur, but
only small strains. Any beam material model, linear or nonlinear,
can be used. The input of beam cross-sections and material data is
exactly the same as when using the linear or materially-nonlinear-
only beam elements.

o Ifa stressed large displacement beam element is subjected to a
rigid body rotation, the stresses/forces (expressed in the local
coordinate system) do not change during the rigid body rotation.

e The geometry of the large displacement beam element is shown
in Fig 2.4-9. The shape of the beam neutral axis is completely
specified by the positions of the end-nodes, and by the orientation
of the end-node triads. Each end-node triad consists of three

orthogonal unit vectors V_,V_,V, . Initially the triads are identical

to the element coordinate axes unit vectors, e.g, V, is a unit vector

in the r direction, etc.

During the deformations, the positions of the end-nodes are
updated, as usual, by the nodal displacements. The orientations of
the end-node triads are updated incrementally by the increments in
nodal rotations. The end-node triads can rotate independently of
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each other, however it is assumed that the relative rotation of the
end-node triads remains small.

Beam neutral axis

b) After deformation

Figure 2.4-9: Geometry of large displacement beam element

e In the large displacement formulation, the coordinate system in
which the beam local displacements and rotations are measured is
updated during the solution. In ADINA 8.8 and higher, this
coordinate system is taken from the orientations of the end-node
triads. In ADINA 8.7 and lower, this coordinate system is taken
from the coordinates of the end-nodes. Hence the solution output in
ADINA 8.8 and higher will in general be different than the solution
output in ADINA 8.7 and lower.

The advantage of using a coordinate system defined from the
orientations of the end-node triads is that this coordinate system is
uniquely defined even for general 3-D deformations including
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torsion. A coordinate system defined from the end-nodes
coordinates is not uniquely defined for 3-D deformations including
torsion.

o The shape of the beam neutral axis becomes a curved space
curve. The displacements and rotations of the beam nodes, used in
the construction of the force vector and stiffness matrix, are
measured with respect to the beam local coordinate system.

e Fig 2.4-10 shows an example for in-plane bending. A single
beam element is clamped at node 1 and subjected to a prescribed
rotation @ at node 2. The coordinate system X, y used to measure
beam local displacements and rotations is located halfway between
the nodes, and is rotated an angle €/2 with respect to the global
coordinate system x, y. Notice that the X direction does not
coincide with the line between the end-nodes.

The rotation at local node 2 with respect to the local coordinate
system is #/2 , and the rotation at local node 1 with respect to the
local coordinate system is —6/2 . Also, the transverse
displacement at local node 2 with respect to the local coordinate
system is —V and the transverse displacement at local node 1 with
respect to the local coordinate system is V.
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b) Viewed in local coordinate system

Figure 2.4-10: Coordinate system update for large displacement beam

element, in-plane bending example

e The element stiffness matrix is non-symmetric in the rotational
degrees of freedom. Therefore the option of using the non-
symmetric sparse solver (MASTER SOLVER=NONSYM-
SPARSE) can be useful in obtaining convergence.

e The Wagner effect is included by default for the thin-walled
sections.

¢ For frequency analysis and linearized buckling analysis, it is
allowed to include certain 2™ order stiffness effects into the
stiffness matrix. This choice is made using the command

KINEMATICS KBEAM-EIGENVALUE=YES

By default, this feature is not used. Note that these 2™ order
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2.4.54

stiffness effects are not introduced into the force vector, so this
feature should be used with caution.

This feature is made available only for backwards compatibility
with version 8.7 and earlier.

The following effects are not included within this feature:
warping, shear center offsets, Wagner effect.

Mass matrices

e The beam element can be used with a lumped or a consistent
mass matrix, except for explicit dynamic analysis which always
uses a lumped mass matrix.

e The consistent mass matrix of the beam element is evaluated in
closed form, and does not include the effect of shear deformations.
The matrix is defined in the local coordinate system using the
expression for the kinetic energy derived above (equation 2.4-54)
and the beam interpolations (either standard or warping). Therefore
the consistent mass matrix includes warping effects.

For the standard beam element, the consistent mass matrix is the
same as the one given in the following reference:

ref.  J.S. Przemieniecki, Theory of Matrix Structural
Analysis, McGraw-Hill Book Co., 1968.

with the exception that there are additional terms arising from the
warping constant /.

e The lumped mass for translational degrees of freedom is M /2
where M is the total mass of the element.

e The rotational lumped mass for static analysis is 0.
The rotational lumped mass for implicit dynamic analysis is

=—.-—2 % This lumped mass is applied to all
=3 y p pp

rotational degrees of freedom in order to obtain a diagonal mass
matrix in any coordinate system.
The rotational lumped mass for explicit dynamic analysis is

M, :3-%-{2 where /| :max(ls I ) is the maximum

s>t
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2.4.5.5

bending moment of inertia of the beam. This lumped mass is
applied to all rotational degrees of freedom. Note that this scaling
of rotational masses ensures that the rotational degrees of freedom
do not affect the critical stable time step of the element.

e The rotational lumped masses can be multiplied by a user-
specified multiplier ETA (for implicit dynamic analysis only). The
multiplier factor used in explicit analysis is always 1.0.

¢ For the warping element, lumped masses for the warping
degrees of freedom are defined. However the process of lumping
implies that all coupling between warping and rotational degrees of
freedom is lost. Since there is a high degree of coupling between
these degrees of freedom, the lumped mass assumption must be
considered extremely approximate. Therefore the use of a lumped
mass matrix is not recommended for the warping beam element.
The lumped warping masses have been improved between
versions 8.9 and 9.0, so the results of analyses in which lumped
warping masses are used change between versions 8.9 and 9.0.

¢ In theory the consistent mass matrix, expressed in the global
coordinate system, changes as a result of large rotations in large
displacement analysis. However, the mass matrix is not updated
(except in the case of element birth/death). Therefore, when using a
consistent mass matrix in large displacement analysis, the results
can be in error if the rotations are significant.

Elastic beam element

e The beam element stiffness matrix is evaluated in closed form.
The stiffness matrix used is derived from the strain energy
expression in equation (2.4-39) and the beam element
interpolations (either standard or warping).

For the standard beam element, the stiffness matrix is the same
as the one given in the following reference:

ref.  J.S. Przemieniecki, Theory of Matrix Structural
Analysis, McGraw-Hill Book Co., 1968.

¢ Certain cross-sections allow entry of the shear areas. When
shear areas are entered, the force vector and stiffness matrix are
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2.4.5.6

modified in order to approximate the effects of shear deformations,
as discussed in Przemieniecki.

For example, considering a cantilever beam with in-plane
deformations only, the stiffness matrix for the free transverse
displacement and rotation, including the shear area modifications is

12EI,
L(1+¢)

K=
sym

6E]

u

L(1+4)
EI[I‘ (4 + ¢2)
L(1+¢,)

where
_ 12E1,

- GA™’
=0,

9, A" >0

Ash

=0

o The coefficient of thermal expansion can be specified as a
material property. The coefficient of thermal expansion is constant
(independent of the temperature). In addition, the beam temperature
is taken as the average of the temperatures of the beam end-nodes.
The temperature gradients at beam nodes are ignored.

Elastic-plastic beam element

e The element is used with the plastic-cyclic material model
described in Section 3.4.6. The element can also be used with a
plastic-bilinear material with isotropic hardening, but then the
program automatically converts the material input into the
equivalent plastic-cyclic material input.

The stress-strain law used incorporates the assumptions that the

T

stresses 7,7, ,

o T, are zero.

e The material model can be used either with the materially-
nonlinear-only formulation or with the large displacement
formulation (in which case the displacements/rotations can be
large). In all cases, the strains are assumed to be small.

e The Wagner effect is included by default when the large
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ref. KUB
Section 6.6.3

displacement formulation is selected.

¢ All element matrices in elasto-plastic analysis are calculated
using numerical integration.

In the r-direction, Newton-Cotes integration is used (Fig 2.4-
11). The number of integration points is controlled with the
EGROUP BEAM ... RINT parameter. RINT can be 3, 5, 7 or 9.
The default is 5, which corresponds to an exact integration of all
system matrices under elastic small strain conditions (no Wagner
effect). When the Wagner effect is included, 9 stations can be
selected in order to exactly integrate the system matrices under
elastic conditions. However, 9 stations should not be used in
general as 9-point Newton-Cotes integration is possibly unreliable
for the numerical integration of arbitrary functions.

The numerical integration in the cross-section depends upon the
cross-section, therefore further details are given along with the
cross-sections (Section 2.4.6).

s Integration points
equally spaced
3
52 R—m
r
r= r=~L

Figure 2.4-11: Integration point locations in r-direction

e Note that the system matrices are identical to the system
matrices used in elastic analysis if

» The warping function assumed in elasto-plastic analysis is the
same as the one used in elastic analysis. For the pipe cross-
section, this condition is automatically satisfied since there is no
warping function in the pipe section. For the rectangular cross-
section, this condition is reached in the limit for a very thin
section (because the exact warping function is employed in the
limit of a very thin section). For the thin-walled sections, this
condition is satisfied as long as the torsional rigidity formula
used in elastic analysis is formula FW (see Section 2.4.6 for
details about the formulas FW).
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2.4.5.7

» The numerical integration is of high enough order.
» The material is (still) elastic.

¢ For the rectangular and pipe cross-sections, the elastic-plastic
beam element can either be used using a 2-D action option or a 3-D
action option. This choice is made using the command EGROUP
BEAM SUBTYPE={TWO-D/THREE-D}; the default is THREE-
D.

2-D action assumes that the element deformations occur in the
r-s plane. In this case, the element has no stiffness corresponding
to deformations out of the 7-s plane. Also, the element does not
have any torsional stiffness.

3-D action assumes that element deformations occur in any
direction.

For both 2-D action and 3-D action, the element can have an
arbitrary orientation with respect to the global coordinate axes.

e For the box, I, U, L cross-sections, the elastic-plastic beam
element does not include shear deformation effects.

Element output
o There are three options for calculation of beam element output:

» element nodal point forces/moments (EGROUP BEAM
RESULTS=FORCES) (the default for elastic analysis)

» stresses at the element integration points (EGROUP BEAM
RESULTS=STRESSES) (the default for elastic-plastic
analysis)

» element section forces/moments at discrete locations along
the axial direction of the element (EGROUP BEAM
RESULTS=SFORCES)

In the description below, we use the term "forces" to describe both
forces and moments.
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Nodal point forces: The nodal point forces are computed at the
element local nodes. These forces are equivalent, in the virtual
work sense, to the internal element stresses. The nodal point forces
are used to calculate reaction forces.

¢ Because the local nodes are located at the neutral axis (and not
the shear center), the nodal point forces are also computed with
reference to the neutral axis (and not the shear center). This issue is
discussed in further detail below.

¢ The element nodal point forces are accessible in the AUI using
the variable names NODAL FORCE-R, NODAL FORCE-S,
NODAL FORCE-T, NODAL MOMENT-R, NODAL MOMENT-S
and NODAL MOMENT-T. (If the warping beam is used, the
variable name NODAL BIMOMENT is also available.) In the AUI,
element local nodes are defined as element points of type label. For
example, to access the result computed at element 5, local node 2,
define an element point of type label with element number 5, label
number 2.

¢ Ifnodal point forces are requested in an elastic-plastic analysis,
the state of stress in the element (whether elastic or plastic) is not
indicated.

Stresses. Stress output is not available for the elastic beam
element. If stresses are requested for the elastic element, the nodal
point forces are computed instead.

Stress output for the elastic-plastic beam element is described in
Section 3.4.5.3.

Section forces: The element section forces can be computed at
equally spaced points along the neutral axis of the beam. The
number of points is controlled by EGROUP BEAM ... SPOINT;
the default number of points is 2. Station 1 is at local node 1 and
station SPOINT is at local node 2. The sign convention for section
forces is given in Figure 2.4-12. Notice that the vector of positive
moment in the s-direction points in the negative s-direction.

If section forces are requested in an elastic-plastic analysis, the
state of stress in the element (whether elastic or plastic) is not
indicated.
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Figure 2.4-12: Sign convention for section forces/moments
There are two options for computation of section forces/moments.
Integration of stresses over the cross-section

The option of integration of stresses over the cross-section can be
used for the elastic and elastic-plastic beam elements, for

geometrically linear and large displacement formulations. The
section forces are computed using

F,={z,d4
M, =(J(#47)0,7, +(0,~7)r, +(9, +3)7, )ad
M, = [~tr,,d4 (2.4-81)
M, = J-—STWdA
M, = IqﬁrwdA

These expressions are developed from the principle of virtual work:
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F.,M,, M, M,, M, are conjugate to du,,, 60,,, —00,

o,r? s,r?

=60, ., 60 respectively. In M, the term involving 7, arises

t,r? r,rr
from the Wagner effect and is included only when the Wagner
effect is included. M, is computed only for the warping beam.

The shear forces are estimated using the expressions
F=-M,,, F,=-M_,.(Itis not possible to compute shear

forces by integration of shear stresses because in Euler-Bernoulli
beam theory, there are no shear stresses generated except in
torsion.)

For the elastic beam, the section forces are evaluated
analytically. For the elastic-plastic beam, the axial force and
moments are evaluated using numerical integration over the cross-
section, and the shear forces are evaluated by the approximations

M, - -M

— r=1 4 r=1 s
K L 2 t L
For the elastic-plastic beam, it is necessary that each station at
which section forces are evaluated correspond to an integration
RINT -1

————————— In
SPOINT -1

t,r?

t

r=0 _ 5

r=0

point along the 7 direction. Thus the expression ust

be an integer for the elastic-plastic beam.
Fixed-end force correction

As an alternative for computing section forces by integration, it is
allowed to compute section forces using the theory of fixed-end
force correction.

In order to motivate the fixed-end force correction, consider the
problem shown in Fig. 2.4-13. Only one element is required to
obtain the analytical displacement and rotation solution. However,
the shear forces and bending moments, computed without using the
fixed-end force correction, are incorrect, and only approach the
analytical solutions as more elements are used.
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q
l v VvV V l .
[ | Elastic beam under
AN 2 distributed loading
| (linear analysis)
L 7]
b x
Shear
force (V) j—t
qL/2 + Convention for
positive V
— 1 element
0 | — 2 elements
L X — 4 elements
— Analytical solution
-qL/2
Bending (C—D

moment (My)

A\

L X

Convention for
positive My,

Figure 2.4-13: Schematic beam element forces/moments when
subjected to distributed loading
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The basic ideas of fixed-end force correction are shown in Fig. 2.4-
14. As seen, the original distributed loading in Fig. 2.4-14(a) is
replaced by the equivalent nodal point forces and moments in Fig.
2.4-14(b). (Of course, this procedure is the one always used in
finite element analysis when distributed loads are applied.) The
solution without any fixed-end force correction is shown in Fig.
2.4-14(c) and it is clear that the bending moment distribution does
not agree with the results from beam theory. This bending moment
distribution arises from the internal force vector in the beam
element, namely the beam element is subjected to the end-node
forces and moments and equilibrium is used to determine the
intermediate section forces and moments. In the fixed-end force
correction, the beam element is subjected, instead, to: 1) the end-
node forces and moments, from which the nodal point equivalent
forces of the distributed load have been removed, and 2) the
original distributed load. Then equilibrium is used to determine the
intermediate section forces and moments. The result is shown in
Fig. 2.4-14(d), and the bending moment diagram corresponds to
beam theory.

Similarly, when the fixed-end force correction is used for the
problem in Fig. 2.4-13, the exact shear forces and bending
moments are obtained for each finite element mesh.

The fixed-end force correction feature does not account for
body force loads acting on the element, for example, from mass-
proportional loads.
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a) Problem considered, 3 beam elements used b) Nodal point equivalent forces applied to model

Bending
moment

Mp
¢) Bending moment diagram obtained d) Bending moment diagram obtained
without fixed-end force correction with fixed-end force correction

Figure 2.4-14: Fixed-end force correction example

e For more information on the fixed end force correction, see the
following references:

ref: W. McGuire and R.H. Gallagher, Matrix Structural
Analysis, John Wiley & Sons, New York, 1979.

ref: M.L. Bucalem and K.J. Bathe, The Mechanics of Solids and
Structures— Hierarchical Modeling and the Finite
Element Solution, Springer, 2011.

e The option of fixed-end force correction is selected using
MASTER FEFCORR=YES (not the default).

The option of fixed-end force correction is applicable only to
linear static analysis. In addition the fixed-end force correction
cannot be used when the beam element uses the rigid end feature
described in Section 2.4.8.

If the fixed-end force correction is requested for an element
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group in which the fixed-end force correction cannot be performed,
the section forces are computed by integration of stresses over the
cross-section.

Section forces in the AUI

The section forces are accessible in the AUI using the variable
names AXTAL FORCE, BENDING MOMENT-S,

BENDING MOMENT-T, SHEAR FORCE-S, SHEAR FORCE-T
and TORSIONAL MOMENT. When the warping beam element is
used, the variable BIMOMENT is also available.

Comparison of nodal point forces and section forces
Consider the cantilever beam shown in Fig. 2.4-15. The section

twists under the transverse load, because the transverse load is
applied at the neutral axis, and not at the shear center.

Figure 2.4-15: Twisting of beam due to transverse force on neutral axis

The nodal point moment in the 7-direction is zero for this
problem. This result is consistent with the reaction at the fixed end,
in which the moment reaction along the beam direction is also zero.

However the section torsional moment computed using (2.4-81)
is non-zero. Near the built-in end, where the warping is fixed, the
torque produced by the load about the shear center is equilibrated
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by the change in bimoment and the section torsional moment is
nearly zero (see equation 2.4-34). Far from the built-in end, the
section torsional moment equals the torque produced by the load
P.

Thus for problems in which the neutral axis and shear center do
not coincide, the section forces can be more "physically realistic"
than the nodal point forces.

¢ When the neutral axis and shear center coincide, then, in linear
elastic analysis, the nodal point forces and moments are equal to
the section forces and moments computed by integration over the
cross-section. The nodal point transverse shear forces are also equal
to the section shear forces.

¢ When the neutral axis and shear center coincide, then, when the
element undergoes plasticity in elastic-plastic analysis, the nodal
point forces and moments are not in general equal to the section
forces and moments computed by integration over the cross-
section. Then, for example, the reaction forces might not exactly
agree with the corresponding section forces. However, as the mesh
is refined, the nodal point forces and moments will more closely
match the section forces and moments.

The shear forces are generally less accurate than the bending
moments, because numerical differentiation is used in the
computation of the shear forces.

2.4.6 Cross-sections
The following cross-section types are available:
General (properties)
Rectangular

Pipe
Box

2.4.6.1 General cross-section

e The section area, moments of inertia, and other properties can
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2.4.6.2

be directly specified using the CROSS-SECTION PROPERTIES
command. In this case, the formulas given in Section 2.4.2 should
be used to calculate these properties.

o The general cross-section can be used in both linear elastic and
large displacement elastic analysis.

e The general cross-section can be used with either the standard
beam element or the warping beam element. The choice of beam
element depends on the values of the cross-section geometric
properties, for example, if the torsional rigidity is much lower than
the polar moment of inertia, the section behaves similarly to a thin-
walled open section and the warping beam element should be used.

e In version 8.9 and lower, when the general cross-section is used
with the standard beam, the offsets to the shear center are ignored
and the principal directions are aligned with the s-# axes (that is,
parameters CTOFFSET, CSOFFSET, STINERTIA in the CROSS-
SECTION PROPERTIES command are ignored). This restriction is
removed in version 9.0 and higher. Therefore when running models
created in version 8.9 and lower, it may be necessary to set
CTOFFSET, CSOFFSET, STINERTIA to zero in order to obtain
the same results as in version 8.9.

e To include the Wagner effect of torsional coupling in large
displacements, set RRINERTIA, SRINERTIA, TRINERTIA,
WRINERTIA, DRINERTIA # 0 in the CROSS-SECTION
PROPERTIES command.

e In version 8.9 and lower, terms SRINERTIA, TRINERTIA,
WRINERTIA, DRINERTIA are defined slightly differently than in
version 9.0 and higher. In addition, term RRINERTIA is not
present in version 8.9 and lower. Therefore, when converting data
used in version 8.9 and lower, in which the Wagner effect is
included using these terms, it is necessary to recalculate these
terms, and add term RRINERTIA.

Rectangular cross-section

Figure 2.4-16 shows the rectangular cross-section and its
dimensions. ADINA evaluates the section properties from the
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given dimensions.

HEIGHT s
(H2)
S ——
WIDTH
(HD)

Figure 2.4-16: Rectangular cross-section
e The rectangular cross-section can be used in both linear elastic
and large displacement elastic analysis. In addition, the rectangular
cross-section can be used in MNO and large displacement elastic-
plastic analysis.

General comments

e The shear center of the cross-section coincides with the neutral
axis.

e The warping constant /, is assumed equal to zero.

e The Wagner effect cannot be included when using a rectangular
cross-section.

Comments for elastic analysis

e The formula

4
J=%(1—0.63E(1— HI DHPHZ, HI<H2

H2 12H2*
4

_L 1—0.63H—2 1—£4 H2°H1, H2<HI
3 HI 12H1
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is used to calculate the St. Venant torsional constant. J can be
multiplied by the user-specified parameter TORFAC.

e Parameters SC, TC are used to adjust the bending moment
inertias /I , I, of the cross-section using the parallel axis theorem:

I, « I +AxTC?
I, < 1,+AxSC?

The centroid of the beam cross-section remains at the origin of the
(s,7) system, so SC, TC cannot be interpreted as cross-section
offsets. If cross-section offsets need to be modeled, use rigid links
as described in Section 2.4.9.

e Parameters SSHEARF, TSHEARF can be used to calculate the
effective shear cross-section areas in the s and ¢ directions:

A" =SSHEARF x 4, 4™ = TSHEARF x 4

Comments for elastic-plastic analysis

e Shear deformation effects can be included in an approximate
manner as follows. Additional terms are added to the beam element
displacements:

r l"z r ”'2
u :...+(—1+6Z—6?jtﬁl +(—1+6Z—6?J5ﬂ2

rZ r3
V:...+(3F—2F ﬂz

r2 7"3
W:—(SF—zF}ﬂl

where [, 5, are additional degrees of freedom. These additional
terms result in constant shear distortions y,. and y,, along the

length of the beam, as shown in Fig. 2.4-17. The additional degrees
of freedom are condensed out at the element level.
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Figure 2.4-17: Assumptions of shear deformations through element

thickness for elasto-plastic beam element, rectangular
section

The shear effects are included using the command CROSS-
SECTION RECTANGULAR ... ISHEAR=YES. The default is to
not include shear effects.

e For beams in 3D action, warping effects are included by
modifying the longitudinal displacement as follows:

u=..+sta, +(s3t—st3)a2

where «,, a, are additional degrees of freedom. The additional

degrees of freedom are condensed out at the element level.
Warping effects are always included for beams in 3D action.
This procedure is described in the following reference:

ref.  K.J. Bathe and A. Chaudhary, "On the Displacement
Formulation of Torsion of Shafts with Rectangular
Cross-Sections", Int. Num. Meth. in Eng., Vol. 18, pp.
1565-1568, 1982.

e Table 2.4-2 and Figure 2.4-18 give the integration orders used
in the cross-section.
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Table 2.4-2:Integration orders in elasto-plastic beam analysis,
rectangular cross-section

Coordinate ~ Action Integration orders

Default Maximum

2-D action 3 7
S
3-D action 7 7
2-D action
t
3-D action 7 7

1) Newton-Cotes integration is used in all coordinate directions

2) One point integration is used in the #z-direction for the
rectangular section in 2-D action regardless of user input.

3) Seven point integration is used in the s- and #- directions for the
rectangular section in 3-D action, regardless of user input.
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Integration points ZA
equally spaced
HEIGHT | @ —®—® w5
1 2 3 .
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a) Integration point locations in s-direction

t i Integration points tA
equally spaced &
Y - o S
N4 1 gl @& 3 gl
®2
7
b) Integration point locations in t-direction, c¢) Integration point locations in t-direction,
2-D action 3-D action

Figure 2.4-18: Integration point locations in elasto-plastic
beam analysis, rectangular cross-section

e In explicit dynamic analysis, the use of condensed degrees of
freedom (shear deformations and warpings) will cause the program
to run considerably more slowly than if this option were not used.

2.4.6.3 Pipe cross-section
Figure 2.4-19 shows the pipe cross-section and its dimensions.

ADINA evaluates the section properties from the given
dimensions.

ADINA R & D, Inc. 119



Chapter 2: Elements
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Figure 2.4-19: Pipe cross-section
o The pipe cross-section can be used in both linear elastic and
large displacement elastic analysis. In addition, the pipe cross-

section can be used in MNO and large displacement elastic-plastic
analysis.

General comments

e The shear center of the cross-section coincides with the neutral
axis.

e The warping constant / is set to zero (as the pipe section

cannot warp).

e The Wagner effect cannot be included when using a pipe cross-
section.

Comments for elastic analysis

e The St. Venant torsional constant J is equal to the polar
moment of inertia of the section, multiplied by the user-
specified parameter TORFAC.

e Parameters SC, TC are used to adjust the bending moment
inertias I , I, of the cross-section, as in the rectangular cross-
section.
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e Parameters SSHEARF, TSHEARF can be used to calculate the
effective shear cross-section areas in the s and ¢ directions, as in the
rectangular cross-section.

Comments for plastic analysis

Table 2.4-3 and Figure 2.4-20 gives the integration orders used in
the cross-section. For the pipe section, polar coordinates are used:

gt
R=~s*+1,y=tan"' —.
s

Table 2.4-3:Integration orders in elasto-plastic beam analysis, pipe
section

Coordinate  Action Integration Integration orders

scheme Default Maximum
radius R Any Newton- 3 7
Cotes.
tangential 2_D action Composite 5 5
angle trapezoidal
3-D action rule 8 8
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Integration points
equally spaced

a) Integration point locations in
radial direction

Integration points Integration points
equally spaced equally spaced

b) Integration point locations in ¢) Integration point locations in
tangential direction, 2-D action tangential direction, 3-D action

Figure 2.4-20: Integration point locations in elasto-plastic
beam analysis, pipe section

2.4.6.4 Box cross-section
Figure 2.4-21 shows the box cross-section and its dimensions.

ADINA evaluates the section properties from the given
dimensions.
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Figure 2.4-21: Box cross-section

e The box cross-section can be used in both linear elastic and
large displacement elastic analysis. In addition, the box cross-
section can be used in MNO and large displacement elastic-plastic
analysis.

Table 2.4-4 summarizes the choices available for the box cross-
section.
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Table 2.4-4: Options for the box cross-section
Standard Standard Warping beam
beam, V89 beam
assumptions'
Formula for F1, FW, default | F1, FW, default | FW
calculation of Fl FW
torsional rigidity
(elastic material)
Warping constant | No Yes Yes
I, included
Wagner effect No Yes, by default | Yes, by default
allowed under
large
displacement
conditions
Plastic material No Yes Yes
model allowed

1) CROSS-SECTION BOX ... ASSUMPTIONS=V8&9

The table shows that either the standard beam or the warping beam
can be used in conjunction with the box cross-section.

¢ When the standard beam is used, there are two choices:

Standard beam, ASSUMPTIONS=V89:

» Warping

effects ignored except for the torsional rigidity; mass

matrix effects due to the warping constant 7/, are ignored.

» Torsional rigidity J calculated by formula F1 by default.
» Wagner effect not included in large displacement analysis.

Standard beam, ASSUMPTIONS=CURRENT:

» Warping

effects included; the torsional rigidity includes

warping effects and mass matrix effects due to the warping

constant / are included.

» Torsional rigidity J calculated by formula FW by default.
» Wagner effect included by default in large displacement

analysis.
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General comments

e The shear center of the cross-section coincides with the neutral
axis.

e The calculation of /, is made to be consistent with the
calculations done in the plastic material (in which all integrals are
evaluated numerically from the warping function). Hence the value
of /, might not be the same as the handbook values, particularly if

the walls of the cross-section are thick.

e The Wagner effect in large displacements is controlled with
CROSS-SECTION BOX ... WAGNER={DEFAULT, YES, NO}.
DEFAULT=YES unless the standard beam element is used and
ASSUMPTIONS=V§9.

Comments for elastic analysis

e The torsional rigidity is controlled with CROSS-SECTION
BOX ... TORFORMULA={DEFAULT, F1, FW}.

TORFORMULA=FI (textbook formula):

J =K HT7HS

TORFORMULA=FW (formula consistent with assumed warping
function):

J =1H3’ H6+1H4* HI+K’ (E—?E—TJ

TORFORMULA=DEFAULT: Use formula FW unless the standard
beam is used with ASSUMPTIONS=V89, otherwise use formula
F1.

In these formulas, K = H3 Ha H7 H8 (the shear flow

H3 H7 + H4 H8
constant). Both of these formulas assume that the walls of the box
section are thin, and then these formulas are numerically almost
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equal to each other.
When the warping beam is used, formula FW is always used.
J can be multiplied by the user-specified parameter TORFAC.

e Parameters SC, TC are used to adjust the bending moment
inertias /I , I, of the cross-section, as in the rectangular cross-
section.

e Parameters SSHEARF, TSHEARF can be used to calculate the
effective shear cross-section areas in the s and ¢ directions, as in the
rectangular cross-section.

Comments for elastic-plastic analysis

e The locations and the labeling of the integration points are given
in Fig. 2.4-22. For each direction in the cross-section, Newton-
Cotes integration is used with 1, 3, 5, 7 integration points in that
direction (default 3). The default integration order is sufficient to
exactly integrate all quantities in elastic analysis (not considering
the Wagner effect). However, the integration order can be
increased in order to capture the spread of plasticity throughout the
cross-section.

Each integration point is labeled with a four digit number, the
first digit giving the r integration point and the last three digits
giving the location within the cross-section. For example,
integration point 2312 denotes integration point 2 in the r direction
and integration point 312 in the cross-section. This integration
point is in the left web of the cross-section.

It can happen that there are two integration points at the same
physical location, yet the stresses are different at these points. This
happens because the warping function is not continuous at sharp
corners or branches in the cross-section.
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Figure 2.4-22: Numerical integration in the box cross-section

2.4.6.5 I cross-section

Figure 2.4-23 shows the I cross-section and its dimensions.
ADINA evaluates the section properties from the given

dimensions.

e The I cross-section can be used in both linear elastic and large
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displacement elastic analysis. In addition, the I cross-section can be
used in MNO and large displacement elastic-plastic analysis.

Table 2.4-5 summarizes the choices available for the I cross-

section.
WIDTH 2
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v
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(H6) ;
ueigyt | 18 1 L
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>
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Figure 2.4-23: I cross-section
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Table 2.4-5: Options for the I cross-section

Standard Standard Warping beam
beam, V89 beam
assumptions'
Shear center At neutral axis, | At shear center | At shear center
shear center
effects are
ignored
Formula for F1,F2, FW, F1,F2, FW, Fw
calculation of default F1 default FW
torsional rigidity
(elastic material)
Warping constant | No Yes Yes
I, included
Wagner effect No Yes, by default | Yes, by default
allowed under
large
displacement
conditions
Plastic material No Yes Yes
model allowed

1) CROSS-SECTION I ... ASSUMPTIONS=V89

The table shows that either the standard beam or the warping beam
can be used in conjunction with the I cross-section. However, it is
not recommended that the standard beam be used with the I cross-
section. In order to use the standard beam with the I cross-section,
set CROSS-SECTION I ... STANDARD=YES (default is NO).

¢ When the standard beam is used, there are two choices:
Standard beam, ASSUMPTIONS=V89:

» Offsets to the shear center are not included. Therefore
transverse forces applied at the nodes are assumed to be acting
through the beam’s shear center and hence cause no twisting.

» Warping effects ignored except for the torsional rigidity; mass
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matrix effects due to the warping constant 7/, are ignored.

» Torsional rigidity J calculated by formula F1 by default.
» Wagner effect not included in large displacement analysis.

Standard beam, ASSUMPTIONS=CURRENT:
> Offsets to the shear center are included.
» Warping effects included; the torsional rigidity includes
warping effects and mass matrix effects due to the warping

constant /, are included.
» Torsional rigidity J calculated by formula FW by default.

» Wagner effect included by default in large displacement
analysis.

General comments

o The calculations of /, and ¢, are made to be consistent with

the calculations done in the plastic material (in which all integrals
are evaluated numerically from the warping function). Hence the
values of 7, ¢, might not be the same as the handbook values of

these quantities, particularly if the walls of the cross-section are
thick.

o The Wagner effect in large displacements is controlled with
CROSS-SECTION I ... WAGNER={DEFAULT, YES, NO}.
DEFAULT=YES unless the standard beam element is used and
ASSUMPTIONS=V89

Comments for elastic analysis

e The torsional rigidity is controlled with CROSS-SECTION I ...
TORFORMULA={DEFAULT, F1, F2, FW}.

TORFORMULA=F1 (textbook formula):
J= %(H43H1 +H6’H3 + H5'H7)
TORFORMULA=F2 (alternate textbook formula):

J= %(H43H1 +H6'H3 + H53H8)
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TORFORMULA=FW (formula consistent with assumed warping
function):

J = %(H43H1 +H6’H3 + H5’H7) (same formula as F1)

TORFORMULA=DEFAULT: Use formula FW unless the standard
beam is used with ASSUMPTIONS=V89, use formula F1 if the
standard beam is used with ASSUMPTIONS=V§9.

These formulas assume that the walls of the I section are thin,
and then these formulas are numerically almost equal to each other.
When the warping beam is used, formula FW is always used.

J can be multiplied by the user-specified parameter TORFAC.

e Parameters SC, TC are used to adjust the bending moment
inertias I , I, of the cross-section, as in the rectangular cross-
section.

e Parameters SSHEARF, TSHEARF can be used to calculate the
effective shear cross-section areas in the s and ¢ directions, as in the
rectangular cross-section.

Comments for elastic-plastic analysis

e The locations and the labeling of the integration points are given
in Fig. 2.4-24. For each direction in the cross-section, Newton-
Cotes integration is used with 1, 3, 5, 7 integration points in that
direction (default 3). The default integration order is sufficient to
exactly integrate all quantities in elastic analysis (not considering
the Wagner effect). However, the integration order can be
increased in order to capture the spread of plasticity throughout the
cross-section.

Each integration point is labeled with a four digit number, the
first digit giving the r integration point and the last three digits
giving the location within the cross-section. For example,
integration point 2312 denotes integration point 2 in the r direction
and integration point 312 in the cross-section. This integration
point is in the top flange of the cross-section.

It can happen that there are two integration points at the same
physical location, yet the stresses are different at these points. This
happens because the warping function is not continuous at sharp
corners or branches in the cross-section.
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Figure 2.4-24: Numerical integration in the I cross-section

2.4.6.6 U cross-section

Figure 2.4-25 shows the U cross-section and its dimensions.
ADINA evaluates the section properties from the given
dimensions.

e The U cross-section can be used in both linear elastic and large
displacement elastic analysis. In addition, the U cross-section can
be used in MNO and large displacement elastic-plastic analysis.

Table 2.4-6 summarizes the choices available for the U cross-
section.
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Figure 2.4-25: U cross-section
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Table 2.4-6: Options for the U cross-section

Standard Standard Warping beam
beam, V89 beam
assumptions'

Shear center

At neutral axis,

At shear center

At shear center

shear center
effects are

ignored
Formula for F1, F2, FW, F1,F2, FW, FwW
calculation of default F1 default FW
torsional rigidity
(elastic material)
Warping constant | No Yes Yes
I, included
Wagner effect No Yes, by default | Yes, by default
allowed under
large
displacement
conditions
Plastic material No Yes Yes

model allowed

1) CROSS-SECTION U ... ASSUMPTIONS=V§9

The table shows that either the standard beam or the warping beam
can be used in conjunction with the U cross-section. However, it is
not recommended that the standard beam be used with the U cross-
section. In order to use the standard beam with the U cross-section,
set CROSS-SECTION U ... STANDARD=YES (default is NO).

¢ When the standard beam is used, there are two choices:

Standard beam, ASSUMPTIONS=V89:
» Offsets to the shear center are not included. Therefore
transverse forces applied at the nodes are assumed to be acting
through the beam’s shear center and hence cause no twisting.
» Warping effects ignored except for the torsional rigidity; mass
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matrix effects due to the warping constant 7/, are ignored.

» Torsional rigidity J calculated by formula F1 by default.
» Wagner effect not included in large displacement analysis.

Standard beam, ASSUMPTIONS=CURRENT:
» Offsets to the shear center are included.
» Warping effects included; the torsional rigidity includes
warping effects and mass matrix effects due to the warping

constant /, are included.

» Torsional rigidity J calculated by formula FW by default.
» Wagner effect included by default in large displacement
analysis.

General comments

e The calculations of /, and ¢, are made to be consistent with

the calculations done in the plastic material (in which all integrals
are evaluated numerically from the warping function). Hence the
values of /,,c, used in the elastic material might not be the same

as the handbook values of these quantities, particularly if the walls
of the cross-section are thick.

o The Wagner effect in large displacements is controlled with
CROSS-SECTION U ... WAGNER={DEFAULT, YES, NO}.
DEFAULT=YES unless the standard beam element is used and
ASSUMPTIONS=V§9.

Comments for elastic analysis

¢ The torsional rigidity is controlled with CROSS-SECTION U ...
TORFORMULA={DEFAULT, F1, F2, FW}.

TORFORMULA=F1 (textbook formula):
1
J= 5(2 H4°H1 + H3'H6)
TORFORMULA=F2 (alternate textbook formula):

J= l(2 H4’HS + H33H5)
3
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TORFORMULA=FW (formula consistent with assumed warping
function):

J= l(2 H4°H7 + H3'H2)
3

TORFORMULA=DEFAULT: Use formula FW unless the standard
beam is used with ASSUMPTIONS=V89, use formula F1 if the
standard beam is used with ASSUMPTIONS=V§9.

These formulas assume that the walls of the U section are thin,
and then these formulas are numerically almost equal to each other.
When the warping beam is used, formula FW is always used.

J can be multiplied by the user-specified parameter TORFAC.

e Parameters SC, TC are used to adjust the bending moment
inertias I , I, of the cross-section, as in the rectangular cross-
section.

e Parameters SSHEARF, TSHEARF can be used to calculate the
effective shear cross-section areas in the s and ¢ directions, as in the
rectangular cross-section.

Comments for elastic-plastic analysis

e The locations and the labeling of the integration points are given
in Fig. 2.4-26. For each direction in the cross-section, Newton-
Cotes integration is used with 1, 3, 5, 7 integration points in that
direction (default 3). The default integration order is sufficient to
exactly integrate all quantities in elastic analysis (not considering
the Wagner effect). However, the integration order can be
increased in order to capture the spread of plasticity throughout the
cross-section.

Each integration point is labeled with a four digit number, the
first digit giving the r integration point and the last three digits
giving the location within the cross-section. For example,
integration point 2312 denotes integration point 2 in the r direction
and integration point 312 in the cross-section. This integration
point is in the top flange of the cross-section.

It can happen that there are two integration points at the same
physical location, yet the stresses are different at these points. This
happens because the warping function is not continuous at sharp
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corners or branches in the cross-section.
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Figure 2.4-26: Numerical integration in the U cross-section

2.4.6.7 L cross-section

Figure 2.4-27 shows the L cross-section and its dimensions.

ADINA evaluates the section properties from the given
dimensions.

NHEIGHT

e The L cross-section can be used in both linear elastic and large
displacement elastic analysis. In addition, the L cross-section can

be used in MNO and large displacement elastic-plastic analysis.
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Table 2.4-7 summarizes the choices available for the L cross-

section.

Table 2.4-7: Options for the L cross-section

Standard Standard Warping beam
beam, V89 beam
assumptions'
Orientation of Principal Horizontal leg | Horizontal leg
cross-section directions aligned with s aligned with s axis

aligned with s-t
axes

axis

Shear center

At neutral axis,
shear center
effects are

At shear center

At shear center

ignored
Formula for F1, F2, FW, F1, F2, FW, Fw
calculation of default F1 default FW
torsional rigidity
(elastic material)
Warping constant | No Yes Yes
[, included
Wagner effect No Yes, by default | Yes, by default
allowed under
large
displacement
conditions
Plastic material No Yes Yes

model allowed

1) CROSS-SECTION L ... ASSUMPTIONS=V§9

The table shows that either the standard beam or the warping beam
can be used in conjunction with the L cross-section. However, it is
not recommended that the standard beam be used with the L cross-
section. In order to use the standard beam with the L cross-section,
set CROSS-SECTION L ... STANDARD=YES (default is NO).
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Figure 2.4-27: L cross-section
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¢  When the standard beam is used, there are two choices:
Standard beam, ASSUMPTIONS=V89:

» The principal axes are aligned with the s-7 axes.

» Offsets to the shear center are not included. Therefore
transverse forces applied at the nodes are assumed to be acting
through the beam’s shear center and hence cause no twisting.

» Warping effects ignored except for the torsional rigidity; mass

matrix effects due to the warping constant / are ignored.

» Torsional rigidity J calculated by formula F1 by default.
» Wagner effect not included in large displacement analysis.

Standard beam, ASSUMPTIONS=CURRENT:
» The horizontal leg is aligned with the s axis; the vertical leg is
aligned with the ¢ axis.
» Offsets to the shear center are included.
» Warping effects included; the torsional rigidity includes
warping effects and mass matrix effects due to the warping

constant /, are included.
» Torsional rigidity J calculated by formula FW by default

» Wagner effect included by default in large displacement
analysis.

General comments

e The calculations of /, and c_,c, are made to be consistent with

the calculations done in the plastic material (in which all integrals
are evaluated numerically from the warping function). Hence the

values of /,,c,c, used in the elastic material might not be the

same as the handbook values of these quantities, particularly if the
walls of the cross-section are thick.

o The Wagner effect in large displacements is controlled with
CROSS-SECTION L ... WAGNER={DEFAULT, YES, NO}.
DEFAULT=YES unless the standard beam element is used and
ASSUMPTIONS=V§9.
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Comments for elastic analysis

e The torsional rigidity is controlled with CROSS-SECTION L ...
TORFORMULA={DEFAULT, F1, F2, FW}.

TORFORMULA=F1 (textbook formula):
1
J =—(H3’H2 + H4’HS)
3
TORFORMULA=F2 (alternate textbook formula):
1
J =—( H3’H8 + H4’H7)
3
TORFORMULA=FW (formula consistent with assumed warping
function):

J= %(H33H2 + H43H5) (same formula as F1)

TORFORMULA=DEFAULT: Use formula FW unless the standard
beam is used with ASSUMPTIONS=V89, use formula F1 if the
standard beam is used with ASSUMPTIONS=V&9.

These formulas assume that the walls of the L section are thin,
and then these formulas are numerically almost equal to each other.
When the warping beam is used, formula FW is always used.

J can be multiplied by the user-specified parameter TORFAC.

e When the principal axes are aligned with the s and 7 axes, the

maximum and minimum principal bending moments of inertia
(about the s and ¢ axes) are obtained as follows:

2
I +1) I. -1,
Iss: XX2 2 +\/( - 2 )yj +]fy
2
I”:]ﬂ;[yy_\/[lxxglyy] +Ify

where the moments and products of inertia with respect to the local
axes x and y are:
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XX

Yy

_ H4HP

2 3 2
+H1H4(E—CXJ + H612B +H6H3(?—CXJ

3 2 3 2
:H1H4 +H1H4 H—4—C +H3H6 +HS5H3 H4+H—6—CV
12 2 7 12 2 ’

I, :H1H4(H71—CXJ(H?4—CJ)]+H6H3(H73—CXJ[H4+H76—Cyj

and where (C,, C,) are the centroid coordinates, measured from the
bottom of the section. In this case, the angle between the s principal
axis and the horizontal is determined to maximize the following

expression: [ =1 _cos’ 0+ I, sin” @ —1,,sin26 . The result is

0=4(atan2(~1,,.~4(1,, ~1..)))

This angle is shown in Fig 2.4-27.

e  When the legs are aligned with the s and ¢ axes, then 8 =0 and

e Parameters SC, TC are used to adjust the bending moment
inertias I , I, of the cross-section, as in the rectangular cross-
section. When the horizontal leg is aligned with the s axis, I is
also adjusted.

e Parameters SSHEARF, TSHEARF can be used to calculate the
effective shear cross-section areas in the s and ¢ directions, as in the
rectangular cross-section.
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Comments for elastic-plastic analysis

e The locations and the labeling of the integration points are given
in Fig. 2.4-28. For each direction in the cross-section, Newton-
Cotes integration is used with 1, 3, 5, 7 integration points in that
direction (default 3). The default integration order is sufficient to
exactly integrate all quantities in elastic analysis (not considering
the Wagner effect). However, the integration order can be
increased in order to capture the spread of plasticity throughout the
cross-section.

NTHICK1
Horizontal and vertical
leg separated for clarity
leg Integration points

evenly spaced

221® )

11 2'() Horizontal leg NTHICK?2
@ 111® ®
211 212 - 121
NLEG2

Figure 2.4-28: Numerical integration in the L cross-section

Each integration point is labeled with a four digit number, the
first digit giving the r integration point and the last three digits
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giving the location within the cross-section. For example,
integration point 2212 denotes integration point 2 in the r direction
and integration point 212 in the cross-section. This integration
point is in the vertical leg of the cross-section.

It can happen that there are two integration points at the same
physical location, yet the stresses are different at these points. This
happens because the warping function is not continuous at sharp
corners or branches in the cross-section.

2.4.7 Moment-curvature beam element

e In practical engineering analysis, the data available for the
description of the behavior of beam members may be given only in
the form of relationships between bending moment and curvature,
and between torsional moment and angle of twist. ADINA offers
the capability of directly using these data without having to define
an "equivalent" stress-strain law and the exact beam cross-sectional
shape.

This element is suitable for modeling nonlinear elastic and
elasto-plastic beam problems involving arbitrary cross-sections,
especially cross-sections that are neither rectangular nor circular.

e The element can be used either with the small displacement
formulation (in which case the formulation is materially-nonlinear-
only) or with the large displacement formulation (in which case the
displacements/rotations can be large). In all cases, the strains are
assumed to be small.

¢ In the moment-curvature input, it is assumed that both the
centroid and the shear center of the beam cross-section lie on the 7-
axis of the element: transverse forces applied to the element cannot
generate twisting (as with a shear center offset) and axial forces
applied to the element cannot generate bending (as with a centroid
offset).

e The flexural and the torsional behavior of the beam element are
respectively described by "bending moment vs. curvature" and
"torsional moment vs. angle of twist" relationships. These
relationships are input in ADINA in the form of multilinear
functions (see Figure 2.4-29).
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Typical beam data set: ADINA input:
Moment F. Moment
i+1
Fy
Fiq

F; axial force //‘

(can be positive
or negative) !
Curvature rl
(or twist angle per unit length)

S
R

By ! Curvature
(or twist angle
———————————— - per unit length)

Axial force

Figure 2.4-29: Input curves for the moment-curvature models (curves are
shown only for positive forces, moments and curvatures/twists)

¢ The "bending moment vs. curvature" and "torsional moment vs.
angle of twist" relationships are functions of the axial force. Note
that the axial force is positive when the element is in tension and is
negative when the element is in compression. The sign
conventions used for moments and torsion is that used for local
node 2 in Figure 2.4-2.

e The flexural behavior of the beam element is defined by two
"bending vs. curvature" relationships, one for each principal plane

o . 1 : :
of inertia. Curvature is defined as y =— where p is the radius

of curvature. For a linear element (linear elastic material, small
displacements/small strains), the relationship between bending

.M
moment and curvature is — = E7 .

V4

¢ The input for the torsional behavior of the element is similar to
that for bending: A multilinear function is used to express the
torsional moment in terms of the angle of twist per unit length.

e Note that the beam element does not include any shear
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deformation when the moment-curvature description is used.

¢ Note also that warping effects must be taken into account in the
definition of the "torsional moment vs. twist" input curve if
necessary.

e For computation of the beam element stiffness matrix and
internal force vector, numerical integration (Newton-Cotes) is only
used for integration along the length of the element (r-axis) and no
integration is needed over the cross-section (s-axis and t-axis).

e Thermal effects can be included in moment-curvature relations.

Nonlinear elastic model: A nonlinear elastic model can be used
(see Figure 2.4-30). In this case, the behavior for negative
curvatures (resp. twist angles) may be different than the behavior
for positive curvatures (resp. twist angles). The axial force versus
axial deformation relationship is always linear elastic.

Note that the last segments of the moment-curvature curve are
extrapolated if necessary, in order to calculate the moment when
the curvature or twist angle per unit length is out of the input curve
range. The end points of the curve do not represent rupture points.
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ADINA input for a given axial force:

Moment 4

N Extrapolation used in ADINA

o~

Last input
data point

First input

v

Curvature
(or twist angle per
unit length)

First and last data points
are not rupture points

data point

Figure 2.4-30: Nonlinear elastic moment-curvature beam input

Elastic-plastic model: For the analysis of beam members
undergoing plastic deformations, ADINA offers bilinear and
multilinear plasticity. Hardening can be linear isotropic, linear
kinematic or linear mixed, as shown in Figure 2.4-31.

ADINA R & D, Inc.
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Y A
Yyield[ — =~ —
0
Vyield [
=
2
S >
@
N
> x
=
. . . v 2
Kinematic hardening g
&
Mixed hardening
. . \
Isotropic harde_rﬂrlg// -

(x, y): (axial strain, axial force), or
(curvature, bending moment) for a given axial force, or

(angle of twist/unit length, torsional moment) for a given
axial force

Figure 2.4-31: Hardening models for moment-curvature beams

The moment-curvature plasticity model consists of uniaxial

plasticity laws respectively applied to the axial strain, each bending
curvature, and the twist angle per unit length:

Axial force/axial strain relationship: The relationship can either

be symmetric or non-symmetric with respect to the sign of the
axial strain.

Bending moment/curvature relationship: The relationship can
either be symmetric or non-symmetric with respect to the sign
of the curvature. The relationship can depend on the axial force
and can be different in axial tension and axial compression.

Torsional moment/twist angle per unit length relationship: The
relationship can either be symmetric or non-symmetric with
respect to the sign of the twist angle per unit length. The
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relationship can depend on the axial force and can be different
in axial tension and axial compression.

In the symmetric case (Figure 2.4-32), enter only the positive
section of the axial force/axial strain, bending moment/curvature or
torsional moment/twist angle curve. The first data point always
corresponds to yielding and the last data point always corresponds

to rupture.
Y A
y o
rupture |\\\ Rupf[ure:
1 | last input
Slope must data point
decrease as
X Increases [
1
Yyield [ I
1
I [
| 1
Yielding: ! !
First input ! |
data point | |
I |
| 'y
L
xyicld xrupture

See Figure 2.4-31 for definition of (x, y)
Figure 2.4-32: Symmetric elasto-plastic moment-curvature beam input

In the non-symmetric case (Figure 2.4-33), enter the entire axial
force/axial strain, bending moment/curvature or torsional
moment/twist angle curve. The first data point always corresponds
to negative rupture and the last data point always corresponds to
positive rupture. One data point - the zero point — must be at the
origin. The data point prior to the zero point corresponds to the
negative yield and the data point after the zero point corresponds to
the positive yield. A different number of data points can be used
for the positive and negative sections of the curve.
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y Y A
positive [~ — = — = — = — - — - L
rupture
Curve cannot (?l(érr)eearsléu:;
pass through .
this quadrant Y positive T X increases
yie

be at the origin

Xnegative X negative\

I

I

I

. I

One point must |
I

[

I

I

n X

T rupture yield T X e

| X positive positive
! 1 yield rupture
| I
i {—-| Y negative
| yield Curve cannot
| pass through
! this quadrant

_____________ Y negative
rupture

First point: negative rupture point

Point before origin: negative yield point
Point after origin: positive yield point
Last point: positive rupture point

See Figure 2.4-31 for definition of (x, y)

Figure 2.4-33: Non-symmetric elasto-plastic moment-curvature beam input

e To obtain bilinear plasticity, define a multilinear plasticity curve
with only two segments.

e Bending moment and torsion relationships can depend on the
axial force and this dependence can be different in tension and in
compression.

e The input for the bending moment/curvature and torsional
moment/twist curves consists of bending moment/curvature curves
for different levels of axial force. In the following, we discuss the
calculation of the bending moment/curvature curve for a level of
axial force that is not input (the calculation of the torsional
moment/twist curve is similar).

150 ADINA Structures — Theory and Modeling Guide



2.4: Beam elements

To obtain the bending moment/curvature curve for a level of
axial force not input, interpolation is used. This interpolation is
performed, not on the bending moment/curvature curves, but on the
bending moment/plastic curvature curves; the bending
moment/plastic curvature curves are automatically calculated from
the bending moment/curvature curves.

The idea is exactly the same as is used in thermo-plasticity. In
thermo-plasticity, the input is a set of stress-strain curves for
different temperatures. Interpolation is used to obtain the stress-
strain curve for a given temperature. And this interpolation is
performed on the stress - plastic strain curves, and not on the stress-
strain curves. (See Fig 3.6-3 in Section 3.6.2.)

Because interpolation is performed on the bending
moment/plastic curvature curves instead of the bending
moment/curvature curves, care should be taken to enter enough
bending moment/curvature curves for different axial force levels,
especially when the plastic curvature is small for one of the
bending moment/curvature curves.

When the response is elastic, the interpolation is performed on
the bending moduli.

o The same element section can be plastic with respect to the axial
deformation, but still elastic with respect to bending or torsion.
The same remark applies for rupture.

¢ Bending about the two axes is treated independently. Also, there
is no interaction between bending and twist. As such, the same
element can be plastic in bending about one axis while still elastic
with respect to bending about the other axis, or with respect to
torsion.

¢ Rupture depends on the value of the accumulated effective
plastic axial strain, accumulated effective plastic curvature or
accumulated effective plastic angle of twist per unit length.

o To trigger the rupture calculation of the moment curvature
element, the following conditions must be simultaneously met:

1. number of force-strain points > 2 (asymmetric)
2. number of twist-moment points > 2 (asymmetric)
3. number of curvature-moment points > 2 (asymmetric)
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Typical data curve:

by
Vi initial elastic rigidity . i
. . L Vi
Y, © cyclic elastic rigidity

See Figure 2.4-31 for definition of (x, y)
ADINA result (shown here for the bilinear case):

Y A
y A
: Y

yl d 2
' s 1
L, /A T

s ¥ u i
X X
M/—> >
Plastic strain

Figure 2.4-34: Typical material curve with a cyclic rigidity different than
the initial rigidity

e The elastic-plastic model includes a special option for cyclic
behavior, in which the elastic rigidities when unloading first starts
differ from the initial rigidities (see Figure 2.4-34). With this
option, the elastic rigidity (in bending, torsion or axial deformation)
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changes as soon as the yield stress is reached. The ratio of the new
cyclic elastic rigidity to the initial elastic rigidity is defined by user
input. Once updated, the elastic rigidity remains constant for the
rest of the analysis, for loading and unloading.

e In moment-curvature models, the cross-sectional area and the
cross-sectional moments of inertia need to be input for the mass
matrix computation (in case of mass proportional loading or
dynamic analysis). They are used only for mass matrix
computation.

e The results can be obtained in the form of element nodal forces
and moments, or in the form of stress resultants given at the
integration point locations on the element.

Stress resultants: Each element outputs, at the integration point
locations on the element r-axis, the following information to the
porthole file, based on the material model. This information is
accessible in the AUI using the given variable names.

The integration point locations on the element 7-axis are shown in
Figure 2.4-35. In the AUI, these integration point locations are
considered to be section points, not element result points (see Section

13.1.1).
Force-r

Int pt 2 Node 2 /r

Int pt 1 \ v 51 4

s e \

Nodel\\ l \ Moment-r
—bbl v
=\ pnid

> t v Moment-t

v
Moment-s /L v
v

Force-r is positive in tension.
Force-s, Force-t are not computed.

Figure 2.4-35: Stress resultant output option for
the moment-curvature models

The results are always given in the element local coordinate system
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(7,s,t). Note that a positive value of the Moment-s at a section point
location points in the negative s-direction.

Nonlinear elastic: AXTAL FORCE, TORSIONAL MOMENT,
BENDING_MOMENT— S, BENDING_MOMENT—T P
AXIAL_S TRAIN, TWIST, CURVATURE-S, CURVATURE-T

Plastic-multilinear: PLASTIC FLAG AXIAL,
PLASTIC FLAG TORSION, PLASTIC FLAG BENDING-S,
PLASTIC FLAG BENDING-T, AXIAL FORCE,
TORSIONAL MOMENT, BENDING MOMENT-S,

BENDING MOMENT-T, AXIAL STRAIN, TWIST,
CURVATURE-S, CURVATURE-T,
PLASTIC AXIAL STRAIN, PLASTIC TWIST,

PLASTIC CURVATURE-S, PLASTIC CURVATURE-T,
ACCUM_PLASTIC AXIAL STRAIN,

ACCUM PLASTIC TWIST,

ACCUM_PLASTIC CURVATURE-S,

ACCUM PLASTIC CURVATURE-T, YIELD AXIAL FORCE,
YIELD TORSIONAL MOMENT,

YIELD BENDING MOMENT-S,

YIELD BENDING MOMENT-T

¢ Note that in a materially nonlinear analysis, the element nodal
moments are in general not equal to the moment stress resultants at
the integration points located at the nodes. The reason for this is
that in such cases the beam element does not exactly satisfy the
element internal equilibrium on the differential level; that is, the
element is a "true finite element". The differential equilibrium is, of
course, satisfied more accurately as the finite element mesh is
refined.

e Transverse forces are not computed at integration points since
the ADINA beam element formulation uses the equilibrium
equations of the complete element to directly determine the
transverse forces at the element end nodes.

e In the case of beam elements with rigid ends, the element stress
resultants are computed at the integration point locations
corresponding to the flexible part of the element, excluding the
rigid ends.
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Nodal point forces: Same as for the elastic beam element.

2.4.8 Additional features

End-release option: To model beam internal hinges, a moment and
force release option can be used (see Fig. 2.4-36). Twisting
moments, axial forces and bimoments (for warping beams) can also

be released.

Internal hinge

y

Shear force

|

y

:

- r

r

—

Element 1

Specify moment release at
element 1, local node 2, or

Element 2

element 2, local node 1

(a) Moment to be released at
internal hinge

released \
E

e
- o~

—

r

—

Element 1

Element 2

Specify shear force release at
element 1, local node 2, or
element 2, local node 1

(b) Shear force to be released

Figure 2.4-36: Use of moment and shear force release options

e A brief description of the theory of end-releases follows:

For static linear elastic analysis without warping degrees of
freedom, the stiffness matrix and internal force vector for a beam

element can be written as

Ku=F

In this expression, u contains the displacements and rotations of
the beam nodes, in the beam local coordinate system:

T _[.1 1
u —[ur u,

F contains the forces and moments of the beam nodes,

1

u,

61

r

91

1
0 u

2
”

2 2 N2
u: u 0

s t r

0 0],
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FT:[SI Sz S3 S4 Ss Se S7 Ss S9 SlO S11 Slz]

and K is the stiffness matrix. These expressions use the same
notations as Figures 2.4-1 and 2.4-2.

Now suppose that one or more of the local displacements or
rotations is to be released. “Releasing” means that the
corresponding force is set equal to zero. For example, if the axial

displacement at local node 2 is to be released, then force S, is set

to zero.

In order to release the selected local displacements or rotations, the
following procedure is used:

1) u is rearranged and partitioned: u’ = [uf1 uz] , so that u
contains all of the local displacements / rotations to be retained, and

u, contains all of the local displacements / rotations to be released.

For example, if the axial displacement at local node 2 is to be
released, then

s t r s r
T _ 2
uj =[u |

2) F and K are similarly rearranged and partitioned. The
resulting system of equations is

T _ 1 1 1 1 1 1 2 2 2 2 2
wo=(u ouw w00 0 W u 0 6 6]

Ky i Ky |u | [F
KZB ; KBB uB FB

3) The end release condition is now expressed as F, =0, and the
resulting system of equations becomes
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4) This system of equations is satisfied by choosing

(KAA - KABK;?KZB )uA =F,

oyl g T
u, =-K;Kou,

Therefore the stiffness matrix that is assembled into the global
system of equations is K ,, —K ,, K, K’,, .

e Any external forces acting onto the released degrees of freedom
are ignored.

e When the warping beam is used the warping degrees of freedom
can also optionally be released, using the same theory as described

above, and the result is that the corresponding bimoments are equal
to zero.

e The end release procedure is also implemented for nonlinear
analysis, both for materially nonlinear elements and also for
geometrically nonlinear elements.

e The end release procedure is available for static, frequency,
implicit dynamic, explicit dynamic, and mode superposition
analysis.

¢ End releases only affect the stiffness matrix and force vector,
not the mass matrix. Therefore inertial forces and moments (forces
and moments due to mass matrix effects) are not released in the
above procedure.

e Ifend releases are used in frequency or dynamic analysis, the
elements in which end releases are specified should be very short,
in order to minimize the inertial forces and moments.

e End releases are applied to the element local nodes (not to the
global nodes). Therefore, to model the hinge shown in Fig. 2.4-
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36(a), a moment end release can be applied to local node 2 of
element 1, or to local node 1 of element 2 (but not to both local
nodes).

The command used to specify end releases is ENDRELEASE.
For example, the input corresponding to Fig 2.4-36(a) might be

ENDRELEASE 1 12
EDATA

ENTRIES EL ENDRELEASE
11

DATAEND

This command releases the §,, force (# bending moment at local
node 2) of element 1.

e In large displacement / large rotation analysis, the global
directions corresponding to the released degrees of freedom change
as the model deforms. By default, this effect is fully included in the
end release calculations. However, this effect can occasionally slow
down convergence. For this reason, this effect can be controlled
using the options EGROUP BEAM
ENDRELEASE=(ACCURATE, APPROX1, APPROX?2).

If ENDRELEASE=ACCURATE (the default), the end releases
are evaluated in a local coordinate system corresponding to the
configuration of the beam in the previous equilibrium iteration.
Therefore, at convergence, the end releases are evaluated in
(almost) the current configuration of the beam. (At convergence,
the difference between the current equilibrium iteration and the
previous equilibrium iteration is very small.)

If ENDRELEASE=APPROXI1 or APPROX2, the end releases
are evaluated in a local coordinate system corresponding to the
configuration of the beam in the previous time step. Notice that the
local coordinate system does not change directions during the
equilibrium iterations. In this case, the released forces/moments
are not exactly zero at convergence, but these released
forces/moments should be small, especially if the time step size is
small. Compared to APPROX1, APPROX?2 includes an additional
approximation that reduces accuracy, but improves convergence.
Thus ACCURATE is more accurate than APPROX1 and
APPROX1 is more accurate than APPROX2; however APPROX2
converges better than APPROX1 and APPROX1 converges better
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than ACCURATE.

¢ In explicit dynamic analysis, the use of end releases will cause
the program to run considerably more slowly than if this option
were not used.

Rigid-end option: For the modeling of assemblages of braces and
struts, it is sometimes of interest that the joints of the structure be
considered as infinitely rigid (see Figure 2.4-37) . This condition
can be modeled using the rigid-end option: with this option, a
fraction of each end of the element can be considered as rigid.

End 1 is the end at node 1, end 2 is the end at node 2. It is
allowed for end 1 only to be rigid, end 2 only to be rigid, or both
ends to be rigid.

The lengths of the beam rigid ends are specified in the units of
the model.

One possible command input for the beam shown in Fig 2.4-38
is

EDATA

ENTRIES EL RIGID1 RIGIDZ2
1 0.2 0.4

DATAEND

In this example, the length of rigid end 1 is 0.2 units, and the length

of rigid end 2 is 0.4 units.
Physical problem: Finite element model:
[ b

Beam element

\

Rigid end

—————

— 1

o
i

h
i

e Fhptvtviots

~~
\

Figure 2.4-37: Modeling of a beam intersection using
elements with rigid ends
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0.2 04
T ]
1 D
Local node 1 Local node 2

Figure 2.4-38: Example of beam element rigid ends input
e The assumptions of the rigid-end option are as follows:

»In ADINA 8.8 and later, the rigid ends are assumed to be
perfectly (infinitely) rigid. In ADINA 8.7 and earlier, the rigid
ends are either assumed to be perfectly rigid, or only very stiff
(with rigidity calculated by multiplying the rigidity of the
element by a large number, such as 10°).

» The element, including its rigid ends, is formulated as one
single element. Hence, as for all beam elements, the internal
deformations and element internal forces are all referred to a
local coordinate system based on the end-nodes, and using the
assumptions of small internal relative deformations.

» The rigid ends will never undergo plasticity. Hence, although
the stress in the rigid ends may be very high (they are not
printed by the program), plasticity is not reached. This may be
quite unrealistic in a model using the rigid-end capability.

» The mass of the rigid ends is taken into account in the mass
matrix calculations.

¢ Rigid ends can be used in all beam analyses.

e When using warping beams with rigid ends, the warping degree
of freedom should be fixed at the rigid end.

2.4.9 Beam element modeling hints

e For modeling tapered beams or curved beams, the user needs to
divide such members into several elements. For the tapered beams
the user needs to divide the beam into several elements and use an
appropriate constant cross-section for each of these elements.
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¢ Off-centered beam elements can be created using rigid links
(see Fig. 2.4-39 and Section 5.15.2).

Physical problem: Finite element model:
Rigid panel
/< I-beam
I-beam Beam elements

— \

I~ / Beam element
Rigid links

Hollow square section

Figure 2.4-39: Use of rigid links for modeling of off-centered beams

¢ In order to model the bending due to an off-centroidal axial
force or transverse load, either apply the resulting moments directly
or apply the forces at an offset location using rigid links (Figure
2.4-40).

Beam

Rigid link —_* <

A$

Figure 2.4-40: Using rigid links to transfer loads to the centroid of the beam

e When solving problems involving flexural buckling, it may be
necessary to use a refined mesh. This is because the only second-
order strain terms included in the formulation are the terms needed
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2.49.1

to model the Wagner effect. Second-order strain terms
corresponding to flexural buckling effects are not included in the
formulation. However, by refining the mesh, it is possible to obtain
accurate flexural buckling effects.

e In the moment-curvature beam element, when using
nonsymmetric relationships, such as a nonsymmetric axial force -
axial strain relationship, it is helpful to apply a very small load in
the first step.

Consider a scenario in which the axial force - axial strain curve
has different moduli for tensile and compressive strains. At the
beginning of the first step, the strain is zero, and the program uses
the tensile modulus in this case. However, if the loading is
compressive, then the "wrong" modulus is used, and if the load is
large enough, the subsequent iterations do not converge. On the
other hand, if the load is very small, then even though the "wrong"
modulus is used in the first iteration, the response remains elastic,
the correct modulus is used thereafter and the iterations converge.
After the first step, the correct modulus is used, so the load
increment can be large after the first step.

Hints concerning the warping degrees of freedom

e The effects of fixing the warping can be significant for thin
open section beams.

e When defining the fixity for the warping beams, it is important
to know what type of physical condition leads to fixed warping in a
support and when the warping at a support is free. As an example,
when only the web of an I-beam is connected to the column while
its flanges are free to move out of their original plane, warping is
free. However, if the flanges of the beam are welded to the column,
they cannot move out of plane and warping is fixed.

o For a structural connection where several beams and columns
are connected at a point it is important to know how to assign the
warping degree of freedom. Fig. 2.4-41 shows one such example.
As can be seen, the warping degree of freedom is continuous for
the columns. However, warping for the beams at the point of
connection to column should be set to zero as their flanges are
welded to the column and cannot move out of plane. As such, the

162

ADINA Structures — Theory and Modeling Guide



2.4: Beam elements

user must define multiple nodes at the point of connection, assign
the warping degree of freedom for each node separately and
establish proper constraint equations between these multiple nodes
to ensure that they move and rotate together.

¢ Also, in modeling curved members using straight warping
beams special care should be taken regarding the continuity of the
warping degrees of freedom. The angle between any two
consecutive elements should be small to ensure the continuity of
warping displacements (Fig. 2.4-42).

Column

Weld

Weld

7

Beam

Beam

(a) Actual beam-column connection

Multiple nodes

Warping is continuous

Warping fixed

Warping fixed

(b) Warping beam representation

Figure 2.4-41: Modeling of several warping beams connected at a sharp angle
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...................... _ 0, -._0s
0, T ee— (-~
491 small \
‘/ N
Warping displacements

Figure 2.4-42: Discretization of a curved member using
straight warping beams

e In general, continuity of the warping deformation at a point
where several members meet not only depends on the angle at
which these members meet but also on the details of the
arrangement of the connector elements (bolts, welds, etc.)

e Warping degrees of freedom cannot be prescribed. In other
words, warping degrees of freedom can only be fixed or free.

e Warping degrees of freedom cannot be used in constraint
equations or rigid links.

e Bimoments cannot be specified as nodal loads.
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2.5 Iso-beam elements; axisymmetric shell elements

2.5.1 General considerations

¢ The iso-beam elements (which include the axisymmetric shell
elements) can be employed in the following forms, see Fig. 2.5-1:
plane stress 2-D beam with three degrees of freedom per node,
plane strain 2-D beam with three degrees of freedom per node,
axisymmetric shell with three degrees of freedom per node,
general 3-D beam with six degrees of freedom per node.

o The plane stress 2-D beam element is identical to the 3-D beam
element but constrained to act only in the YZ plane. Hence, all
motion of the 2-D plane stress beam element must occur in the YZ
plane (see Fig. 2.5-2).

o The difference between the plane strain and the plane stress 2-D
beam elements is that for the plane strain element, it is assumed
that the out-of-plane strain ¢, is equal to zero whereas the out-of-
plane stress a,, is equal to zero for the plane stress element.

¢ Note that it can be significantly more effective to use the 2-D
beam option instead of the general 3-D beam option, since then the
numerical integration is only performed in two dimensions and the
number of degrees of freedom is also reduced.
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Examples of general 3-D iso-beam elements:

T :.
]

Axisymmetric shell:
V4

e

Plane stress iso-beam:

Figure 2.5-1: 2-D iso-beam, axisymmetric shell, and 3-D iso-beam elements
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S

I 2
1
Z Element has constant
T rectangular cross-section
% Element can have 2, 3
or 4 nodes

Auxiliary node is not used,
set the auxiliary node to 0.

a) 2-node plane stress or plane strain beam element

Axis of
symmetry

z Element has varying
thickness cross-section

Y Element can have 2, 3
or 4 nodes

Auxiliary node is not used,
set the auxiliary node to 0.

b) 4-node axisymmetric shell element
Figure 2.5-2: Local node numbering; natural coordinate system

e The axisymmetric shell element formulation is an extension of
the 2-D beam element formulation in that the axisymmetric hoop
stress/strain components are included in the model. The
axisymmetric shell element must be defined in the YZ plane, and
lie in the +Y half plane.

e The cross-sectional areas of each of these elements are assumed
to be rectangular. The 2-D and 3-D beam elements can only be
assigned a constant area cross-section. The axisymmetric shell
element can be assigned a varying thickness.
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Auxiliary node ° 1-s plane

/\/
/

7/ S N2

2-node iso-beam

Elements have constant
rectangular cross-section.

N 1-s plane
3-node iso-beam - )\/
= Auxiliary node
~ e
4 2
3 ! 1-s plane
s )
- - - e

Auxiliary node

4-node iso-beam

¢) General 3-D isoparametric beam elements.

Figure 2.5-2: (continued)

e The elements can be employed with 2, 3 or 4 nodes. The 3 and
4-node elements can be curved, but it should be noted that the
element nodes must initially lie in one plane (which defines the r-s
plane).

e To model the torsional stiffness of the 3-D beam element
accurately, the warping behavior is represented as described in the
following reference:

ref.  K.J. Bathe and A. Chaudhary, "On the Displacement
Formulation of Torsion of Shafts with Rectangular
Cross-Sections", Int. J. Num. Meth. in Eng., Vol. 18, pp.
1565-1568, 1982.
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¢ Note that the formulation directly models shear deformations in
an approximate manner; namely, the shear deformations are
assumed to be constant over the cross-section (see ref. KIB, Fig.
5.18, p. 398). This corresponds to using shear factors equal to 1.0.
The elements can be employed to model thin and thick beams and
shells.

e Some applications using the element are published in the
following reference.

ref.  K.J. Bathe and P.M. Wiener, "On Elastic-Plastic
Analysis of [-Beams in Bending and Torsion",
Computers and Structures, Vol. 17, pp. 711-718, 1983.

o The isoparametric beam element is available in ADINA
primarily to model

» Curved beams

» Stiffeners to shells, when the shell element (described in
Section 2.7) is used

» Beams in large displacements
» Axisymmetric shells under axisymmetric loading

¢ Considering the analysis of thick curved beams, in order to
represent the hyperbolic stress distribution through the thickness,
the higher order elements (3 or 4-node elements) should be used.
This is because the nodal director vectors are constructed from the
geometry of the elements.

2.5.2 Numerical integration

ref. KUB
Sections 5.4.1
and 6.5.1

e The element matrices and vectors are formulated using the
isoparametric interpolation, and Gauss or Newton-Cotes numerical
integration is used to evaluate these matrices in all analyses. For the
2-D beam and axisymmetric shell elements, numerical integration
is only performed in the r-s plane, hence these elements are
considerably less expensive in terms of computer time than the
general 3-D element. The locations and labeling of the integration
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points are illustrated in Fig. 2.5-3. INR is the index giving the
location of the integration point in the r direction, with INR=1
corresponding to the lowest value of r, and INR=(integration point
order) corresponding to the highest value of r. INS and INT are
analogous for the s and t directions.

e The elements are based upon a mixed interpolation of
displacements and stresses.

31
32
33

13 12 11
label = 10(INR) + INS label = 10(INR) + INS

a) Newton-Cotes integration (3 x 3)  b) Gauss integration (3 X 2)

Figure 2.5-3: Examples of integration point numbering
for 2-D beam, axisymmetric shell, and
3-D beam elements

e Only the default integration order along the r-direction should
be used for the 2-, 3- and 4-node elements, i.e.:

» 2-node iso-beam: 1-point integration
» 3-node iso-beam: 2-point integration
» 4-node iso-beam: 3-point integration

These elements do not contain any spurious zero energy modes, do
not lock and are efficient in general nonlinear analysis.

e If, however, the default r-integration order is not used, the

results of an analysis can change drastically, for example, if 2-point
integration along the r direction is specified for the 2-node element
model shown in Fig. 2.5-4, the resulting displacement (A) is 0.0126
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(i.e., locking is observed).

e For the 3-D beam element, you can choose either 4x4 Gauss or
7x7 Newton-Cotes integration over the beam cross-section (along s
and t).

13 133

d) Gauss integration (3x2x2)

Figure 2.5-3: (continued)

2.5.3 Linear iso-beam elements

ref. KJB e The formulation of the element is presented in Chapter 5 of ref.
Section 5.4.1 KIJB.

e Itis assumed that the displacements, rotations, and strains are
infinitesimally small and the elastic-isotropic material is used.
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Physical problem: EI=10°
L=24
,P P=20
3
173 Ath:% - 09216
L ©A
(theoretical solution,
no shear)
2-node Hermitian beam (no shear):
P
Element 1 l
) | A=0.9216
L f
A
2-node iso-beams (with shear): P
Element 1  Element 2 i
> : —¢ A=0.8648
L2 L2 A
4-node iso-beam (with shear):
Element 1 l
/—/%
= ~ . A=0.9224

L3 L3~ LB A

Figure 2.5-4: Results of the analysis of a cantilever

e Since the iso-beam element stiffness matrix is calculated using
numerical integration, it is clear that the 2-node Hermitian beam
element (see Section 2.4.1) is more effective when straight beam
members in linear elastic analysis are considered. Hence, for the
linear analysis of many structures (such as frames, buildings,
shafts) only the 2-node Hermitian beam element should be used.

e Even when considering the linear analysis of a curved beam
member, it is frequently more cost-effective to model this beam as
an assemblage of straight 2-node Hermitian beam elements than to
use the curved iso-beam element.

¢ Note that the iso-beam element can only be employed with a
rectangular cross-section, whereas the linear 2-node Hermitian
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beam element can be used for any cross-section which can be
defined by the principal moments of inertia, cross-sectional area
and the shear areas input to ADINA.

¢ In linear analysis, the iso-beam element is primarily useful for
modeling stiffeners to shells when the 4-node or 8-node or 16-node
shell element (see Section 2.7) is employed. In this case the 2-, 3-
or 4-node iso-beam elements, respectively, together with the shell
elements can provide an effective finite element discretization of
the stiffened shell structure (see Fig. 2.5-5).

-

o Shell node
¢ [so-beam node

a) Stiffened plate

b) Stiffened shell

Note: Select master nodes and use rigid links to tie
the shell nodes and the iso-beam nodes together.

Figure 2.5-5: Models of stiffened plate and stiffened shell

e The solution results obtained using the isoparametric beam
elements are compared with those obtained using the 2-node
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Hermitian beam elements in Fig. 2.5-4. Considering the tip loaded
cantilever shown, a 2-node Hermitian beam element representation
gives the "exact" analytical value of displacements and section
forces/moments (compared with Bernoulli-Euler beam theory).
The 2-node iso-beam element yields approximate results, while the
4-node iso-beam element is very accurate. However, as is typical
in finite element analyses, the discrepancy in the solution becomes
negligibly small when a sufficiently fine mesh is used.

e The forces/moments at the element nodes are (in linear analysis)

F=KU

where K is the element stiffness matrix and U is the vector of
nodal point displacements. Hence, at internal element nodes the
forces/moments in F will be equal to the forces/moments, applied
externally or by adjoining elements, and are not the internal section
forces/moments.

2.5.4 Nonlinear iso-beam elements

e The formulation of the element is presented in Chapter 6 of ref.

Section 6.5.1 KIB.

e The element can be used with the following material models:
elastic, plastic-bilinear, plastic-multilinear, thermo-isotropic,
thermo-plastic, creep, plastic-creep, multilinear-plastic-creep,
creep-variable, plastic-creep-variable, multilinear-plastic-
creep-variable, shape-memory alloy.

e The element can be used either with a small displacement or a
large displacement formulation. In the large displacement
formulation, large displacements and rotations are allowed. In all
cases, only small strains are assumed.

All of the material models in the above list can be used with
either formulation. The use of a linear material with the small
displacement formulation corresponds to a linear formulation, and
the use of a nonlinear material with the small displacement
formulation corresponds to a materially-nonlinear-only
formulation.
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ref. KUIB
Section 6.6.3

¢ The iso-beam element can be particularly effective in geometric
nonlinear analysis of straight and curved members, because the
change in geometry due to the large displacements is modeled
accurately.

e The element matrices are evaluated using Gauss or Newton-
Cotes numerical integration. In elastic-plastic analysis, the stress-
strain matrix is modified to include the effects of plasticity. This
stress-strain matrix is based on the classical flow theory with the
von Mises yield condition and is derived from the three-
dimensional stress-strain law with the appropriate stresses and
strains set to zero.

e For the elasto-plastic and the thermo-elastic-plastic and creep
material models, the effective-stress-function algorithm of the
references given below is used.

ref. M. Koji¢ and K.J. Bathe, "The Effective-Stress-Function
Algorithm for Thermo-Elasto-Plasticity and Creep", Int.
J. Num. Meth. Engng., Vol. 24, No. 8, pp. 509-532,
1987.

ref. M. Koji¢ and K.J. Bathe, "Thermo-Elastic-Plastic and
Creep Analysis of Shell Structures", Computers &
Structures, Vol. 26, No 1/2, pp. 135-143, 1987.

2.5.5 Axisymmetric shell element

e The axisymmetric shell element can be thought of as a special
case of the iso-beam formulation (in the same way as an
axisymmetric element is a special case of the 2-D solid element).

e For the axisymmetric shell element, the hoop (circumferential)
stress and strain components are included in the iso-beam
formulation.

e The use of this element can be significantly more effective than
using axisymmetric 2-D solid elements when the shell structure to
be modeled is thin.
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¢ One radian of the axisymmetric shell is modeled when using
this element (as with the 2-D axisymmetric solid element).

2.5.6 Element mass matrices

ref. KUIB
Section 5.4.1

e The iso-beam element can be used with a lumped or a consistent
mass matrix, except for explicit dynamic analysis which always
uses a lumped mass.

e The consistent mass matrix is calculated using the isoparametric
formulation with the displacement interpolations given on p. 408 of
ref. KJB.

£,
e The lumped mass for degree of freedom i is M (f’] , where M

is the total mass, L is the element length and /, is a fraction of the

length associated with node i. The rotational mass is

1 0. (1
E M f’(g(b2 +d? )j where b, d are the width and depth of the

L
cross-section. For a 2-node iso-beam element ¢, =/, = > while
. L L
for a 4-node iso-beam element /|, =/, = s and (, =/, = 3 (see
Fig. 2.5-6).

e The rotational lumped mass can be multiplied by a user-
specified scalar ETA (except in explicit dynamic analysis).

2.5.7 Element output

e You can request that ADINA either print or save stresses or
forces.

Stresses: Each element outputs, at its integration points, the
following information to the porthole file, based on the material
model. This information is accessible in the AUI using the given
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variable names.

M M
2 2
@ L
a) 2-node element
M M M
4 2 4 Note: M =total mass
® ® ® of element (2-D or 3-D
beam elements)
b) 3-node element
M M M M
6 3 3 6
@ L L ®

¢) 4-node element

Figure 2.5-6: Construction of element lumped translational mass
matrix for the beam option of the iso-beam element

General 3-D iso-beam, elastic-isotropic material: STRESS-RR,
STRESS-RS, STRESS-RT, STRESS-SS, STRAIN-RR,
STRAIN-RS, STRAIN-RT, STRAIN-SS,
FE_EFFECTIVE_STRESS

Plane stress iso-beam, elastic-isotropic material: STRESS-RR,
STRESS-RS, STRESS-SS, STRAIN-RR, STRAIN-RS,
STRAIN-SS, FE_EFFECTIVE_STRESS

Plane strain iso-beam or axisymmetric shell, elastic-isotropic
material: STRESS-RR, STRESS-RS, STRESS-TT,
STRESS-SS, STRAIN-RR, STRAIN-RS, STRAIN-TT,
STRAIN-SS, FE EFFECTIVE STRESS

General 3-D iso-beam, elastic-isotropic material, thermal effects:
STRESS-RR, STRESS-RS, STRESS-RT, STRESS-SS,
STRAIN-RR, STRAIN-RS, STRAIN-RT, STRAIN-SS,
FE EFFECTIVE STRESS, THERMAL STRAIN,
ELEMENT TEMPERATURE
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Plane stress iso-beam, elastic-isotropic material, thermal effects:
STRESS-RR, STRESS-RS, STRESS-SS, STRAIN-RR,
STRAIN-RS, STRAIN-SS, FE EFFECTIVE STRESS,
THERMAL STRAIN, ELEMENT TEMPERATURE

Plane strain iso-beam or axisymmetric shell, elastic-isotropic
material, thermal effects: STRESS-RR, STRESS-RS,
STRESS-TT, STRESS-SS, STRAIN-RR, STRAIN-RS,
STRAIN-TT, STRAIN-SS, FE EFFECTIVE STRESS,
THERMAL STRAIN, ELEMENT TEMPERATURE

Thermo-isotropic material: STRESS (RST) ,
FE_EFFECTIVE_STRESS, STRAIN (RST),
THERMAL_STRAIN(RST), ELEMENT_TEMPERATURE

Plastic-bilinear, plastic-multilinear materials: PLASTIC FLAG,
STRESS (RST), STRAIN(RST),

PLASTIC STRAIN(RST), THERMAL STRAIN(RST),

FE EFFECTIVE STRESS, YIELD STRESS,

ACCUM EFF PLASTIC STRAIN, ELEMENT TEMPERATURE

SMA: EFFECTIVE STRESS, STRESS-RR, STRESS-RS,
STRESS-RT, STRESS-SS, STRESS-TT,

ACCUM EFF TRANSF STRAIN, AUSTENITE FRACTION,
DETWINNED MARTENSITE FRACTION, STRAIN-RR,
STRAIN-RS, STRAIN-RT, STRAIN-SS, STRAIN-TT,
THERMAL STRAIN-RR, THERMAL STRAIN-SS,
THERMAL STRAIN-TT, TRANSFORMATION STRAIN-RR,
TRANSFORMATION STRAIN-RS,

TRANSFORMATION STRAIN-RT,

TRANSFORMATION STRAIN-SS,

TRANSFORMATION STRAIN-TT,

TWINNED MARTENSITE FRACTION, SMA FLAG

Thermo-plastic, creep, plastic-creep, multilinear-plastic-creep,
creep-variable, plastic-creep-variable, multilinear-plastic-creep-
variable materials: PLASTIC FLAG,
NUMBER OF SUBINCREMENTS, STRESS (RST),

FE EFFECTIVE STRESS,
STRAIN(RST), YIELD STRESS,

PLASTIC STRAIN(RST),

ACCUM _EFF PLASTIC STRAIN, CREEP STRAIN(RST),
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ref. KUIB
Section 6.3

THERMAL STRAIN(RST), ELEMENT TEMPERATURE,
EFFECTIVE CREEP STRAIN

In the above lists,

STRESS (RST) = STRESS-RR, STRESS-RS,
STRESS-RT, STRESS-TT, STRESS-SS

with similar definitions for the other abbreviations used above.
See Section 13.1.1 for the definitions of those variables that are
not self-explanatory.

Nodal forces: Nodal point forces are obtained using the relation

AR I o gT HAtTdV

t+AL v

A . . . .
where "B is the strain-displacement matrix, the stresses are

. A t+ .
stored in "1, “*V represents the volume, and the superscript

t+ At refers to the conditions at time (load step) ¢+ Az .

These forces are accessible in the AUI using the variable names
NODAL FORCE-R, NODAL FORCE-S, NODAL FORCE-T,
NODAL MOMENT-R, NODAL MOMENT-S, B
NODAL MOMENT-T.

The end forces/moments are computed at the element local
nodes. In the AUI, element local nodes are defined as element
points of type label. For example, to access the result computed at
element 5, local node 2, define an element point of type label with
element number 5, label number 2.

2.6 Plate elements

e It is recommended to use shell elements (see Section 2.7) for
analysis of flat shells, i.e., for analysis of plates.

o The plate element is kept in ADINA for backward compatibility
only. For more information on the plate element, please see the
ADINA Theory and Modeling Guides preceding ADINA 9.0.
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2.7 Shell elements

e The shell element is a 4- to 32-node (degenerate) isoparametric

element that can be employed to model thick and thin general shell
structures (see Fig. 2.7-1). However, depending on the application,
the appropriate number of nodes on the element must be employed
(see Fig. 2.7-2 and Section 2.7.10).

e The shell element used in ADINA is also applicable for analysis
of flat shells, i.e., for analysis of plates.

2.7.1 Basic assumptions in element formulation

ref. KUB o The basic equations used in the formulation of the element are

Sections 5.4.2  given in ref. KJB.
and 6.5.2

o The shell element is formulated treating the shell as a three-
dimensional continuum with the following two assumptions used in
the Timoshenko beam theory and the Reissner/Mindlin plate
theory:

Analysis of a turbine blade: Analysis of a shell roof:

—

“

Figure 2.7-1: Some possible applications of shell elements
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Assumption 1: Material particles that originally lie on a
straight line "normal" to the midsurface of the structure remain
on that straight line during the deformations.

Assumption 2: The stress in the direction normal to the
midsurface of the structure is zero.

For the Timoshenko beam theory, the structure is the beam, and
for the Reissner/Mindlin plate theory, the structure is the plate
under consideration. In shell analysis, these assumptions
correspond to a very general shell theory.

¢ In the calculations of the shell element matrices the following
geometric quantities are used:

» The coordinates of the node £ that lies on the shell element
midsurface at ‘x,, 'y,, 'z, (see Fig. 2.7-3); (the left
superscript denotes the configuration at time #)

» The director vectors 'Vlf pointing in the direction "normal"

to the shell midsurface at node &
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a) Midsurface description

c) Top-bottom description

b) Triangle .
\ d) Transition shell to solid

¢) Multilayered shell
Figure 2.7-2: Examples of shell elements

ref. KJB » The shell thickness, a, , at the nodal points measured in the
Fig. 5.33 direction of the director vectors 'V¥ (see Fig. 2.7-4 and
page 437 ! £

Section 2.7.2).
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A For the 9-node shell, the
2 midsurface center node
is local node number 13.

a) Midsurface nodes 4 t For the 9-node shell, the
top-bottom center nodes
2 are local node numbers

13 and 29.

b) Top-bottom nodes 20

Figure 2.7-3: Some conventions for the shell element; local
. node numbering; natural coordinate system

e Fig. 2.7-4 shows a 4-node shell element with the shell
midsurface nodal points and the nodal point director vectors.
Using the midsurface nodal point coordinates, the shell midsurface

is interpolated using the interpolation functions hk(r, s) given in

ref. KIB. Similarly, using the vectors 'V, , the director vector 'V,

at any point P on the midsurface is obtained by interpolation using
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the functions hk(r,s) . Hence, with the shell thickness at nodal
point k equal to a, and the isoparametric coordinate t measured in

the direction of 'V, , the geometry of the shell at any time ¢ is
defined by

x= Zh x, + Zakh vE
q

t
zhytyk + _Z akhktVn];
3 25
9

v

1

t q9
hktzk + EzakhktVn];
k=

k=1

shell midsurface  interpolation for material
interpolation points not on the midsurface

. k k
where ¢ is the number of element nodes and V., V%, 'V,. are

the direction cosines of the shell director vector tV,f .

e The direction vectors at nodes can be either directly input or
automatically generated by the program. When they are generated
by the program, they can be created as the normal vectors of a
geometrical surface, or as the averaged vectors of the surrounding
elements, which may not be exactly normal to the corresponding
geometric surface.

e The assumption 1 on the kinematic behavior of the shell enters
the finite element solution in that the particles along the director

vector 'V, (interpolated from the nodal point director vectors
’Vk ) remain on a straight line during deformation.

Note that in the finite element solution, the vector 'V, is not

necessarily exactly normal to the shell midsurface. Figure 2.7-5(a)
demonstrates this observation for a very simple case, considering

the shell initial configuration. Furthermore, even if 'V, is

originally normal to the shell midsurface, after deformations have
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ref. KUB
Section 5.4.2
page 440

taken place this vector will in general not be exactly perpendicular
to the midsurface because of shear deformations (see Fig. 2.7-5(b)).

Program-calculated midsurface Program-calculated midsurface
normal vector at node k using normal vector at node k using
the geometry of element 1 the geometry of element 2

element 1
) element 2
The configuration shown

corresponds to time t=0.

0 0,k
vk Vi
elt.1

o k k

element 1
element 2

(a) Program-calculated normal vectors (two such vectors)
at node k. These vectors are used as director vectors
for the respective elements. Node k has 6 DOFs.

Figure 2.7-4: Convention for shell element thickness

e The assumption 2 on the stress situation enters the finite
element solution in a manner that is dependent on the formulation
employed:

All formulations except for the large displacement/large strain
formulations: The stress in the t-direction (i.e., in the direction of

'V, ) is imposed to be zero. This is achieved by using the stress-
strain relationship in the 7, s, ¢ coordinate system, shown in Fig.
2.7-6(a), with the condition that the stress in the direction ¢ is zero.

Large displacement/large strain formulations: The stress in the
f -direction (not necessarily in the direction of 'V, ) is imposed to

be zero. This is achieved by using the stress-strain relationship in
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ref. KUB
pp. 399, 440

the 7,8,f coordinate system, shown in Fig. 2.7-6(b), with the

condition that the stress in the direction 7 is zero.

¢ Note that if the nodal point midsurface director vectors are input
or generated (see Section 2.7.3) to be initially "exactly" normal to
the midsurface of the shell element (the coordinates of this
midsurface are obtained by interpolation from the nodal points on
the midsurface), then assumption 1 is also exactly satisfied in the
finite element solution, but assumption 2 is only approximately
fulfilled in geometric nonlinear analysis, because the directions of
the initially normal vectors are updated.

Program calculates director
vector by taking average of
all normal vectors at node k. ‘\\ /

element 1

element 2
OVE OVII<1
k k

element 1
element 2

b) Program-calculated director vector (single vector)
at node k. Node k has 5 DOFs.

Figure 2.7-4: (continued)

o The transverse shear deformations are assumed by default to be
constant across the shell thickness. The use of the correction factor
of 5/6 can be specified to improve the prediction of the
displacement response, for the linear elastic and linear orthotropic
models.
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o The interpolation of the geometry of the shell element is always
as described above, but for a specific solution time the current
coordinates of the midsurface nodal points are used, and the current
director vectors are employed. The midsurface nodal point
coordinates are updated by the translational displacements of the
nodes and the director vectors are updated using the rotations at the
nodes (rotation increments in large displacement analysis).

¢ Incompatible modes can be used in conjunction with the 4-node
shell element. The theory used is analogous to the theory used for
the 2-D solid element, see Section 2.2.1 and ref KJB, Section 4.4.1.
The incompatible modes are added to the midsurface displacement
interpolations; only the membrane action of the 4-node shell
element is affected.

A typical use of the incompatible modes feature would be to
improve the in-plane bending response of the 4-node element.

The incompatible modes feature is only available for 4-node
single layer shell elements in which all nodes are on the midsurface
of the element. The incompatible modes feature is available in
linear and nonlinear analysis, for all formulations.

e The thermal strain calculations in shell elements depend upon
the shell element type. For the MITC3, MITC4, MITC6, MITC9,
and MITCI16 single layer shell elements, the thermal strain
calculations give zero stresses for a uniform unrestrained thermal
expansion. For the other shell elements, the thermal strain
calculations can give non-zero stresses for a uniform unrestrained
thermal expansion of a curved shell structure. As the mesh is
refined, the stress calculations are improved.
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User-defined mid-surface director vector at node k

element 1

element 2
0V]r<1 0Vlr<1
k k

element 1
element 2

¢) User input director vector (single vector)
at node k. Node k has 5 DOFs.

Figure 2.7-4: (continued)

2.7.2 Material models and formulations

e The shell element can be used with the following material
models: elastic-isotropic, elastic-orthotropic, nonlinear-elastic,
plastic-bilinear, plastic-multilinear, plastic-orthotropic,
thermo-isotropic, thermo-orthotropic, thermo-plastic, creep,
plastic-creep, multilinear-plastic-creep, creep-variable, plastic-
creep-variable, multilinear-plastic-creep-variable, viscoelastic,
plastic-cyclic.

e The shell element can be used with a small displacement/small
strain, large displacement/small strain, large displacement/large
strain ULJ formulation or a large displacement/large strain ULH
formulation. The small displacement/small strain and the large
displacement/small strain formulations can be used with any of the
above material models. The large displacement/large strain ULJ
formulation can be used with the plastic-bilinear, plastic-
multilinear, plastic-orthotropic or plastic-cyclic material models.
The large displacement/large strain ULH formulation can be used
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with the plastic-bilinear, plastic-multilinear or plastic-cyclic
material models.

a) Interpolation of director vector inside element

Initial configuration A

Angle =90°

Z L Final configuration

Angle # 90°

Y

b) Change in direction of director vector due to
displacements and deformations (with shear)

Figure 2.7-5: Example of change in direction of director vector
due to deformations. At time t the vector 'V,
1s not normal to the shell midsurface.

In the small displacement/small strain formulation, the
displacements and rotations are assumed to be infinitesimally
small. In the large displacement/small strain formulation, the
displacements and rotations can be large, but the strains are
assumed to be small. In the large displacement/large strain ULJ
formulation, the total strains can be large, but the incremental strain
for each time step should be small (< 1%). In the large
displacement/large strain ULH formulation, the total strains and
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also the incremental strains can be large.

sxt -_ txr
s= =
Isxtiy = letxTil,

=1

t=0) r

Figure 2.7-6a: Definition of the local Cartesian system (r, s, t)
at an integration point

The large displacement/large strain formulation can only be
used in conjunction with 3-node, 4-node, 6-node, 9-node or 16-
node single layer shell elements, in which the shell geometry is
described in terms of midsurface nodes.

Figure 2.7-6b: Definition of the midsurface Cartesian system (T, s, t )
at an integration point

190

ADINA Structures — Theory and Modeling Guide



2.7: Shell elements

The use of a linear material with the small displacement/small
strain formulation corresponds to a linear formulation, and the use
of a nonlinear material with the small displacement/small strain
formulation corresponds to a materially-nonlinear-only
formulation.

e The effects of displacement-dependent pressure loading are
taken into account in the large displacement formulation.

In frequency analysis, the stiffness matrix is optionally updated
by deformation-dependent pressure loads acting onto shell
elements. The update can improve the obtained frequencies and
mode shapes when the shell structure is relatively flexible and
deformation-dependent pressure loads are applied.

2.7.3 Shell nodal point degrees of freedom

e FKither 5 or 6 degrees of freedom can be assigned at a shell
element midsurface node.

5 degrees of freedom node: A node "k" that is assigned 5 degrees
of freedom incorporates the following assumptions:

» The translations u;, vy, wy are referred to the global Cartesian
system (or to the skew system if such a system is defined at the
node)

» Only one director vector (denoted at time = 0 as V) is

associated with the node. You can directly enter the director
vector or let the program calculate it (see Fig. 2.7-4). In the
latter case, the program calculates the director vector by taking
the average of all normal vectors (one normal vector is
generated per shell element attached to node k) at the node.

If two (or more) elements attached to the node have
oppositely directed normals, ADINA reverses the oppositely
directed normals, so that all normals attached to the node have
(nearly) the same direction.

» The rotations «,, B, are referred to the local midsurface
system (see Fig. 2.7-7) defined at time = 0 by
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Y x OV"
VeV
OVZk — OVk % OVIk

For the special case when the OVf vector is parallel to the Y

axis, the program uses the following conventions:
‘Vi=Z  °Vi=X when °Vi=+Y
and

‘Vi=-Z  °V/=X when °Vi=-Y

No rotational
stiffness for
this DOF

Figure 2.7-7: Shell degrees of freedom at node k

When using the large displacement formulation, the definitions
of *V/ and OVzk are only used at time=0 (in the initial
configuration) after which the vectors ’V: and ’Vlk are
updated using incremental rotations at the nodal points, and
"V} is calculated by the cross-product 'V} = V¥ x 'V}

» The rotational degree of freedom along OVf is automatically
deleted by ADINA.
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6 degrees of freedom node: A node "£" that is assigned 6 degrees
of freedom incorporates the following assumptions:

» The translations uy, vy, wy are referred to the global Cartesian
system or any skew system assigned to node £.

» A director vector would in general not be input for this node.
(Note that any director vector input is ignored for a shell node
with six degrees of freedom.)

» The program generates as many normal vectors at node & as
there are shell elements attached to the node (see Fig. 2.7-4(a)).
Hence each individual shell element establishes at node & a
vector normal to its midsurface. The components of the shell
element matrices corresponding to the rotational degrees of
freedom at this node are first formulated in the local midsurface
system defined by the normal vector and then rotated to the
global Cartesian system (or to the skew system, if defined at the
node).

» The three rotational degrees of freedom at node £ referred to
the global Cartesian system (or to the skew system, if defined at
the node) can be free or be deleted.

Some modeling recommendations are given below for the use of

the shell elements:

» Always let all director vectors be established by the
program; director vectors should only be defined via input if
specific director vectors are required in the modeling.

» Always specify 5 degrees of freedom at all shell midsurface
nodes except for the following cases in which 6 degrees of
freedom should be used:

(1)  shell elements intersecting at an angle,

(ii))  coupling of shell elements with other types of
structural elements such as isoparametric beams (e.g.,
in the modeling of stiffened shells),

(i) coupling of rigid links (see Section 5.15.2) to the shell
midsurface nodes,
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(iv) coupling of constraints or generalized constraints to
the shell midsurface nodes,

(v)  imposing rotational moments or boundary conditions
at the node.

(vi) coupling of alignment elements that have align-
rotation properties to the shell midsurface nodes

All of the above considerations are illustrated in the schematic
example shown in Fig. 2.7-8. Note that in the example, the use of
6 degrees of freedom at node 1 together with the deletion of the X-
rotation degree of freedom is only applicable in small displacement
analysis.

If a large displacement formulation is used in this example,
node 1 must be assigned 5 degrees of freedom and the applied
concentrated moments must then refer to the local midsurface
system at that node, which consists of the global directions for u,

Vi» wi and the local directions 'V, and 'V, for the incremental
rotations ¢, and f, . (Alternatively, 6 degrees of freedom could

be used if a beam of very small stiffness is defined along the edge
of the plate.)

There are a number of implications regarding the use of 6 DOF
nodes on flat or nearly flat shells. These implications arise because

there is no rotational stiffness in the 'V, direction.

1) No attached structural element/rigid link (Fig. 2.7-9(a))

a) There will be a zero pivot in the stiffness matrix. If a moment is
applied into the "V, direction, the rotation in the 'V, direction will
be infinite. In addition, the moment applied into the 'V, direction
will not cause equilibrating reactions at the fixities.

2) Structural element/rigid link attached to the node
(Fig 2.7-9(b)(-d)).

a) If the structural element/rigid link is unsupported, there will be a
zero pivot in the global stiffness matrix. Even if the structural
element/rigid link is supported, there may be a zero pivot in the
global stiffness matrix, depending upon how the structural
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element/rigid link is supported.

b) Moments in the 'V, direction will not be transmitted from the
structural element or rigid link into/from the shell element.

No X.Y.Z translations 4-node shell elements

No X,Y rotations

VAVAY

43./2/1

) Mz Fz
o s/ 1/ 6 MY/ Fx
€ v
X v v Rigid I
igid link Concentrated
(Node 4 as
Z

o e loads at node 1
ode 1so-bea master node)

Y elements

Node Number Degree of freedom Reference
of DOF 123456 system

1 6 VARV RV AN Global
2 5 VAVANEAN S Midsurface
3 5 NAVANEVAN Midsurface

4 6 VARV Global
5 5 NEVAVAVANE Midsurface

6 6 NV AN ENEVAN Global

7 6 VAAV VAN, Global

8 6 VARV Global

9 6 | —---- v Global

— = Deleted because of no stiffness at this DOF
J = Free DOF

* = The AUI automatically deletes the 6th DOF
when a midsurface system is specified for the node

Figure 2.7-8: Example on the recommended use of shell elements
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Moment causes
Z R . .
infinite rotation.

Sy
X f / TtVn
Reactions at fixities £»
are zero. /

a) Moment applied in shell normal direction.

Zero pivot in
stiffness matrix.

:/\ / AL

b) Structural element/rigid link attached to node,
structural element/rigid link is unsupported.

2
Zero pivots in
stiffness matrix.
/ /
¢) Structural element/rigid link attached to node,

structural element/rigid link is perpendicular
to shell elements

Figure 2.7-9: Flat shell with 6 DOFs at a node
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Moment in z direction not
transmitted into/from shell

v

vF

d) Structural element/rigid link attached to node,
structural element/rigid link is supported.

Figure 2.7-9: (continued)

ADINA has the option of applying a “drilling stiffness” to 6 DOF
nodes on flat shells.

The AUI command is MASTER SINGULARITY-
STIFFNESS=YES (on by default). When the drilling stiffness
option is used, any moment applied to the node into the 'V,
direction is taken by the drilling stiffness rotational spring (which
is grounded). The drilling stiffness spring eliminates the zero pivot
in the stiffness matrix, hence in some cases, a solution can be
obtained. But any moment applied into the 'V, direction will still
not cause equilibrating reactions at the fixities. And using a

drilling stiffness value that is too large may lead to an incorrect
solution.

An alternative to using the drilling stiffness option is to connect the
6 DOF nodes on flat shells to neighboring shell nodes using soft
beam elements (so-called “weld elements”). This idea is shown in

Fig 2.7-9(e). Then moments applied into the 'V, direction will be

taken by the weld elements, and these moments will cause
equilibrating reactions at the fixities. The weld elements also

provide stiffness in the 'V, direction, so that there will be no zero
pivots.
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Soft beam element. M,

Reactions at fixities £»
are nonzero. / /

e) Soft beam element takes applied moment.

tVn

Figure 2.7-9: (continued)
2.7.4 Transition elements

e The shell elements can also be employed as transition elements.
A transition element is obtained by using, instead of a shell
midsurface node, one node on the top surface and one node on the
bottom surface of the shell element. Each of these nodes has then
only 3 degrees of freedom corresponding to translations in the
global X, Y, Z coordinate directions. Fig. 2.7-10(a) shows a cubic
transition element.

¢ Note that although the degrees of freedom at a shell transition
node are those of a three-dimensional isoparametric element, the
assumption that the stress "normal" to the midsurface of the shell
(in the t-direction) is zero distinguishes a transition element from a
3-D solid element even when a shell element has only transition
nodes.
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Transition nodes

a) Example of a transition element

th AL uniform
over element
AT T T T T T T T T T T
7 /
// //
7 7
4 /
pa _— = L
% =
A / >
T /
v
Fr

b) Zero energy mode for flat element
with only transition nodes

Figure 2.7-10: Transition elements

¢ In particular, if only transition nodes are used on the element,
then the element has a zero energy mode corresponding to a
uniform strain in the t-direction. Fig. 2.7-10(b) shows this zero-
energy mode. For a 3-D solid element, this mode corresponds, of
course, to a uniform strain in the t-direction.

If not all nodes on a transition element are transition nodes, i.€.,
there is at least one midsurface node, then the zero-energy mode
shown in Fig. 2.7-10(b) is not present.

o The transition element is particularly useful in modeling shell to
shell and shell to solid intersections, see Fig. 2.7-11 and the
following reference:
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Shell to solid intersection

Figure 2.7-11: Examples of use of transition element

ref.  K.J. Bathe and L.W. Ho, "Some Results in the Analysis
of Thin Shell Structures," in Nonlinear Finite Element
Analysis in Structural Mechanics, W. Wunderlich et al
(eds.), Springer-Verlag, 1981.

2.7.5 Numerical integration

ref kJ8 ® Numerical integration is used for the evaluation of the element
Section 5.5  matrices, and the default integration or a higher order should
always be used; then no spurious zero energy modes are present.

e Gauss numerical integration is used in the r-s plane. For the 4-
node element, the default order is 2x2 integration. For the 8- and
9-node elements, the default order is 3x3 integration, and for the
16-node elements, the default order is 4x4 integration.

o Either Gauss, Newton-Cotes or trapezoidal rule numerical
ref. KB . .. .

Section 6.8.4  Integration is used through the shell thickness. For Gauss
integration, 2 to 6 points through the thickness can be selected. For
Newton-Cotes integration, 3, 5 or 7 points through the thickness
can be selected. For trapezoidal rule integration, 2 to 20 points
through the thickness can be selected. Fig 2.7-12 shows some
examples.
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Usually, 2-point Gauss or 3-point Newton-Cotes integration is
appropriate for an elastic material, but a higher integration order
may be more effective for elastic-plastic analysis.

salinsiins)
Corl (L g

a) 2 pt Gauss  b) 3 pt Newton-Cotes  c¢) 4 pt trapezoidal rule
integration integration integration

Figure 2.7-12: Examples of numerical integration through the
shell element thickness

e The labeling of the integration points for quadrilateral and
triangular elements is given in Fig. 2.7-13. The locations of the
integration points in the r-s plane are the same as for the 2-D solid
elements (see Section 2.2.3).
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3x3x2 Gauss integration:

INR=1,INS=1,INT=2

INR=1,INS=1,
INT=1

INR=3,INS=1,INT=1

2x2x3 Newton-Cotes integration:

t
A /S{

INR=1,INS=2,INT=3

INR=2,INS=1,INT=1

a) Examples of integration point labeling for quadrilateral shell elements

Figure 2.7-13: Examples of integration point labeling
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7-p0int ]3—p0il’1t

b. Integration points position on r-s plane for the triangular shell elements

Figure 2.7-13: (continued)

e The default number of Gauss integration points in the 7-s plane
for the MITC3 element is 3; for the MITC6 element is 7; for the
collapsed MITC4 triangular element is 4; for the collapsed DISP7
element is 7; and for the collapsed DISP10 element is 13 (see also
Fig. 2.7-18).

2.7.6 Composite shell elements

o The composite shell elements are kinematically formulated in
the same way as the single layer shell elements, but

» An arbitrary number of layers can be used to make up the
total thickness of the shell.

» Each layer can be assigned one of the different material
models available. The element is nonlinear if any of the
material models is nonlinear, or if the large displacement
formulation is used.

» The computation of accurate transverse shear stresses based
on a three-dimensional theory can be requested. This way the
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condition of zero transverse shear stresses at the top and bottom
surfaces of the shell are satisfied, and the transverse shear
stresses are continuous at layer interfaces.

e Layers are numbered in sequential order starting from 1 at the
bottom of the shell.

o The layer thicknesses can be assigned using one of two general
approaches:

» Specify the total element thickness and the percentage of
thickness for each layer.

» Specify the data of each layer (or ply) in terms of the weight
per unit surface of the fiber W, the density of the fiber p, and

the fiber volume fraction of the fiber-matrix compound ¢f .
The AUI then computes the thickness of each layer

I/Vf
Préy
assumed that the ply is made of uniaxial fibers, so that the fiber
thickness fraction perpendicular to the plate midsurface is
proportional to the fiber volume fraction. The total thickness of
the multilayered shell is then the sum of the ply thicknesses.

This approach is especially useful when the layers are fiber-
matrix composites.

automatically using the formula 4 = , in which it is

e In order to take into account the change of material properties
from one layer to another, numerical integration of the mass and
stiffness matrices is performed layer by layer using reduced natural
coordinates through the thickness of the element (see Fig. 2.7-14
and 2.7-15). The relation between the element natural coordinate ¢
and the reduced natural coordinate ¢* of layer # is:

t:—1+l{2(if’)—£"(l—t"ﬂ 2.7-1)

a i=1
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with

t = element natural coordinate through the thickness
" = layer n natural coordinate through the thickness

0" = thickness of layer i
a = total element thickness

aand ¢ are functions of » and s.

Z
€3
Y
€2
€1
2
ik
Kk _ ezgil;
k- =2% Vn
| exxvs | » {1 i
K _ ek, ak P
€Vz=Vn><eVl
Figure 2.7-14: 8-node composite shell element
Z,W
Ve
Ve
L}GV
7 X,U
Ve
L - - - - - = =
. end EL G, vy Layer n
_—_ — — — — — —
v &BE = == =— = =— = = Layerl
Figure 2.7-15: Multilayered plate
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The geometry of layer n is given by:

N
‘x, = Z h, ‘xf +Z{mk +t" —} h'VE (2.7-2)
k=1

with

X, = coordinates of a point inside layer n
N = number of nodes
h, = interpolation functions

x; = Cartesian coordinates of node k

Lyrk Ixrk
V: = components of normal vector "V

n

a, = total element thickness at node k

0" = thickness of layer i at node &
l = 0 in the initial configuration, 1 in the deformed
configuration

In the above formula, the expression
n ak = i EZ
mp =——t4> 0 ——& (2.7-3)

corresponds to the distance at node k between the element
midsurface and the midsurface of layer 7.
Accordingly, the displacements in layer n are:

k=1 k=1
(2.7-4)
with
ulk = components of nodal displacements at node k&

a,, B, = rotations of "V about °V, and "V} (see Fig. 2.7-14)

Using the expressions of the coordinates and displacements
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defined in Egs. 2.7-2 and 2.7-4, the contribution of each layer to
the element stiffness and mass matrices can be evaluated.

¢ In the analysis of thick plates and shells or in the analysis of
multilayered structures such as composite sandwiches with low
shear rigidity, the transverse shear deformation energy may not be
negligible compared to the flexural energy and high transverse
shear stresses may be encountered. In these cases, the shell
kinematic formulation must be amended to obtain more accurate
expressions of the shear deformation energy and transverse shear
stresses.

By combining for a plate in cylindrical bending, the plate
equilibrium equations and the 3-dimensional equilibrium equations,
an expression of the shear stress which satisfies stress continuity at
the layer interfaces and zero boundary values at the top and bottom
surfaces of the shell can be obtained. Simultaneously, a shear
reduction factor is obtained which can be used to improve the shear
deformation energy approximation.

The expression of the shear factor is given by

12
== = 7 o (2.7-5)
.[z G.dz |~ o
7% 74 ze

and the transverse shear stress in terms of the shear strain value
Yy 18
A z
O-xz (Z) = yxz ;g—\;() (27_6)
J- * Ee dz
7% GXZ
where
% 2
[ = D (z—z,) dz
XX J-_% XX ( 0 )

n
D" —L
xx T 1_ n n
nyvyx

E_ =Young's modulus

G _ = shear modulus

Xz
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n n

v’ ,v" =Poisson's ratios

xy? 7 oyx

a = total thickness

g.(z)==] DL (&-z,)d¢
-%

Equations 2.7-5 and 2.7-6 are used in ADINA to calculate shear
correction factors for each element and shear stress profiles at each
integration point.

The shear correction factor calculation is only available for the
linear isotropic elastic and linear orthotropic material models.

ref.  O. Guillermin, M. Koji¢, K.J. Bathe, "Linear and
Nonlinear Analysis of Composite Shells," Proceedings,
STRUCOME 90, DATAID AS & I, Paris, France,
November 1990.

2.7.7 Mass matrices

e The shell element can be employed with a lumped or a
consistent mass matrix, except for explicit dynamic analysis which
always uses a lumped mass.

e The consistent mass matrix is calculated using the isoparametric
formulation with the shell element interpolation functions.

e The lumped mass for translational degrees of freedom of
midsurface nodes is M /n where M is the total element mass and n
is the number of nodes. No special distributory concepts are
employed to distinguish between corner and midside nodes, or to
account for element distortion.

The rotational lumped mass for all except explicit dynamic analysis

is,ﬂ~%(tfv) where ¢, is the average shell thickness. The same
n

rotational mass matrix is assumed for 5- and 6-degree of freedom
nodes, and is applied to all rotational degrees of freedom.

The rotational lumped mass for explicit dynamic analysis is
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M 1 . . .

—-E(tjv +4 ), where ¢, is the average shell thickness and 4 is
n

the cross-sectional area. The rotational masses are scaled up to

ensure that the rotational degrees of freedom do not reduce the

critical time step for shell elements. The same rotational mass

matrix is assumed for 5- and 6-degree of freedom nodes and is

applied to all rotational degrees of freedom.

e The rotational lumped mass can be multiplied by a user-
specified scalar ETA (except in explicit analysis).

2.7.8 Anisotropic failure criteria

e The study of material failure in composite structures has shown
that various criteria can be used to assess failure. The following
failure criteria are provided in ADINA for the analysis of shell
structures using the elastic-isotropic, elastic-orthotropic, thermo-
isotropic or thermo-orthotropic material models:

Maximum stress failure criterion
Maximum strain failure criterion
Tsai-Hill failure criterion

Tensor polynomial failure criterion
Hashin failure criterion
User-supplied failure criterion

vV vy vVvVvVvVvyVvVvyy

e These criteria can be evaluated during the analysis to determine
whether the material has failed. However, the stresses and material
properties of the model are not changed as a consequence of this
calculation. It is therefore intended only for use in linear elastic or
thermo-elastic analysis, or as a stress state indicator in nonlinear
analysis.

e The material failure is investigated at each integration point of
each element during the analysis. The failure criteria values (and
possibly modes) are printed and/or saved according to the ADINA
stress printing and saving flags.

e The maximum stress failure criterion compares each
component of the stress tensor (resolved in the material (abc)

ADINA R & D, Inc.

209



Chapter 2: Elements

directions) to maximum stress values. The input constants for this

criterion are:

X,
Xe
Y,
Y.

Z

S be

maximum allowable tensile stress in the material a-
direction

maximum allowable compressive stress in the
material a-direction

maximum allowable tensile stress in the material b-
direction

maximum allowable compressive stress in the
material b-direction

maximum allowable tensile stress in the material c-
direction

maximum allowable compressive stress in the
material c-direction

maximum allowable absolute shear stress in the a-b
plane

maximum allowable absolute shear stress in the a-c
plane

maximum allowable absolute shear stress in the b-c
plane

The failure of the material occurs when any of the following
inequalities is not satisfied anymore:

X, < 1, < X
Y <7 <X
Z, < 1. < Z,
=Sy < Tu < S,
_Sac < TQC < SQC
=Spe < T < S

where (T, Tp,Te, Tup Tacs Toe) 18 the stress vector referred to the principal
material directions.

The above conditions are applicable to 3-D analysis. In plane
stress analysis, the parameters Z, Z., S,. and S, are not used.

¢ Note that the maximum stress criterion indicates the mode of
failure. Note that this criterion does not take into account any
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interaction between failure modes.

e The maximum strain failure criterion compares each
component of the strain tensor (resolved in the material (abc)
directions) to maximum strain values. The input constants for this
criterion are:

X, = maximum allowable tensile strain in the material a-
direction

X, = maximum allowable compressive strain in the
material a-direction

Y, = maximum allowable tensile strain in the material b-
direction

Y, = maximum allowable compressive strain in the
material b-direction

Z,; = maximum allowable tensile strain in the material
third c-direction

Z.. = maximum allowable compressive strain in the

material c-direction
S..p = maximum allowable absolute shear strain in the a-b

plane

S..c = maximum allowable absolute shear strain in the a-c
plane

S.e = maximum allowable absolute shear strain in the b-c
plane

The failure of the material occurs when any one of the following
inequalities is not satisfied anymore:

X, < ¢ < X,
Y, < g <Y,
Z,., < & < Z,
“Setr < Vi < Sew
S < Ve < S
“Sae < Voe < Sue

where (&, €, €c Yabr Vao Voe) 18 the strain vector referred to the
principal material directions.
The above conditions are applicable to 3-D analysis. In plane
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stress analysis, however, the parameters Z,, Z,., S, and S, are not
used.

¢ Note that the maximum strain criterion indicates the mode of
failure. Note that this criterion does not take into account any
interaction between failure modes.

o The Tsai-Hill failure criterion provides a yield criterion
applicable to materials with anisotropic failure strengths. This is an
extension of the von Mises yield criterion. Failure of the material
occurs when the following inequality is not satisfied anymore:

(G+H)r: +(F+H)r, +(F+G)t) —2Hr,r, - 2Gr,t, - 2F 1,7,

+2L7) +2Mt. +2N7), <1
with

I 1 1 1
F=—|—-—+—+—
2( X 7 sz

111
X vz

L=
28,

M = 12

252
1
25

where

X = maximum allowable absolute stress in the material a-
direction

Y = maximum allowable absolute stress in the material
b-direction

Z = maximum allowable absolute stress in the material c-
direction

212

ADINA Structures — Theory and Modeling Guide



2.7: Shell elements

S.» = maximum allowable absolute shear stress in the a-b
plane

S.. = maximum allowable absolute shear stress in the a-c
plane

Sy = maximum allowable absolute shear stress in the b-c
plane

In the case when plane stress conditions are used, the material
behavior with respect to failure is considered as transversely
isotropic (¥Y=2), and the failure criterion reduces to

2 2 2
Ta Taz-b Tb Tab

Y Tyt !
ab

In this case, the maximum allowable stresses Z, S;. and S, are not
used.

e Note that this criterion includes the effect of interactions
between failure modes, but does not indicate a specific mode of
failure.

o The tensor polynomial failure criterion assumes the existence
of a failure surface in the stress space of the form:

Fr,+Frr, =1 withi,j=1..,6

i
with the convention

057, 5, 0,50, 35T,
2-4:Tab; TS:Tac; z.622-17(:

and with
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1 1 1
E:_"' s> 'y ==
Xat Xac XatXac
1
oL
th Xbc thXbc
1
JoR S S
XC’I XCL’ XC’Z XL’C
Fy, Fyy F=0
1 1 1

where the following strength components need to be defined:

Xa

S be

= maximum allowable tensile stress in the material a-
direction

. = maximum allowable compressive stress in the

material a-direction
= maximum allowable tensile stress in the material b-
direction

. = maximum allowable compressive stress in the

material b-direction
= maximum allowable tensile stress in the material c-
direction

. = maximum allowable compressive stress in the

material c-direction
= maximum allowable absolute shear stress in the
material a-b plane

. = maximum allowable absolute shear stress in the

material a-c plane
= maximum allowable absolute shear stress in the
material b-c plane

For plane stress conditions, the parameters X.,, Xec, Spe, Sacs Fpe
and F,. are not used.

e The interaction strengths F; with i # j can be input, or calculated
by ADINA according to Hoffman's convention:
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F= 1 N 1
’ XitXic thch
with i#j and i,j=a,b,c

e Note that this failure criterion includes interactions between the
failure modes, but that the mode of failure is not given by the
analysis.

e The Hashin failure criterion applies especially to fibrous
composites where the fiber and the matrix failure mechanisms are
distinct. In ADINA, we assume that the fibers are predominantly
aligned with the first material principal direction (a-direction), thus
making the material transversely isotropic about the a-direction.
Failure will occur when any of the following inequalities is not
satisfied anymore:

2 2
Tz (Tab +z—ac)

X 37 <1 (ifz,>0) (2.7-7)
ab

T
<1 ifr <0 2.7-8
% (if 7, <0) (2.7-8)

c

2 2 2 2
(z-}, +Tc) (Tbc _Tbrc) (Tab +Tac)

<1 (if (z, +7,)>0)

Y S, Se
(2.7-9)
Y 2
(z,+7.) 1—( c ]
2Str (Tb +7, )2 (T}f _z—bfc) (ij +T5c)
+ —+ 5 + 5 <1
Yc 4Str Str Sab
(if (z',, + rc) < O)
(2.7-10)
with
X, = maximum allowable tensile stress in the material a-
direction
X. = maximum allowable compressive stress in the
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material a-direction

Y, = maximum allowable tensile stress in the material b-
direction
Y, = maximum allowable compressive stress in the

material b-direction

S.» = maximum allowable absolute shear stress in the a-b
plane (note that S, = S,.)
S, = maximum allowable absolute shear stress in the b-c

plane

The above inequalities are usually referred to as: tensile fiber
failure (2.7-7), compressive fiber failure (2.7-8), tensile matrix
failure (2.7-9), compressive matrix failure (2.7-10).

o The user-supplied failure criterion allows for the description
of a failure envelope using up to four quadratic failure relations of
the form:

yoir-J

6
Fr+Frr. =1 if Z“;T,- >0
i=1

with

=7, ; T,=7, ; T, =T,

a 2

Ta =T Ts =T Te =Ty
The material failure occurs when any one of the failure surfaces is
reached and the corresponding stress condition is satisfied at the

same time.
e This flexible and very general user-supplied failure model
allows you to input any quadratic failure criteria with failure mode

Interactions.

e The following references contain additional information about
composite failure criteria:

ref.  Jones R.M., Mechanics of Composite Materials,
McGraw Hill, 1975.

ref.  Tsai S.W., "A Survey of Macroscopic Failure Criteria
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for Composite Materials," Journal of Reinforced Plastics
and Composites, Vol.3, pp.40-62, January 1984.

ref.  Hashin Z., "Analysis of Composite Materials — A
Survey," Journal of Applied Mechanics, Transactions of
the ASME, Vol. 50, pp. 481-505, September 1983.

2.7.9 Element output

You can request that ADINA either print and save stresses or
forces.

Stresses: Each element outputs, at its integration points, the
following information to the porthole file, based on the material
model. This information is accessible in the AUI using the given
variable names.

The results can be requested to be referred to the global (X,Y,Z)
axes, or to the local (7, s, t) axes (see Fig. 2.7-6a), or to the

midsurface (f,ﬁ,f ) axes (see Fig. 2.7-6b). For the large

displacement/large strain formulations, both the local and

midsurface axes are the (;:, .t ) axes, so the results in both the

local and midsurface systems are identical. In addition, for
orthotropic material models, the results referred to the material axes
can be requested.

Elastic-isotropic, elastic-orthotropic: STRESS (XYZ) ,
STRAIN(XYZ), FE EFFECTIVE STRESS

Elastic-isotropic with thermal effects: STRESS (XYZ) ,
STRAIN (XYZ), FE EFFECTIVE STRESS,
THERMAL_STRAIN, ELEMENT_TEMPERATURE

Thermo-isotropic: STRESS (XYZ), STRAIN (XYZ),
THERMAL_STRAIN (XY27), FE_EFFECTIVE_STRESS,
ELEMENT_TEMPERATURE
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Plastic-bilinear, plastic-multilinear, without thermal effects:
PLASTIC FLAG, STRESS(XYZ), STRAIN(XYZ),
PLASTIC_STRAIN(XYZ), FE_EFFECTIVE_STRESS,
YIELD STRESS, ACCUM EFF PLASTIC_ STRAIN

Plastic-bilinear, plastic-multilinear with thermal effects:
PLASTIC FLAG, STRESS(XYZ), STRAIN(XYZ),
PLASTIC STRAIN(XYZ), FE EFFECTIVE STRESS,
YIELD STRESS, ACCUM EFF PLASTIC STRAIN,
THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE

Thermo-plastic, creep, plastic-creep, multilinear-plastic-creep,
creep-variable, plastic-creep-variable, multilinear-plastic-creep-
WHMthPLASTIC_FLAG, NUMBER OF SUBINCREMENTS,
STRESS (XYZ), STRAIN(XYZ),

PLASTIC STRAIN(XYZ), CREEP STRAIN(XYZ),
THERMAL STRAIN(XYZ), ELEMENT TEMPERATURE,
ACCUM EFF PLASTIC STRAIN,

FE EFFECTIVE STRESS, YIELD STRESS,
EFFECTIVE CREEP STRAIN

Plastic-orthotropic without thermal effects: PLASTIC FLAG,
STRESS (XYZ), STRAIN(XYZ),
PLASTIC_STRAIN(XYZ), HILL EFFECTIVE STRESS,
YIELD STRESS, ACCUM _EFF PLASTIC STRAIN
Plastic-orthotropic with thermal effects: PLASTIC FLAG,
STRESS (XYZ), STRAIN(XYZ),

PLASTIC STRAIN(XYZ), HILL EFFECTIVE STRESS,
YIELD STRESS, ACCUM EFF PLASTIC_ STRAIN,
THERMAL_STRAIN(XYZ), ELEMENT TEMPERATURE

Viscoelastic: STRESS (XYZ), STRAIN (XYZ),
THERMAL STRAIN (XYZ), ELEMENT TEMPERATURE

In the above lists,

when results are referred to the global (X,Y,Z) axes,

STRESS (XYZ) = STRESS-XX, STRESS-YY,
STRESS-Z7Z, STRESS-XY, STRESS-XZ,
STRESS-YZ

when results are referred to the (7, s, t) or (f,§, 3 ) axes,
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STRESS (XYZ) = STRESS-RR, STRESS-SS,
STRESS-TT, STRESS-RS, STRESS-RT,
STRESS-ST

when results are referred to the material axes,

STRESS (XYZ) = STRESS-AA, STRESS-BB,
STRESS-CC, STRESS-AB, STRESS-AC,
STRESS-BC

with similar definitions for the other abbreviations used above.
See Section 13.1.1 for the definitions of those variables that are
not self-explanatory.

e In addition, when a failure model is used, each element outputs,
at each integration point, the following information to the porthole
file, based on the failure criterion. This information is accessible in
the AUI using the following variable names:

Maximum stress, maximum strain:
FAILURE_FLAG_TENSION—A,
FATILURE FLAG COMPRESSION-A,
FATLURE FLAG TENSION-B,
FAILURE_FLAG_COMPRESSION—B,
FAILURE_FLAG_TENSION—C,
FATILURE FLAG COMPRESSION-C,
FATLURE FLAG SHEAR-AB, FAILURE FLAG SHEAR-AC,
FAILURE_FLAG_SHEAR—BC, FAILURE_FLAG

Tsai-Hill, tensor polynomial: FAILURE FLAG,
FATILURE CRITERION

Hashin: FAILURE FLAG TENS-FIBER,
FAILURE FLAG COMP-FIBER,
FATLURE FLAG TENS-MATRIX,
FATILURE FLAG COMP-MATRIX,
FATLURE CRITERION TENS-FIBER,
FATILURE CRITERION COMP-FIBER,
FATLURE CRITERION TENS-MATRIX,
FATLURE CRITERION COMP-MATRIX

User-supplied: FAILURE FLAG SURFACE-1,
FAILURE FLAG SURFACE-2,
FAILURE FLAG SURFACE-3,

ADINA R & D, Inc.

219



Chapter 2: Elements

FAILURE FLAG SURFACE-4, FAILURE FLAG,
FAILURE CRITERION SURFACE-I,

FAILURE CRITERION SURFACE-2,

FAILURE CRITERION SURFACE-3,

FAILURE CRITERION SURFACE-4

See Section 13.1.1 for the definitions of those variables that are
not self-explanatory.

Section results: The computation of stress resultants, forces and
moments, the computation of membrane strains and curvatures, and
the position of the neutral axes can be requested in ADINA. The
latter is especially useful for multilayered shell elements.

These results are given at the locations corresponding to the
projections of the integration points on the shell element
midsurface (see Fig. 2.7-16).

The position of the neutral axes is available only for multilayer
shell elements.

Fig. 2.7-17 shows the convention used for positive forces and
moments. Table 2.7-1 contains the formulas used to evaluate the
stress and strain resultants and the neutral axes positions. They are

always referred to the local Cartesian system (7, s, t) (see Fig.
2.7-16).
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Point labels INR  INS

A 1 1
B 1 2
C 2 1
D 2 2
a) Point labeling for section results b2
(2x2%2 Gauss integration) E: zdz
7 = -h/2
Layer number or = h/2
+h
5 % 2 Ef dz
4\ ‘h2
3§ ....................... Zo
h/2
7
o
! % _h E; zdz
2
7o _h2
o8 h2
b) Definition of the neutral axes E; dz
-h/2
Figure 2.7-16: Conventions and definitions for section results

output
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Table 2.7-1: Section results output for the shell element

Stress resultants (forces and moments)

hi2 12
R = J._h/20'77 dz M. :j 055 Z dz
R hi2 J hi2
= O-- dz ,, = —I _
$S Ih/z $S hi/2 Orr
hi2
—h/2 Ou
hi2 hi2
R 2[ MO'W dz M. = J:MO'W zdz
hi2
.[ W2 Ot
hi2
—I o, dz
hi2 S
Membrane strains and curvatures
_ Exr ~ €7 _ Er T €y
Eprr = ErF T2 Xss =
(Z2_Zl) (ZZ_ZI)
_ Exy €5y b5 €55
Euss = €55 T4 X =
(ZZ_ZI) (ZZ_ZI)
Exs ~Ers _ Exs ~Eprx
Eprs =Cps O~ Xes =~
(ZZ_ZI) (ZZ_ZI)

Indices 1 and 2 refer respectively to the lowest and highest integration points on a
normal to the element midsurface.

Note that the section results are given with respect to the local Cartesian system of
the shell elements.

The stress resultants do not satisfy equilibrium except in the limit as the mesh is
refined.
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Figure 2.7-17: Nomenclature for shell stress resultants (positive)

The corresponding AUI variables are (for all material models):
MEMBRANE FORCE-RB, MEMBRANE FORCE-SB,
MEMBRANE FORCE-RBSB, SHEAR FORCE-RB,

SHEAR FORCE-SB, BENDING MOMENT-RB,
BENDING MOMENT-SB, BENDING MOMENT-RBSB,
MEMBRANE STRAIN-RB, MEMBRANE STRAIN-SB,
MEMBRANE STRAIN-RBSB, CURVATURE-RB,
CURVATURE-SB, CURVATURE-RBSB,

SHEAR STRAIN-RB, SHEAR STRAIN-SB,
NEUTRAL AXIS POSITION-RB,
NEUTRAL AXIS POSITION-SB.

See Section 13.1.1 for the definitions of those variables that are
not self-explanatory.

ref. KB Nodal forces: The nodal point force vector which corresponds to
Example 5.11  the element internal stresses can also be requested in ADINA. The
pp- 358-359 procedure for the calculation of the force vector is given in ref.
KJB.
The nodal forces are accessible in the AUI using the variable

names NODAL FORCE-X, NODAL FORCE-Y,
NODAL_FORCTE -Z, NODAL_MOMET\TT—X , NODAL MOMENT-
Y, NODAL MOMENT-Z.

2.7.10 Selection of elements for analysis of thin and thick shells

¢ The following types of shell elements are available:
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Number of Single layer with Multilayer
nodes mid-surface nodes | or top & bottom
only
Quadrilateral | 4-node MITC4 / MITC4+ | MITC4
elements 8-node MITC8 MITCS
9-node MITC9 / MITC3+ | DISP9
16-node MITC16 DISP16
Triangular 3-node MITC3 MITC4 Collapsed
elements 6-node MITC6 DISP7 Collapsed
9-node DISP10 Collapsed | DISP10 Collapsed

The types of triangular elements are illustrated in Fig. 2.7-18.

/ /*

3 3
6 5
7 r
> ° —>
1 1 4 2
MITC3 MITC6
/- a /
2 2 2
6 9
6 5
10 5
14 r
14 r _ L4_ 1 —
3 3 7 3 7 11
MITC4 collapsed DISP7 collapsed DISP10 collapsed

Figure 2.7-18. Types of triangular elements

e The most effective element for analysis of general shells is
usually the 4-node element, shown in Fig. 2.7-19(a). This element
does not lock and has a high predictive capability and hence can be
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used for effective analysis of thin and thick shells. See references:
ref.  Dvorkin, E. and Bathe, K.J., "A Continuum Mechanics
Based Four-Node Shell Element for General Nonlinear

Analysis," Engineering Computations, Vol. 1, pp. 77-88,
1984.

Recommended element: MITC4 t

(a) 4-node shell element for thick and thin shells.

Sometimes also useful elements: MITC16 and MITC9

t

MITC16 MITC9

(b) 16-node cubic shell element for thick and thin shells.
9-node shell element for thick and thin shells.

Figure 2.7-19: Recommended elements for analysis of any shell

ref.  Bathe, K.J. and Dvorkin, E., "A Four-Node Plate
Bending Element Based on Reissner/Mindlin Plate
Theory and a Mixed Interpolation," Int. J. Num. Meth. in
Eng., Vol. 21, pp. 367-383, 1985.

ref.  Bathe, K.J. and Dvorkin, E., "A Formulation of General
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ref. KUIB
pp. 403-408

Shell Elements — The Use of Mixed Interpolation of

Tensorial Components," Int. J. Num. Meth. in Eng., Vol.
22 pp. 697-722, 1986.

ref.  Bucalem, M.L and Bathe, K.J., "Higher-Order MITC
General Shell Elements," Int. J. for Num. Meth in Engng,
Vol. 36, pp. 3729-3754, 1993.

ref.  Bathe, K.J., losilevich, A. and Chapelle, D., "An
Evaluation of the MITC Shell Elements," Comp. Struct,
Vol. 75, pp.1-30, 2000.

ref.  Lee, P.H. and Bathe, K.J., “Development of MITC
isotropic triangular shell finite elements”, Comp. Struct,
Vo0l.82, 945-962, 2004.

In linear analysis it can be effective to use the 9-node shell
element (the MITC9 element) or the 16-node shell element (the
MITC16 element) (see Fig. 2.7-19(b)). However, the use of these
elements can be costly.

e The phenomenon of an element being much too stiff is in the
literature referred to as element locking. In essence, the
phenomenon arises because the interpolation functions used for an
element are not able to represent zero (or very small) shearing or
membrane strains. If the element cannot represent zero shearing
strains, but the physical situation corresponds to zero (or very
small) shearing strains, then the element becomes very stiff as its
thickness over length ratio decreases.

The MITC3, MITC4, MITC6, MITCS8, MITC9 and MITC16
elements are implemented to overcome the locking problem in the
shell element. When you choose to generate the 4-node shell
element (through the AUI), the MITC4 elements are created for the
quadrilateral elements and MITC3 elements are used for the
triangular elements. When you choose to generate the 8-node shell
element, the MITCS8 elements are created for the quadrilateral
elements and the MITC6 elements are created for the triangular
elements. When you choose to generate the 9-node shell element,
the MITC9 elements are created for the quadrilateral elements and
the MITC6 elements are used for the triangular elements. When
you choose to generate the 16-node shell element, the MITC16
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elements are created for the quadrilateral elements and DISP10
collapsed triangular elements are used for the triangular elements.
The MITCR8 element is not as effective as the other MITC elements,
and its use is not recommended in general.

¢ In order to arrive at an appropriate element idealization of a thin
shell, it may be effective to consider the behavior of a single
element in modeling a typical part of the shell. As an example, if a
shell of thickness / and principal radii of curvatures R; and R; is to
be analyzed, a single element of this thickness and these radii and
supported as a cantilever could be subjected to different simple
stress states. The behavior of the single element when subjected to
the simple stress states (e.g., constant bending moments) tells what
size of element, and hence element idealization, can be used to
solve the actual shell problem.

e For the analysis of thick shells, the elements depicted in Fig.
2.7-20 can be used as well. If necessary, these elements can also be
employed together with the elements of Fig. 2.7-19 in the analysis
of a thin shell, but then only a few elements should be employed to
model a special region, where necessary, such as a transition
region, a cut-out, and a triangular region. Also, the elements
should be small enough in size.

1 and 4

a) Quadrilateral elements b) Triangular elements

e Nodes 1 to 4 (corner nodes) must be input
o Optional nodes

Figure 2.7-20: Elements for analysis of thick shells

e For cases where the ratio thickness/radius of curvature is large
(in the original configuration or in the deformed configuration in
large deformation analysis) it is best to use 5 dofs at each shell
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node. Then all elements will represent the hyperbolic stress
distributions through the element thickness. If 6 dofs per node are
used, then only the higher order elements will represent the
hyperbolic stress distribution because the nodal director vectors are
constructed from the geometry of the elements.

e Itis recommended that, as often as possible, only the 4-node, 9-
node and 16-node elements are employed for the quadrilateral
elements, 3-node and 6-node elements are employed for the
triangular elements.

e Note that the elements in Fig. 2.7-20 can also be used as
transition elements by assigning top and bottom surface nodes
instead of a midsurface node.

e The shell elements can be used in conjunction with the beam-
bolt elements (Section 11.17) to model plates connected by bolts.

¢ Geometrically nonlinear incompatible modes elements with
large aspect ratio should not be used, because spurious modes may
be present in the finite element solution.

2.7.10.1 MITC+ formulation

e The 3-node and 4-node lower-order elements are in general
more effective than the higher-order 6-node, 8-node, 9-node and
16-node elements.

e However, when the shell structure is very thin (thickness to
overall dimension ratio #/L=1/1000 or lower), and distorted meshes
are used, locking effects can appear for 3-node and 4-node MITC
elements.

e To improve the accuracy of 3-node and 4-node MITC element
solutions, the MITC+ formulation can be used. Shell elements with
the MITC+ formulation are particularly effective when the finite
element model contains out-of-plane distorted elements.

This can be the case in the initial geometry or after large
deformations have taken place. Examples are shown in Fig 2.7-21,
Fig 2.7-22 and Fig. 2.7-23.
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For the mesh in Fig. 2.7-21 (a) the MITC4 element mesh gives
optimal solutions but when the elements are distorted as shown in
Fig. 2.7-21(b) the solution accuracy deteriorates. Then the MITC4+
element is more powerful, indeed it then gives still excellent
results.

e The MITC+ formulation can be used in static, implicit dynamic,
explicit dynamic or frequency analysis.

¢ The formulation of the shell elements is specified in the element
group. When EGROUP SHELL FORMULATION=MITC, the
original MITC formulation is chosen and when EGROUP SHELL
FORMULATION=MITC-PLUS, the MITC+ formulation is
chosen.

e The MITC+ formulation is described in the following
references:

ref. Y. Lee, P.S. Lee & K.J. Bathe, The MITC3+ shell
element and its performance, Computers & Structures,
138, 2014.

ref.  Y.Ko, P.S. Lee & K.J. Bathe, A new MITC4+ shell
element, Computers & Structures, 182, 2017.
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Figure 2.7-21: Shells with doubly curved meshes
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dimension L

thickness ¢

Midsurface

a) Undeformed configuration

Curved midsurface

b) Deformed configuration

Figure 2.7-22: Shell analysis using curved mesh
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_____________________

¢ thickness ¢

v
-

dimension L

a) Undeformed configuration

b) Deformed configuration

Figure 2.7-23: Pure bending modeled with distorted mesh

2.7.11 3D-shell element
Overview

¢ One characteristic of the shell elements described earlier is that
the change in thickness of the element is not explicitly calculated
from the element degrees of freedom. This is because the zero
stress through the shell thickness assumption is used in the material
descriptions.

e However, in large strain analysis, the change in thickness can
become important. For example, during out-of-plane bending, the
material in compression thickens, and the material in tension thins
(for nonzero Poisson's ratio). Hence the midsurface is no longer
exactly halfway between the top and bottom surfaces. This effect
is shown in Fig 2.7-24.

232 ADINA Structures — Theory and Modeling Guide



2.7: Shell elements

Midsurface

a) Undeformed configuration

Material particles
initially on midsurface

b) Deformed configuration

Figure 2.7-24: Kinematics of pure bending

e This change in thickness is naturally modeled when quadratic
3D solid elements are used, because the nodes on the top and
bottom surfaces can move relative to the nodes on the midsurface,
as shown in Fig 2.7-25. However 3D solid elements tend to lock
when they are very thin, so that they are unsuitable for bending
analysis of thin structures.

ADINA R & D, Inc.

233



Chapter 2: Elements

a) Undeformed configuration

b) Deformed configuration

Figure 2.7-25: Pure bending modeled with quadratic 3D elements

e In the 3D-shell element, the change in thickness of the element
is modeled using control vectors, as shown for the case of pure
bending in Fig 2.7-26. The motion of the control vectors is
controlled by element degrees of freedom at the shell midsurface,
as discussed in more detail below.
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Top control vector

Bottom control vector

a) Undeformed configuration

Top control vector shrinks

/

Bottom control vector elongates

b) Deformed configuration

Figure 2.7-26: Pure bending modeled with 3D-shell elements

e Because the change in thickness is explicitly calculated from
element degrees of freedom, the assumption of zero stress through
the shell thickness is not used in the 3D-shell element.

¢ In addition, the 3D-shell elements use MITC tying rules to
relieve shear locking. Therefore these elements are suitable for
out-of-plane bending analysis of thin structures, even for large
bending strains.

e The 3D-shell elements can be used with 3 or 4 nodes. The 4-
node element is recommended for general use.

e The 3D-shell elements can be used in static, implicit dynamic,
explicit dynamic or frequency analysis.
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e The 3D-shell elements cannot be used in the following types of
analysis: cyclic symmetry or periodic symmetry, thermo-
mechanical-coupling analysis, in which the structural and thermal
models are specified by two input files.

o The following features available for other shell elements are not
available for the 3D-shell element: 6-, 8-, 9-, 16-node elements,
composite (multilayer) shells, transition elements, anisotropic
failure criteria. When section results are requested, the membrane
strains and curvatures are not available.

e When using contact groups with true offsets (CGROUP ...
OFFSET-TYPE=TRUE), the 3D-shell elements contribute to the
offsets. However, the offset at a 3D-shell element node is
computed as half the current shell thickness at the node, and this
offset is used regardless of whether the contact occurs on the shell
top surface or on the shell bottom surface.

e The 3D-shell is more fully described in the following reference:

ref.  T. Sussman & K.J. Bathe, 3D-shell elements for
structures in large strains, Computers & Structures, 122,
2-12,2013.

Kinematics and degrees of freedom of the 3D-shell element

The kinematics of the 3D-shell element are similar to the
kinematics of the quadratic 3D element. The correspondence
between the quadratic 3D element and the 3D-shell element is
shown in Fig 2.7-27. Fig 2.7-27(a) shows a cross-section of a shell
structure that has undergone large deformations. Three material
particles are labeled: A at the midsurface, B at the top surface and
C at the bottom surface. In both elements, the position of material
particle A is given by the position of a node at A. Now consider
the material particles B and C. In the quadratic 3D element, the
positions of material particles B and C are given by the positions of
nodes at B and C. In the 3D-shell element, the positions of
material particles B and C are given by the position of the node at
A, and also two control vectors. In both elements, the line of
material particles between points B and C is specified by the
positions of material particles A, B, C.
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a) Material particles in thin structure Node on top surface

Node on midsurface
Node on bottom surface

b) Kinematics of quadratic 3D element

Top control vector
Node on midsurface

. Bottom control vector
Line of

material
particles

¢) Kinematics of 3D-shell element

Figure 27.7-27: Correspondence between quadratic 3D element and 3D-shell element

Fig. 2.7-28 shows the corner of a 3D-shell element, with its top and
bottom surfaces described by control vectors. Initially the control
vectors are equal and opposite. During deformations, the control
vectors can evolve independently. Thus in the deformed
configuration, the control vectors are in general not equal and
opposite, as shown in Fig 2.7-28(b).
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To@urface { -
o /

Bottom surface

a) Undeformed configuration b) Deformed configuration,

warping rotations used

c¢) Deformed configuration,
warping rotations not used

Figure 2.7-28: Control vectors at 3D-shell element node

The control vector motions are governed by element degrees of
freedom. For ease of use of the element, the element degrees of
freedom include the same degrees of freedom as for the usual shell
elements:

X, y, Z translations
a, P rotations (5 DOF node), or €, 6, 6. rotations (6 DOF

v b
node)

and extra degrees of freedom:

constant and linear thickness incremental strains
a , B rotations (5 DOF node), or 8., 6,, 6. rotations (6 DOF

node)

The elongations of the control vectors are governed by the constant
and linear thickness incremental strains. The directions of the
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control vectors relative to each other are governed by the additional
rotations, which are termed "warping rotations". (The term
"warping rotation" is used because the additional rotational degrees
of freedom cause the material particles initially on a straight line to
warp into a curved quadratic line.)

Typically the 3D-shell element is used without warping rotations,
then the extra degrees of freedom are the constant and linear
thickness strains. In this case the control vectors always point in
opposite directions, but in general have different lengths after
deformations. And material particles that were initially on a
straight line remain on a straight line after deformations. This
situation is shown in Fig 2.7-28(c).

All of the considerations for selection of 5 and 6 DOF nodes
discussed in Section 2.7.3 directly apply to the 3D-shell element
nodes.

It is not allowed to prescribe or fix any of the extra degrees of
freedom. If any of the usual rotations are prescribed or fixed, then
the AUI automatically fixes the corresponding warping rotations.

Material models and formulations for the 3D-shell element

Material models for the usual shell elements are developed using
the assumption of zero stress through the shell thickness. Hence
these models do not directly apply to the 3D-shell element.

The following material models are implemented for the 3D-shell
element: elastic-isotropic, plastic-orthotropic, plastic-cyclic,
Mooney-Rivlin, Ogden, Arruda-Boyce, hyper-foam, Sussman-
Bathe, eight-chain, three-network.

Small displacement/small strain, large displacement/small strain or
large displacement/large strain formulations can be used with these
material models, as described under the material models
descriptions.

Material model notes

The thermal strains are assumed to be small in all material models,
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including the rubber-like material models.

When stresses are output in the shell local coordinate system, the
coordinate system is the 7,8,/ system shown in Figure 2.7-6(b).

No shear correction factor is used in the 3D-shell elements.
Mixed u/p formulation

The mixed u/p formulation should be used when the material is
almost incompressible, to avoid volumetric locking. When the u/p
formulation is used, by default the assumed pressure field is
p=p,+ pt where p, and p, are the pressure degrees of freedom,

and ¢ is the isoparametric coordinate through the shell thickness.
Note that it is necessary to allow a linear variation of pressure
through the shell thickness in order to model out-of-plane bending.

It is also allowed to select the number of pressure degrees of
freedom in the plane of the shell, and the number of pressure
degrees of freedom used through the shell thickness. The case

p = p, + p;t corresponds to one pressure degree of freedom in the

plane of the shell and two pressure degrees of freedom through the
shell thickness.

Incompatible modes can be used in the 4-node 3D-shell element.
However incompatible modes and the u/p formulation cannot be
used together.

The tables at the end of this section show under what conditions the
incompatible modes and u/p formulations are used. Notice that
these conditions are material dependent.
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Element group input

3D-shell elements are placed in a shell element group (EGROUP
SHELL), with the following additional command parameters:
SHELLTYPE, WARPING ROTATIONS, NELPRS, NELPT,
TYING. SHELLTYPE=3DSHELL activates the 3D-shell
elements.

Warping rotations are specified using parameter
WARPING _ROTATIONS. Warping rotations are not used by
default.

The u/p formulation is specified using parameters NELPRS and
NELPT. NELPRS is the number of pressure degrees of freedom in
the plane of the shell, and NELPT is the number of pressure
degrees of freedom through the shell thickness. These parameters
have the possible values 0 (no u/p), >0, (u/p) or AUTOMATIC (u/p
depending upon the material), see tables at the end of this section.

Tying is specified using parameter TYING. TYING is used by
default.

The interaction between incompatible modes, u/p formulation and
the material models is given in the following tables. The default
behavior for each material is given in the first row of each table.
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Materials that do not allow the u/p formulation: Hyper-foam material

KINEMATICS EGROUP EGROUP Result
INCOMPATIBLE- | INCOMPATIBLE- | NELPRS /
MODES MODES NELPT
AUTOMATIC or | DEFAULT AUTOMATIC | No u/p or incompatible
NO modes
YES DEFAULT AUTOMATIC | Incompatible modes used
NO AUTOMATIC | No u/p or incompatible
modes
YES AUTOMATIC | Incompatible modes used
AUTOMATIC or | DEFAULT 0/0 No u/p or incompatible
NO modes
YES DEFAULT 0/0 Incompatible modes used
NO 0/0 No u/p or incompatible
modes
YES 0/0 Incompatible modes used
AUTOMATIC or | DEFAULT A/B Error
NO
YES DEFAULT A/B Error
NO A/B Error
YES A/B Error
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Materials that allow the u/p formulation, but for which the u/p formulation is
not the default: Elastic material

KINEMATICS EGROUP EGROUP Result
INCOMPATIBLE- | INCOMPATIBLE- | NELPRS/
MODES MODES NELPT
AUTOMATICor | DEFAULT AUTOMATIC | No u/p or incompatible
NO modes
YES DEFAULT AUTOMATIC | Incompatible modes
used
NO AUTOMATIC | No u/p or incompatible
modes
YES AUTOMATIC | Incompatible modes
used
AUTOMATICor | DEFAULT 0/0 No u/p or incompatible
NO modes
YES DEFAULT 0/0 Incompatible modes
used
NO 0/0 No u/p or incompatible
modes
YES 0/0 Incompatible modes
used
AUTOMATICor | DEFAULT A/B u/p used with A*B
NO pressure dofs
YES DEFAULT A/B Error
NO A/B u/p used with A*B
pressure dofs
YES A/B Error
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Materials that allow the u/p formulation, and for which the u/p formulation is
the default: Plastic-cyclic, plastic-orthotropic, Ogden, Mooney-Rivlin,
Arruda-Boyce, Sussman-Bathe materials, eight-chain, three-network model

KINEMATICS EGROUP EGROUP Result
INCOMPATIBLE- | INCOMPATIBLE- | NELPRS/
MODES MODES NELPT
AUTOMATIC or | DEFAULT AUTOMATIC | Automatic u/p
NO
YES DEFAULT AUTOMATIC | Incompatible modes
used
NO AUTOMATIC | Automatic u/p
YES AUTOMATIC | Incompatible modes
used
AUTOMATIC or DEFAULT 0/0 No u/p or incompatible
NO modes
YES DEFAULT 0/0 Incompatible modes
used
NO 0/0 No u/p or incompatible
modes
YES 0/0 Incompatible modes
used
AUTOMATIC or | DEFAULT A/B u/p used with A*B
NO pressure dofs
YES DEFAULT A/B Error
NO A/B u/p used with A*B
pressure dofs
YES A/B Error

Automatic u/p: u/p used with 1/ 2 pressure dofs, i.e. p=p, + pt

2.8 Pipe elements

e Two types of pipe element are available: pipe-beam element
and pipe-shell element. The program automatically selects one of
these element types depending on the setting used for the pipe
element. If no ovalization or warping of the cross-section are
present, the pipe-beam element is used. If ovalization or warping of
the cross-section are present, the pipe-shell element is used. Only
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4-node elements are supported. Figure 2.8-1 shows the
conventions used.

e Assemblages of pipe elements can be subjected to internal
pressure, see Section 2.8.2.

ref KJB e The pipe-beam element has 6 displacement degrees of freedom
Sections 5.4.1, per node (3 translations and 3 rotations, see Fig. 2.8-1).
6.5.1
Tab

Convention for
pipe stresses

Taa Pipe global displacement

egrees of freedom

cc . .
Integration point

\ /
\ /
\ /
\ <! " /
z

A ﬁ \ , /" Nodes 1 to 4

NI / and KK must
A / lie in one plane

Y N / (r-s plane).
N/
X 3,/
o Auxiliary node KK

Element coordinate system convention:

longitudinal direction = a-direction (or 1)
radial direction = b-direction (or §)
circumferential direction = c-direction (or &)

Figure 2.8-1: Pipe element configuration and displacement
degrees of freedom and stress convention

o The pipe-shell element has, in addition to the 6 pipe-beam
degrees of freedom, 3 or 6 ovalization and 3 or 6 warping degrees
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of freedom per node allowing the cross-section to ovalize and
warp. Ovalization refers to the deformation of the pipe-skin in the
cross-sectional plane, and warping refers to the deformation of the
pipe-skin in the direction normal to the pipe cross-section. The
additional degrees of freedom are allocated as follows: 3
ovalization and 3 warping degrees of freedom for in-plane bending
deformation; 3 ovalization and 3 warping degrees of freedom for
out-of-plane bending deformation; 6 ovalization and 6 warping
degrees of freedom for combined in-plane and out-of-plane
bending. The user determines whether to activate one or both of
in-plane or out-of-plane warping/ovalization.

t . /Pipe clement
t_,\ S :
M, \ v , / M;
(in-plane moment) A N , 4
N /
N /
N\ . y
/ Plane of pipe element

A\uxiliary node

N

([
a) In-plane-only bending conditions

t
\, =
\
l\/[S \

Pipe element

R
/

T

Ys
\
N
\
\
\
\

Auxiliary node
¢

b) Out-of-plane bending conditions

(out-of-plane moment)

Plane of pipe element

Figure 2.8-2: Loading conditions for the pipe element

¢ Note that the in-plane bending in this terminology corresponds
to the bending in the r-s plane and the out-of-plane bending
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corresponds to the bending in the r-t plane (see Fig. 2.8-1 and
2.8-2).

o The ovalization degrees of freedom are based on the von
Karman ovalization modes, with the following circumferential
displacement:

N, N,
w, = Z c, sin2mg¢ + Z d, cos2mg
m=1 m=1

where c,, and d,, are generalized ovalization displacements which
are interpolated from their nodal values using polynomial shape
functions. The ¢, terms correspond to in-plane bending and the d,
terms correspond to out-of-plane bending. N, and N, are the
number of von Karman modes used in the analysis for in-plane and
out-of-plane bending actions (N, = N, = 3 is always used in
ADINA).

e Similarly, warping of the cross-section is described by a
longitudinal displacement field analogous to the interpolation for
the ovalization displacement

Nc Nd
w, = z p,, €OS2me + z q,, sin 2mg
m=1

m=1

where p,, and g,, are generalized ovalization displacements which
are interpolated from their nodal values using polynomial shape
functions. The p,, terms correspond to in-plane bending and the g,
terms correspond to out-of-plane bending.

The formulation of the pipe-shell element (ovalization/warping
included) is described in more detail in the following references:

ref.  K.J. Bathe and C.A. Almeida, "A Simple and Effective
Pipe Elbow Element — Linear Analysis," J. Appl. Mech.,
Transactions of the ASME, Vol. 47, No. 1, pp. 93-100,
1980.

ref.  K.J. Bathe, C.A. Almeida and L.W. Ho, "A Simple and
Effective Pipe Elbow Element — Some Nonlinear
Capabilities," Comp. & Structures, Vol. 17, No. 5/6, pp.
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659-669, 1983.

¢ The pipe-shell formulation also takes into account the effects of
stiffening due to internal pressure, and the effects of interactions
between pipes and flanges, and pipes with different radii, see Fig.
2.8-3. The formulations are described in the following references:

ref.  K.J. Bathe and C.A. Almeida, "A Simple and Effective
Pipe Elbow Element — Interaction Effects," J. Appl.
Mech., Transactions of The ASME, Vol. 49, pp. 165-171,
1982.

ref.  K.J. Bathe and C.A. Almeida, "A Simple and Effective
Pipe Elbow Element — Pressure Stiffening Effects," J.
Appl. Mech., Transaction of the ASME, Vol. 49, pp. 914-
916, 1982.
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Rigid flange Pipe centroidal axis

a) Pipe connected to a rigid flange

Pipe centroidal axis

Pipe elements

b) Pipes of different radii joined together

Figure 2.8-3: Interaction effects with the pipe element
e Whereas the pipe-beam element models the usual beam strains
only, the pipe-shell element models in addition ovalization and

warping effects by including the following strains (see Fig. 2.8-1
for notation):

» The ovalization is included by the von Karman ovalization
modes with

6w§
W, =—~=
o¢
and
o WeSing—w, cos¢ 1 *w, ;
“ R—acos¢ (R—acos¢)2 06°
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Vab = (2.8-1)

ov

1 ow
Vo -

h R—acos¢ 060

o 1 82w§
€. :—a—z W§ +a—¢2 é/

» The warping is included using shell theory as

0
e =|1- cos ¢ c 1 w,
R—acos¢ R—acos¢ ) 060

Y =0

w1 6‘w,7 w, sin ¢
Tae = 0¢ R-—acosg

(2.8-2)

e’ =0

cc

Here, a is the pipe mean radius, R is the bend radius and 8 and
@ are the angles defined in Fig. 2.8-1.

In the formulation of the element the displacements w, for the

ovalization in Eq. 2.8-1 and w, for the warping in Eq. 2.8-2 are

interpolated by sine and cosine functions associated with the
ovalization and warping degrees of freedom.

e For the pipe-shell element, continuity of ovalization and
warping generalized displacements is enforced by assigning the
same degrees of freedom to the node which the adjacent elements
are attached. However, a restriction in ADINA is that the continuity
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of the derivative 6w§ / 0n is only enforced between elements of the

same element group. Hence, elements which model a region of
significant longitudinal variation of the ovalization should be
placed into one element group.

o A further restriction when using the pipe-shell element in
ADINA is that for continuity in the ovalization and warping
displacements, adjacent elements should lie in one plane. This is
because the ovalization and warping displacements are measured
using the angle ¢ for the s-axis of each element. In practice,
adjacent bend elements lying in different planes are usually joined
by straight sections (or a rigid flange) and these cases can be
accurately modeled with the pipe-shell elements, because all
ovalization and warping displacements are approximately zero in
the middle of the straight section and at the rigid flange.

e Note that without warping/ovalization, the pipe-beam and pipe-
shell elements give the same stress response. Hence, the
ovalization and warping of the pipe-shell element can be thought of
as additional kinematic modes to the pipe-beam response which
result in an appropriate reduction of stiffness of pipe bends.

e For the pipe-shell element, the following use of the
ovalization/warping degrees of freedom is recommended:

» Activate the in-plane ovalization/warping degrees of
freedom if the pipe elements undergo only in-plane
deformations, see Fig. 2.8-2(a).

» Activate the out-of-plane ovalization/warping degrees of
freedom if the pipe elements undergo only out-of-plane
deformations, see Fig. 2.8-2(b).

» Activate all ovalization/warping degrees of freedom if the
pipe elements undergo general three-dimensional deformations.

e In order to model the presence of a flange at a pipe node (of a
pipe-shell element), all ovalization/warping degrees of freedom
should be deleted at the node. The deletion of all nodal
ovalization/warping degrees of freedom implies that the pipe
section at that node remains circular. In addition, the option of
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enforcing a zero pipe-skin slope must be employed to model the
flange (see Fig. 2.8-4).

e The symmetry condition, also shown in Fig. 2.8-4, implies zero
warping but not necessarily zero ovalization.

¢ For a pipe elbow, a nondimensional geometric factor A is
defined as

RO

where R = pipe bend radius, é = pipe wall thickness, a = pipe cross-
section mean radius, v = Poisson's ratio.

1=

252

ADINA Structures — Theory and Modeling Guide



2.8: Pipe elements

Ovalization and warping
equal to zero at node j
for element 1.

Ovalization and warping
equal to zero at node j
for elements iand i+ 1.

Elementi+ 1 Element i
W,

(a) Flange conditions

oW,
, Symmetry plane, éle =0
Node j Nonzero ovalization and
zero warping at node j
for element 1.

Element i " W,

(b) Symmetry condition

Figure 2.8-4: Zero pipe-skin slope conditions

With a decreasing value of 4, the ovalization/warping effects of
the cross-section become more pronounced. Note that for a straight
pipe element, R — oo and thus the cross-section does not
ovalize/warp except if connected to another pipe element with a
finite bend radius.

2.8.1 Material models and formulations

o The pipe elements can be used with the following material
models: elastic-isotropic, plastic-bilinear, plastic-multilinear,
thermo-isotropic, thermo-plastic, creep, plastic-creep,
multilinear-plastic-creep, creep-variable, plastic-creep-
variable, multilinear-plastic-creep-variable.
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o The pipe elements can be used with a small displacement or a
large displacement formulation. In the small displacement
formulation, the displacements and rotations are assumed to be
infinitesimally small. In the large displacement formulation, the
displacements and rotations are assumed to be large. In all cases,
only small strains are assumed.

All of the material models listed above can be used with either
formulation. The use of a linear material with the small
displacement formulation corresponds to a linear formulation, and
the use of a nonlinear material with the small displacement
formulation corresponds to a materially-nonlinear-only
formulation.

In the large displacement formulation, large displacement
effects are only included for the overall beam displacements and
not for the warping/ovalization degrees of freedom. Hence, large
displacement effects are not accounted for in the element cross-
sectional deformations.

¢ An element is to be considered a nonlinear pipe element if a
large displacement analysis is performed or a nonlinear material is
used and/or pipe internal pressure is present.

2.8.2 Pipe internal pressures

¢ Both types of pipe elements support internal pressure loading.
The load vector corresponding to that pressure is calculated as
follows:

First, two axial forces F'”’ and F'? are acting at the element
end nodes, as shown in Fig. 2.8-5. Their magnitudes are

(p) _ 2 . (p) _ 2
Fal _naipl H F;z _Tcaip2

where p; and p, are the internal pressures at nodes 1 and 2 (input as
nodal point pressures to the program), and ¢; is the internal radius
of the cross-section. Also, if the element is curved, transverse
forces are generated by the internal pressure. The transversal force
acting on the elementary axial length dL of the pipe axis is
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2
Ta;
dFT = —TdeL

and the nodal transversal forces are obtained as

F, = [h dF,
L

where /, is the interpolation function corresponding to node .

4
Figure 2.8-5: Forces due to pipe internal pressure

e The nodal forces due to the internal pressure for an element
represent a self-balanced system. Consequently, if a structure is
free to deform, as in the case of the cantilever in Fig. 2.8-6(a), the
support reactions are equal to zero. However, in the case of a
restrained system, the reactions at a support balance the forces and
moments which are a result of the internal stresses and the nodal
forces that are equivalent to the internal pressure, see Fig. 2.8-6(b).

e Note that internal pressure acts against ovalization and hence
increases the stiffness of the ovalization degrees of freedom.
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Internal
pressure p

Ra Rp
2aty —h AL e e —— e
_______ YN
T
5/2 p

In elastic deformations:
R,=Rg=ma;p(a; -2va) a = mean radius
= v = Poisson's ratio
Q= a -9/2 .
= internal radius

b) Fully restrained pipe

Figure 2.8-6: Support reactions for pipe loaded by internal pressure

¢ In the stress calculation the following assumptions are made
regarding the internal pressure effects.

» For the pipe-beam element it is assumed that the hoop stress

t+At . . . t+At _ t+At __(p)
o, 1s determined by the given pressure, o, = O,. ,

cc

where Y O'C(f ) is the hoop stress equivalent to the pressure

e p (using thin-walled cylinder theory). Then, using that the

normal stress through the pipe skin is equal to zero, the axial

At . .
stress Yo is obtained as

aa
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t+At _ At t+At _ t+At IN _ t+At JTH t+At, t+At __(p)
O-aa - E( aa aa e )+ 4 cc

Al A .
where " E and """v are the Young's modulus and Poisson's

t+At _TH
e

ratio, and is the thermal strain corresponding to the

t+At t+At _IN

and e are the total mechanical and

aa aa

Al
temperature '@ ;

inelastic strains, respectively.

» For the pipe-shell element the basic condition regarding the
deformation of the pipe skin is that the material is free to
deform in the circumferential direction. Hence, the total hoop
strain is

t+At t+At t+At t+At _IN 1t+At IN t+At _OV
ecc == v aa -

aa 5 eaa + cc

_ 2
+H(14+v) "™ + [ITVJ o'”

At _OV - . . . .
where "e”" is the strain due to ovalization of the cross-section.

cc
This relation is based on the assumption that the inelastic
deformation is incompressible (as it is in metal plasticity and
creep).

o Pressures at all nodal points of a piping model using the pipe-
beam or pipe-shell elements (and other elements) must be defined
if internal pressure effects are to be included in some of the
elements. The internal pressure loads are only used for the pipe-
beam and pipe-shell elements. See Section 5.7 for information
about specifying internal pressures.

2.8.3 Numerical integration

¢ The element stiffness and mass matrices and force vectors are in
all formulations evaluated using Gauss or Newton-Cotes numerical
integration in the axial and the thickness directions and the
composite trapezoidal rule along the circumference of the pipe
section. The locations and labeling of the integration points are
given in Fig. 2.8-7.
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Newton-Cotes formulas:

1 2 3
Order -3 &—
Node 1 Node 2
1 2 3 4 5
Order -5 ® R ®
Node 1 Node 2
%; 2 3 4 5 6 C7)
Order -7 Node 1 Node 2
Gauss formulas:
1
Order 1 Node 1 Node 2
Order 2 Node 1 Node 2
3
Order 3
Node 1 Node 2
1 2 4
Order 4 &
Node 1 Node 2

Figure 2.8-7: Locations and labeling of integration points

a) Integration point locations on pipe centroidal axis (label INR)

258

ADINA Structures — Theory and Modeling Guide



2.8: Pipe elements

Gauss: order 3 Newton-Cotes: order 5

b) Integration point locations along thickness direction (label INB)

Order 12 Order 24

c) Integration point locations along circumferential direction (label INC)

Figure 2.8-7: (continued)

e For the pipe-beam elements the following integration orders
should be used (and are default in ADINA):

» 1-point and 3-point Gauss integration along the axial
direction for the 2-node and 4-node elements, respectively

» 2-point Gauss integration through the thickness of the pipe
skin
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» 8-point integration along the circumference

o For the pipe-shell element the following integration orders
should be used (and are default in ADINA):

» 3-point Gauss integration along the axial direction

» 2-point Gauss integration through the thickness of the pipe
skin

» 12-point integration along the circumference if only the in-
plane ovalization degrees of freedom are activated

» 24-point integration along the circumference if the out-of-

plane ovalization degrees of freedom are activated

¢ The recommended numerical integration orders for nonlinear
analysis are:

» When no inelastic strain effects are considered, use the same
integration orders as in linear analysis.

» When material nonlinear conditions are considered, use a
higher integration order through the pipe skin if the pipe skin
progressive yielding or creep is to be represented. For the
integration along the length of the elements and the
circumference of the cross-section, an integration order higher
than that used in linear analysis may, for the same reason, also
be appropriate.

» The integration order along the axial r-direction (INR)
should not be changed from the default value for the pipe-beam
element otherwise the pipe-beam element will lock. The same
locking phenomenon is also observed for iso-beam elements;
see Section 2.5.2 for more details.

2.8.4 Element mass matrices

ref. KUB
Section
5.4.1

e The pipe element can be used with a lumped or a consistent
mass matrix, except for explicit dynamic analysis which always
uses a lumped mass.

e The consistent mass matrix associates mass only with the pipe’s
translational and rotational degrees of freedom and is calculated
using the isoparametric formulation with the displacement
interpolations given on p. 408 of ref. KIB. Hence, no masses are
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associated with the ovalization/warping degrees of freedom.

e The lumped mass for translational degree of freedom i is

M (K—L’] where M is the total element mass, L is the element

length and /. is a fraction of the length associated with node i. The

rotational lumped mass is lM (L. l(a’f +d1-2) where
3 L)\4

d, and d, are the outside and inside diameters of the pipe. The

lumped ovalization and warping mass for each of the ovalization
and warping degrees of freedom are set to be equal to the

£,
translational lumped masses M (fl]

e The rotational lumped mass can be multiplied by a user-
specified scalar ETA (except in explicit analysis).

2.8.5 Element output

You can request that ADINA either print or save stresses or forces.

Stresses: Each element outputs, at its integration points, the
following information to the porthole file, based on the material
model. This information is accessible in the AUI using the given
variable names.

Elastic-isotropic: STRESS (ABC), STRAIN (ABC),
FE EFFECTIVE STRESS,

EQUIV INTERNAL AXIAL PRESSURE,

EQUIV_ INTERNAL HOOP PRESSURE

Elastic-isotropic with thermal effects: STRESS (ABC) ,

STRAIN (ABC), FE EFFECTIVE STRESS,

EQU IV_INTERNAL_AXIAL_PRESSURE ’
EQUIV_INTERNAL_HOOP_PRESSURE ’ THERMAL_STRAIN,
ELEMENT TEMPERATURE

Thermo-isotropic: STRESS (ABC), STRAIN (ABC),
THERMAL STRAIN (ABC),
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EQUIV INTERNAL AXTAL PRESSURE,
EQUIV INTERNAL HOOP PRESSURE,
ELEMENT TEMPERATURE

Plastic-bilinear, plastic-multilinear: PLASTIC FLAG,

STRESS (ABC), STRAIN (ABC),

PLASTIC_STRAIN(ABC), THERMAL_STRAIN(ABC),
EQUIV INTERNAL AXTIAL PRESSURE,
EQUIV_INTERNAL_HOOP_PRESSURE,
FE_EFFECTIVE_STRESS, YIELD_STRESS,

ACCUM EFF PLASTIC STRAIN, ELEMENT TEMPERATURE

Thermo-plastic, creep, plastic-creep, multilinear-plastic-creep,
creep-variable, plastic-creep-variable, multilinear-plastic-creep-
variable: PLASTIC FLAG, NUMBER OF SUBINCREMENTS,
STRESS (ABC), STRAIN(ABC),

PLASTIC STRAIN(ABC), CREEP STRAIN (ABC),
THERMAL STRAIN(ABC), ELEMENT TEMPERATURE,
ACCUM EFF PLASTIC STRAIN,

FE EFFECTIVE STRESS, YIELD STRESS,

EQUIV INTERNAL AXTAL PRESSURE,

EQUIV INTERNAL HOOP PRESSURE,
EFFECTIVE CREEP STRAIN

In the above lists,

STRESS (ABC) = STRESS-AA, STRESS-AB, STRESS-
AC, STRESS-CC, STRESS-BB

with similar definitions for the other abbreviations used above. See
Fig. 2.8-1 for the pipe stress coordinate system convention.

See Section 13.1.1 for the definitions of those variables that are
not self-explanatory.

Nodal forces: In linear analysis, the forces/moments at the
element nodes are
F=KU

where K is the element stiffness matrix and U is the vector of
nodal point displacements which may include ovalizations and
warpings. Hence, the forces/moments in F will be equal to the
forces/moments applied externally or by adjoining elements, and
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are not necessarily the internal section forces/moments.

The nodal forces are accessible in the AUI using the variable
names NODAL FORCE-R, NODAL-FORCE-S,
NODAL FORCE-T , NODAL MOMENT-R, NODAL MOMENT-
S, NODAL MOMENT-T. B

The end forces/moments are computed at the element local
nodes. In the AUI, element local nodes are defined as element
points of type label. For example, to access the result computed at
element 5, local node 2, define an element point of type label with
element number 5, label number 2.

2.8.6 Recommendations on use of elements

e The pipe elements are available in ADINA to model general
pipe networks subjected to general boundary and loading
conditions including internal pressure and thermal loading.

e When ovalization effects are insignificant (straight pipes or
pipes of large thickness) the 2- or 4-node pipe-beam element
should be used. In this case, linear or nonlinear behavior can be
modeled with large displacements but small strains.

e When ovalization effects are important, the 4-node pipe-shell
element should be used. In this case, linear or nonlinear behavior
can be modeled with the assumptions that the displacements are
always relatively small and that the strains are small. The
displacements are always relatively small because in the calculation
of the flexibility due to ovalization/warping the pipe radius is
constant (and equal to the initial pipe radius) and no large
displacement strain terms are included in the ovalization/warping
calculations. The only large displacement strain terms accounted
for are those corresponding to the beam behavior.

However, if the large displacement option is employed, the
change of the pipe radius is taken into account in the calculation of
the element nodal forces due to the pipe internal pressure.

ref.  K.J. Bathe and C.A. Almeida, "A Simple and Effective
Pipe Elbow Element — Linear Analysis," J. Appl. Mech.,
Transactions of the ASME, Vol. 47, No. 1, pp. 93-100,
1980.
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¢ Since the pipe-beam element stiffness matrix is calculated using
numerical integration, it is clear that the linear 2-node Hermitian
beam element (see Section 2.4.1) for which the stiffness matrix is
evaluated in closed-form can be much more cost-effective in
analyzing linear piping systems with negligible ovalization,
warping and internal pressure effects.

2.9 General and spring/damper/mass elements
2.9.1 General elements

e General elements are linear elements which can have from one
node to as many nodes as there are in the structure.

¢ General elements are useful in the definition of special elements
whose formulations are not directly available in ADINA. General
elements are also useful in providing flexibility in obtaining any
desirable linear stiffness/mass/damping matrices.

¢ You directly enter the stiffness matrix (and in dynamic analysis,
the mass and damping matrices) of the general element.

The dimension of the stiffness/mass/damping matrices cannot
exceed ND, defined as NDOFxIELD, where IELD is the number of
nodes of the general element and NDOF is the number of active
degrees of freedom for each node (set in the MASTER command,
with a default of 6). The components for the
stiffness/mass/damping matrices must be defined for all ND
degrees of freedom. Note that only the upper triangular half of the
matrices needs to be input (the stiffness/mass/damping matrices
must be symmetric).

For example, for a 4-node 3D solid element with three active
master degrees of freedom, ND=3%4=12, the stiffness matrix is
12x12 symmetric and the internal force vector is calculated using
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1 hg ki &A ks hﬁ h] ks he kuo ku1 kuz Ui
ky, 2,3 kéA ky kéﬁ kZJ kg ki kéJo kéJl ks u;
ks kéA ks s kéﬁ kéj kig kg kﬁJo kSJl ks 1 Ui

kAA kys k#ﬁ k4j ks ki, k4J0 k4J1 ky s ”i

ks s kSﬁ ks, ksy ks kSJo kSJl ks 12 U;

koo key ks Ko kﬁJo kéJl ke 1 M:

ki kis ko k7J0 kﬁJl k1 ui

LR kéJo kéJl ks ui

k§9 kao kéJl kblz ui

sym hmm hmu hau Uﬁ

hul huz Uﬁ

hmz ﬁ_

The stiffness matrix is entered using the following command:

MATRIX STIFFNESS 1 12

Ki,1
K2,2
K3, 3
Ka,4

W oo JdJo Ul WN R
~
o
o

11 kqy
12 ki

kl 2 kl,3 k1,4 kl,S k1,6 kl,7 k1,8 kl,9 k1,10 kl,ll k1,12
k2 3 k2,4 k2,5 k2,6 k2,7 k2,8 k2,9 k2,10 k2,11 k2,12
k3,4 k3,5 k3,6 k3,7 k3,8 k3,9 k3,10 k3,11 k3,12
k4,5 k4,6 k4,7 k4,8 k4,9 k4,10 k4,11 k4,12

kS 6 k5,7 k5,8 k5 9 k5,10 kS,ll k5,12

k6 7 k6,8 k6,9 k6,10 k6,11 k6,12

k7,8 k7,9 k7,10 k7,11 k7,12

k8,9 k8,10 k8,11 k8,12

k9,10 k9,1l k9,12

;10 k].O,ll klO,lZ

;11 k11,12

;12

where, of course, the numerical values of the stiffness matrix
entries are substituted for k;j. Note that in this case, all except for
the three translational degrees of freedom must be disabled from
the MASTER command.

e An alternative is to define a user-supplied general element, see
Section 2.9.3.

If skew systems are used, then either all matrices must be input in
the global coordinate system and proper transformations are made
by ADINA if there are skew systems at the element group nodes, or
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all matrices must be input in the coordinate systems used at the
nodes and no transformations between global and skew systems are
made in ADINA (SKEWSYSTEMS = YES in the EGROUP
GENERAL or EGROUP SPRING command).

¢ Note that the general element can be used to define a constant
damping matrix for other element types in ADINA. Alternative
ways to define damping are Rayleigh damping, concentrated
dampers and the damping feature in spring elements.

o Forces are calculated for general elements using

F=KU

where U stores the displacements and rotation of the ND degrees of
freedom.

The forces are accessible in the AUI using the variable names
NODAL FORCE-X, NODAL FORCE-Y, NODAL FORCE-Z,
NODAL MOMENT-X, NODAL MOMENT-Y, NODAL MOMENT-
Z. The forces are with reference to the nodal skew systems, if skew
systems are used.

e The damping force is simply calculated as
F=CU
and the inertia is calculated as

F=MU

e For output purposes, stresses can also be calculated for general
elements if you define a stress-displacement matrix S. The stress
vector ¢ is obtained using

¢=SU

Note that the matrix S must be input as a full matrix and is of
dimension NSxND, where NS equals the number of stress
components in ¢ (NS cannot exceed 600).
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Each element outputs the vector ¢ to the porthole file. This
vector is accessible in the AUI using the variable name
GENERAL ELEMENT STRESS. You select the component of 6
in the AUI by setting the label point number equal to the
component number in 6.

2.9.2 Linear and nonlinear spring/damper/mass elements

Linear spring single-degree-of-freedom element

e The stiffness matrix has only 1 component and corresponds to a
grounded spring acting in the single (user-specified) degree of
freedom, see Fig. 2.9-1(a).

e The mass matrix corresponds to a concentrated mass acting in
the single degree of freedom, see Fig. 2.9-1(b).

e The damping matrix corresponds to a grounded damper acting
in the single degree of freedom, see Fig. 2.9-1(c).
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k Ul
O S C =
Single Single Single Single
translational rotational translational rotational
DOF spring DOF spring DOF mass DOF mass
(a) Stiffness K = [k] (b) Mass M = [m]
u
c c 0
R g
Single Single
translational rotational
DOF damper DOF damper

(c) Damping C = [c]
Figure 2.9-1: Single-degree-of-freedom element
Linear spring two-degree-of-freedom element

e The stiffness matrix is shown in Fig. 2.9-2(a) and corresponds
to a spring coupling the two (user-specified) degrees of freedom.

e The lumped mass matrix is diagonal, see Fig. 2.9-2(b), and
corresponds to two concentrated masses acting in the two degrees
of freedom.

e The consistent mass matrix is obtained using a linear

interpolation of the accelerations in the two degrees of freedom, see
Fig. 2.9-2(b) and ref. KJB, Example 4.5, pp. 166-170.

¢ The damping matrix is shown in Fig. 2.9-2(c) and corresponds
to a damper coupling the two degrees of freedom.

MNO-G spring element

e The element definition is the same as that of the single- or two-
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degree of freedom linear spring element.

e Spring stiffness can be defined using a nonlinear force-
displacement curve as in the nonlinear spring element.

¢ Spring stiffness can be in any direction defined by the command
EGROUP SPRING ... SKEWSYSTEM=YES

e Damping coefficient can be dependent on the relative velocity
of the element end nodes as in the nonlinear damper element.

¢ Element mass can vary with time as in the nonlinear mass
element.

k -k m/2 0
K = M]umped =
-k k 0 m/2
k = spri tant
spring constan S
a) Stiffness matrix Meonsistent =
m/6 m/3
m = total mass
c -C of element
C B .
-C c b) Mass matrix

¢ = damping constant

c¢) Damping matrix

Figure 2.9-2: Two-degrees-of-freedom element matrices
Nonlinear spring/damper/mass element

¢ A nonlinear "spring" element is available in ADINA for static
and dynamic analysis. This element can be used to connect two
nodes or to attach a node to the ground. It can be a translational or
a rotational "spring" (see Figure 2.9-3). The stiffness, damping and
mass of the element can each be either nonlinear or linear.
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o Large displacements can be applied to nonlinear spring
elements.

¢ In the case of a translational spring, the nonlinear stiffness is
defined by a multilinear elastic force versus relative-displacement
relationship. The corresponding curve can be different for negative
relative-displacement than for positive relative-displacement. The
input curve need not pass through the origin (0,0).

The nonlinear damping is given by a function of the form

< |IN .
|F D| =C |U | where F” is the damping force in the element, U

is the relative velocity between the element end nodes, and C and N
are real constants.
The mass of the element can vary with time (see Figure 2.9-4).
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Nonlinear translational stiffness:

Nonlinear translational damping:

Nonlinear torsional stiffness:

ME
2 /VV

yﬂ/ gt
2
Ak~ it
ME

Nonlinear torsional damping:

MD

FP
U020 ¥ 2/!7
A% T

Nonlinear translational stiffness,
grounded spring:

E

B 1 F /n
v=v 54
\ZU]

Figure 2.9-3: Description of the nonlinear spring/damper/mass element

The relative displacement U is defined as follows: Let U’ and
U’ be the displacement vectors at local nodes 1 and 2, and °x’ and
%’ be the respective initial positions of these nodes.

For initially coincident nodes (°x’ = %%), U =U ; -U Zfl
where id specifies a global direction in the global Cartesian
coordinate system, and is specified in the input. id = 1,2,3 for the
X, Y, Z translational directions and id = 4,5,6 for the rotation about

the X, Y, Z directions. There is also an option (using id = 0) to use
another arbitrary direction.
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Force versus displacement or Force versus velocity or moment
moment versus rotation: versus torsional velocity:
FE FD
A
777777 » 1

*{ \2 FP=cyN
u

Case 1: no rupture
Case 2: rupture

Mass versus time:

4 Total
mass

» Time

Figure 2.9-4: Nonlinear stiffness, damping and mass

If the nodes are not initially coincident, then the element can be
used to define a translational spring along the direction given by
the vector from node 1 to node 2. Let U’ store only the
translational displacements, then the relative translational

(oxz 0!

||(0X2 0 Xl)

relative displacement is the difference in displacements in the
direction of the line (spring) element.

displacement is given by U = (U> -U") ,1.e., the

e In a similar manner, a torsional spring is defined between the
local nodes 1 and 2.

e Similar definitions are used for the relative velocity.

e Rupture based on the value of the relative displacement may or
may not be included in the nonlinear spring element (see Figure
2.9-4). If rupture is not desired, the last segments of the elastic-
force versus relative displacement curve are extrapolated when
necessary. If rupture is desired, then the elastic force in the
element is set to zero whenever the relative displacement is larger
(resp. smaller) than the last (resp. first) point on the curve. Note
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that this effect is reversible, as the force will be computed again
according to the curve if the displacement value comes back into
the curve displacement range.

¢ Note that the linear spring element and the nonlinear spring
element act quite differently: the linear spring element connects
specific degrees of freedom, whereas the nonlinear spring element
connects nodes and acts in a specified direction. Likewise the input
for these elements is also different.

Element output

¢ You can request that ADINA either print or save stress
resultants or forces.

Stress resultants: Each element outputs the following information
to the porthole file. This information is accessible in the AUI using
the given variable names.

Linear element: GENERAL ELEMENT STRESS (NS values per
element)

Nonlinear element: DAMPING FORCE, ELASTIC_ FORCE

Nodal forces: For linear elements, these are the elastic nodal
forces (in the global Cartesian reference system) equivalent to the
axial elastic stress. Any stresses due to damping are not included.
For nonlinear elements, these are the nodal forces (in the global
Cartesian reference system) equivalent to the axial elastic and
damping stresses.

The forces are accessible in the AUI using the variable names
NODAL FORCE-X, NODAL FORCE-Y, NODAL FORCE-Z,
NODAL MOMENT-X, NODAL MOMENT-Y, NODAL MOMENT-
Z . The forces are with reference to the nodal skew systems, if
skew systems are used.

2.9.3 6DOF Spring Element

e The 6DOF spring element is a generalized spring-damper
element which can be linear or materially-nonlinear only (MNO). It
can have single node, two coincident or two non-coincident nodes.
In each degree of freedom, the element stiffness can be defined as a
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constant or using a force-displacement curve in the element
coordinate system. The damping coefficients are always constants
in units of force per unit velocity. Please note that mass property is
not available in the 6DOF spring element. In the case of the MNO
6DOF spring, the stiffness is defined by a multilinear elastic force
versus relative-displacement curve. The input curve can be
different for negative relative-displacement than for positive
relative-displacement. The input curve need not pass through the
origin (0.0).

e The displacement (skew) system can be defined in the 6DOF
spring element to prescribe loads and constrains. Element
birth/death is also supported. Currently, the 6DOF spring element
is not supported in explicit dynamic analysis.

¢ Ifa 6DOF spring element has a single node or two coincident
nodes, its element coordinate system must be defined using CID
(coordinate system used to define spring element) as shown in Fig.
2.9-5 and Fig. 2.9-6. For single node 6DOF spring element, it
corresponds to a grounded spring acting in the user-specified
degree of freedom.

Y CID
X
y-element
z-element
x-element
GA

Figure 2.9-5: 6DOF spring element with single node
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Y cm
Z
X
y-element
z-element x-element

GA GB
Figure 2.9-6: 6DOF spring element with two coincident nodes

If a 6DOF spring element has two non-coincident nodes, its
element coordinate system can be defined using CID, orientation
vector or its axial direction as shown in Fig. 2.9-7, Fig. 2.9-8 and
Fig. 2.9-9.

In Fig. 2.9-7, the element coordinate system is defined by CID.
Note that GA and GB may or may not have displacement (skew)
coordinate system.

Y ¢
X

y-element

z-element x-clement

Figure 2.9-7: 6DOF spring element with two non-coincident nodes
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In Fig. 2.9-8, the element coordinate system is defined by
orientation vector using GO or (Ax, Ay, Az). Note that (Ax, Ay,
Az) refers to the displacement (skew) coordinate system of GA.

z-element
(normal to plane)

y-element
(inplane) G0 or (Ax, Ay, Az)

x-element

Figure 2.9-8: 6DOF spring element with two non-noncoincident
nodes

In Fig. 2.9-9, a 6DOF spring element is defined with two non-
coincident nodes without GO, (Ax, Ay, Az) or CID. This defines a
1-D axial/torsional spring/damper. In this case, axial stiffness (or

damping) or torsional stiffness (or damping) or both must be
specified but all other stiffness (or damping) must not be specified.

o x-element

Figure 2.9-9: 1-D spring element with two non-coincident nodes

Element output

You can request that ADINA either print or save stress resultants or
forces.

Stress resultants: Each element outputs the following information
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to the porthole file. This information is accessible in the AUI using
the given variable names.

STRESS TRANS_R, STRESS_TRANS_S, STRESS TRANS T,
STRESS ROT R, STRESS ROT S, STRESS ROT T

The above results are always given in the element local coordinate
system (r,s,t).

Nodal forces: the forces (in the global Cartesian coordinate system)
are accessible in the AUI using the given variable names.

NODAL FORCE-X, NODAL FORCE-Y, NODAL FORCE-Z,
NODAL MOMENT-X, NODAL MOMENT-Y,
NODAL MOMENTZ

2.9.4 User-supplied element

e This feature is useful for implementing elements that have a
non-standard behavior such as an element that has different axial
and bending parameters, a nonlinear spring for which the force is
described as a nonlinear function of the displacement, among other
cases.

e The non-standard element behavior must be coded in the
ADINA subroutine CUSERG. Subroutine CUSERG must calculate
the element stiffness matrix and nodal force vector. In certain types
of analysis (e.g., in a dynamic analysis), the mass and damping
matrices must also be calculated. Subroutine CUSERG can also
output the desired results into the corresponding output files.

e A template and example for the user-supplied element
subroutine CUSERG is provided in file ov1160u. £. The
mentioned example will be discussed later in this section and
corresponds to a three-dimensional nonlinear translational spring
that takes into account geometric nonlinearities. Also, a
Makefile file is provided, which includes instructions for
compiling and linking the user-supplied element subroutine to
ADINA.
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e The following element types are allowed:
» Triangular 3-node, 6-node, or 7-node 2-D solid element
» Quadrilateral 4-node, 8-node, or 9-node 2-D solid element
» Tetrahedral 4-node, 10-node, or 11-node 3-D solid element

» Hexahedral 8-node, 20-node, 21-node, or 27-node 3-D solid
element

» 2-node, 3-node, or 4-node iso-beam element
» 4-node, 8-node, 9-node, or 16-node shell element

» transition shell element with variable number of nodes up to
a maximum of 32 nodes.

The nodal connectivity of the user-supplied elements must be
compatible with the ordinary ADINA elements so that the user-
supplied elements can be generated by the AUI mesh generation
commands. This will allow the AUI to load and display the user-
supplied elements for post-processing purposes.

e There are two ways within the AUI to activate the user-supplied
element feature. Note that regardless of the way chosen, the
material definition of the element can only be done with the
MATERIAL USER-SUPPLIED command (see AUl Command
Reference Manual). The material properties can be temperature
dependent or independent. However, this does not imply that a
user-supplied material subroutine is needed. In fact, any material
implementation needed for the user-supplied element must be done
within the user-supplied element subroutine CUSERG.

e The first way to activate the user-supplied element feature
consists of basically two parts: material definition and element
group definition. The element group definition consists of applying
either the EGROUP TWODSOLID or EGROUP THREEDSOLID
or EGROUP ISOBEAM or EGROUP SHELL commands with the
parameter OPTION=USER-CODED (see AUI Command Reference
Manual). Clearly, the choice of element group command depends
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on the type of element the user-supplied element resembles. This is
the preferred way.

e The second way to activate the user-supplied element feature
consists of applying the general element strategy, which has four
parts: material definition, matrix definition, matrix set definition
and element group definition.

As with any general element, the stiffness, mass and damping
matrices must be provided (of course, the mass and damping
matrices are necessary only for certain types of analysis). The
stiffness, mass and damping matrices are grouped into a matrix set
and the matrix set number is included in the element group
definition. In ordinary general elements (see Section 2.9.1), the
user directly specifies the above matrices. By implementing the
user-supplied element as a general element one can provide the
above matrices by either calculating all of them in subroutine
CUSERG or by calculating at least the stiffness matrix in
subroutine CUSERG and directly specifying the rest as it is done
for ordinary general elements.

The element subtype, material label and number of integration
points are provided to ADINA through a matrix definition. Note
that in the AUI the matrix definition is accessed as a user-supplied
matrix from the Matrix Set dialog box. The matrix definition has
the following parameters:

» The element subtype to which the user-supplied element
resembles. The options are 2-D solid, 3-D solid, iso-beam or
shell.

» The user-supplied material number.

» The total number of user-supplied integration points NUIPT.
The default value of NUIPT is NUIT1-NUIT2-NUIT3.

» The integration order in the first local direction NUIT1. If
NUIPT is entered, then NUIT!1 is ignored.

» The integration order in the second local direction NUIT2. If
NUIPT is entered, then NUIT?2 is ignored.
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» The integration order in the third local direction NUIT3. If
NUIPT is entered, then NUIT3 is ignored.

o It is important to highlight that the number of active degrees of
freedom per node in a user-supplied element is defined by the
IDOF parameter of the MASTER command (see AUl Command
Reference Manual). This fact may prevent users from creating
models that combine user-supplied elements with standard ADINA
elements which possess different active degrees of freedom per
node.

The standard number of active degrees of freedom per node are
2, 3 and 6 for the 2-D solid, 3-D solid and iso-beam elements,
respectively. Note that six degrees of freedom per node are always
assumed for the shell user-supplied element.

e The nodes per individual user-supplied element can be assigned
with the ENODES command. In addition, the COORDINATES
NODE and NODESET commands can be useful when
implementing a model with user-supplied elements. Please see the
AUI Command Reference Manual for a description of these
commands.

e The calls from ADINA to subroutine CUSERG are divided into
several phases, which are controlled by the integer variable KEY.

KEY = 1: This is the input phase and it is called once at the
beginning of the analysis. The working arrays
ARRAY(LGTHI1,NUIPT) and IARRAY(LGTH2,NUIPT), which
must store real and integer history dependent variables (for all the
integration points of an element), respectively, must be initialized
to their proper values. Also the coordinates of the integration points
of an element XYZIPT(3,NUIPT) must be provided. These points
are used for storing, e.g., stress and strain results. The
XYZIPT(3,NUIPT) array is arranged through the sequence of 1 to
NUIPT or through the local integration orders NUIT1, NUIT2 and
NUIT3. The definitions of NUIT1, NUIT2 and NUIT3 follow the
standard ADINA (2-D solid, 3-D solid, iso-beam and shell)
elements local integration orders. Note that the array XYZ(3,IELD)
provides the element nodal coordinates and can be used to calculate
the requested integration point coordinates.
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KEY =2: The element nodal forces RE(ND) must be calculated in
the global coordinate system, where ND is the total number of
degrees of freedom in an element. For this purpose, ADINA
provides the element displacements DISP2(ND) and DISP1(ND) at
the current and previous time steps, respectively. In addition,
material properties and other parameters are provided (see file
ov1160u. f), which can be useful. Note that the element nodal
forces are the equilibrating forces during the equilibrium iterations
and the resultant nodal forces when a solution converges. If the
element subtype is iso-beam, then the element nodal forces in the
local coordinate system REBM(ND) must also be provided.

In this phase, it is recommended to calculate the desired user-
calculated quantities for all the integration points of an element,
such as stresses, strains, stress state flag, etc. Depending on the
requested element group results (i.e., forces or stresses) this might
be a necessary step since ADINA writes the requested results to the
porthole file for post-processing. The real and integer user-
calculated quantities are stored in RUPLOT(100,NUIPT) and
IUPLOT(50,NUIPT), respectively. In order for ADINA to correctly
process the information stored in these arrays, the user should
follow the order specified in file ov1160u. f.

Finally, the real and integer history dependent variables (for all
the integration points of an element) stored in
ARRAY(LGTHI1,NUIPT) and IARRAY(LGTH2,NUIPT),
respectively, must be updated.

KEY = 3: The element stiffness matrix AS(ND,ND) must be
calculated in this phase. It should be calculated in the global
coordinate system. As in the case of the element nodal forces, the
stiffness matrix can also be calculated via the element
displacements, material properties, and other variables and
parameters provided by the ADINA subroutine CUSERG.

KEY =4: The user printout must be coded in this phase. In order
for ADINA to access it, use the AUI command PRINTOUT in your
input file.

KEY =5: In this phase, the array AS(ND,ND) stores the element
mass matrix, which must be calculated in the global coordinate
system and in terms of the variables and parameters provided by
the ADINA subroutine CUSERG.
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KEY = 6: In this phase, the array AS(ND,ND) stores the element
damping matrix, which must be calculated in the global coordinate
system and in terms of the variables and parameters provided by
the ADINA subroutine CUSERG.

e A complete description of the argument list of subroutine
CUSERG is provided in file ov1160u. f.

e The following steps provide a guide for using the user-supplied
element feature via the AUI commands:

1.

(a)

(b)

(©)

Once the user-supplied element has been coded in file
ov1160u. f, compile and link it to ADINA with the
help of the provided Makefile.

Use the MATERIAL USER-SUPPLIED command to
define the material properties, control parameters and
working array sizes.

If following the preferred way, then use either the
EGROUP TWODSOLID or EGROUP
THREEDSOLID or EGROUP ISOBEAM or
EGROUP SHELL commands with the parameter
OPTION=USER-CODED to define the type of user-
supplied element.

If following the general element strategy, then

use the MATRIX USER-SUPPLIED command to
define the type of user-supplied element to relate to
the stiffness, mass and damping matrices. Note that if
the mass or damping matrices are constants, then they
can be input directly with the MATRIX MASS or
MATRIX DAMPING commands, respectively;

use the MATRIXSET command to define the general
element matrix set; and

use the EGROUP GENERAL command with the label
number corresponding to the defined MATRIXSET
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and the parameter USER-SUPPLIED=YES to
conclude the user-supplied element definition.

4, Define the number of active degrees of freedom per
node in the user-supplied element with the IDOF
parameter of the MASTER command.

5. Define the rest of the input file (i.e., nodes, nodal
connectivity, boundary conditions, loads, etc.) with
the corresponding AUI commands and generate the
data file. Run ADINA to solve the problem and use
the AUI to display the results.

2.9.4.1 User-supplied element example

e A three-dimensional nonlinear translational spring that takes
into account geometric nonlinearities is given as an example of the
user-supplied element subroutine CUSERG, which can be found in
file ov1160u. f.

¢ The spring can be implemented with either the EGROUP
ISOBEAM or EGROUP GENERAL AUI commands, and will
have three translational degrees of freedom active per node.

e Assume that initially the spring is undeformed and that nodes 1

and 2 are attached to the ends of the spring, then its undeformed

length is given by °L = ”0)(2 - %' ” .

e The spring force is a function of the displacement, that is, F =
F(u). Consequently, at the next time step (say at time ¢) the force at
node 1 can be written as

F =k(AL) (X - %) (2.9-1)
where ‘X' = °x’ +u’ and u’ is the displacement vector of the i-th

node, AL =L — "L, and, in this particular example, it will be
assumed that
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k(AL)=ky+kAL (2.9-2)

with &y and k; being spring constants.

e Note that the force at node 2 is ‘F* = —"F".

e The stiffness matrix of the user-supplied element can be easily
obtained from the above equations by taking the partial derivative
of each nodal force vector with respect to all the degrees of
freedom of the user- supplied element. In this particular example,
the stiffness matrix is a 6 x 6 symmetric matrix.

2.10 Displacement-based fluid elements

o The elements discussed in this section incorporate the following
assumptions:

» Inviscid, irrotational medium with no heat transfer

» Compressible or almost incompressible medium

» Relatively small displacements

» No actual fluid flow
e For other types of fluid flow, use ADINA-F and ADINA-FSI
(see the ADINA-F Theory and Modeling Guide for details of the
formulations employed). In the remainder of this section, only the

ADINA fluid elements are discussed.

o The types of problems for which the ADINA displacement-
based fluid elements can be employed are:

» Static analyses, where the pressure distribution in the fluid
and the displacement and stress distribution in the structure is of
interest

» Frequency analyses, where natural frequencies and mode
shapes of a structure/fluid medium are to be determined
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» Transient analyses, where a pressure wave propagates
rapidly through the fluid, which does not undergo large motions
(transient acoustic problems)

However, in practice, the use of the displacement-based
elements is rather restricted to special applications in static and
dynamic analyses. The potential based element (see Section 2.11)
is much more general and is recommended for use for solving this
class of problems.

o Simply stated, the displacement-based fluid elements can be
thought of as derived from the solid two- and three-dimensional
elements (see Sections 2.2 and 2.3) by using an elastic stress-strain
relation with a bulk modulus K and a zero shear modulus.

e The elements can be employed in 2-D and 3-D analyses. Two-
dimensional fluid elements can be employed in planar and
axisymmetric analyses. Two-dimensional fluid elements must be
defined in the YZ plane, and axisymmetric elements must lie in the
+Y half plane (all nodal point coordinates must have positive y
values).

e Although the fluid elements can be employed using a large
displacement formulation, the allowed fluid motion is relatively
small in a practical analysis, because the elements must not become
distorted. Actual flow of a fluid cannot be analyzed using the
elements. Use ADINA-F or ADINA-FSI if the allowed fluid
motion is large.

e Difficulties in the use of the elements and various experiences
in solutions obtained are discussed in the following references:

ref.  K.J. Bathe and W. Hahn, "On Transient Analysis of
Fluid-Structure Systems," Computers & Structures, Vol.
10, pp. 383-391, 1981.

ref.  J. Sundqvist, "An Application of ADINA to the Solution
of Fluid-Structure Interaction Problems," Computers &

Structures, Vol. 17, pp. 793-808, 1983.

ref. L. Olson and K.J. Bathe, "A Study of Displacement-
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Based Fluid Finite Elements for Calculating Frequencies
of Fluid and Fluid-Structure Systems," Nuclear
Engineering and Design, Vol. 76, pp. 137-151, 1983.

For example, in Olson and Bathe, it is noted that problems
involving structures moving through fluids that behave almost
incompressibly (e.g., an ellipse vibrating on a spring in water)
cannot be solved satisfactorily with the displacement-based fluid
elements.

¢ In linear analysis, you can impose irrotational conditions in the
element formulation. This is achieved using a penalty constraint.
Note that if the penalty constraint is imposed, rigid body rotations
of the elements are no longer possible.

o These elements are defined within 2-D and 3-D fluid element
groups (in ADINA). Set the formulation of the element group to
either displacement-based without rotation penalty or
displacement-based with rotation penalty (if you are using the AUI
user interfaces, set the formulation with the “interpolation type”
field).

o Pressures are output at the integration points. The integration
point numbering is the same as the numbering convention used for
the solid elements, see Sections 2.2.3 and 2.3.3.

The pressure is evaluated using the following relation:

p=-Ke,

where p is the pressure, K is the bulk modulus and e, is the
volumetric strain (A volume/volume).

The pressures and strain components are accessible in the AUI
using the variable names FE_PRESSURE, STRAIN-XX,
STRAIN-YY, STRAIN-ZZ, STRAIN-XY, STRAIN-XZ,

STRAIN-YZ (STRAIN-XY and STRAIN-XZ are applicable only
for 3-D elements). See Section 13.1.1 for the definitions of those
variables that are not self-explanatory.

¢ You can also request nodal force output. The nodal forces are
accessible in the AUI using the variable names NODAL FORCE-X,
NODAL FORCE-Y, NODAL FORCE-Z (NODAL FORCE-X1is
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applicable only for 3-D elements).

2.11 Potential-based fluid elements

e The elements discussed in this section incorporate the following
assumptions:

» Inviscid, irrotational medium with no heat transfer
» Compressible or almost incompressible medium
» Relatively small displacements of the fluid boundary

» Actual fluid flow with velocities below the speed of sound
(subsonic formulation) or no actual fluid flow (linear
infinitesimal velocity formulation)

e For other types of fluid flow, use ADINA-F and ADINA-FSI
(see the ADINA-F Theory and Modeling Guide for details of the
formulations employed). In the remainder of this section, only the
ADINA fluid elements are discussed.

o The types of problems for which the ADINA potential-based
fluid elements can be employed are:

» Static analyses, where the pressure distribution in the fluid
and the displacement and stress distribution in the structure is of
interest

» Frequency analyses, where natural frequencies and mode
shapes of a structure/fluid medium are to be determined

» Transient analyses, where a pressure wave propagates
rapidly through the fluid, which does not undergo large motions
(transient acoustic problems)

» Transient analyses, where fluid flows through the domain,
and the boundaries of the domain undergo only small motions.

o The potential-based fluid elements can be employed in 2-D and
3-D analyses. Two-dimensional elements can be employed in
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planar and axisymmetric analyses. Two-dimensional elements
must be defined in the YZ plane, and axisymmetric elements must
lie in the +Y half plane (all nodal point coordinates must have non-
negative y values).

¢ The potential-based fluid elements can be coupled with ADINA
structural elements, as described in detail below. The structural
motions cause fluid flows normal to the structural boundary, and
the fluid pressures cause additional forces to act on the structure.

e The potential-based fluid elements can be coupled to a pressure
boundary condition (i.e., no structure adjacent to the potential-
based fluid element boundary). This feature can be used to model
free surfaces.

e The potential-based fluid elements can be coupled directly to
ADINA-F fluid elements. The ADINA-F fluid element motions
cause potential-based fluid flows normal to the ADINA-F
boundary, and the potential-based fluid pressures cause additional
forces to act on the ADINA-F boundary.

¢ The potential-based elements can model (approximately) an
infinite domain through the use of special infinite elements.

e Two formulations are available, a subsonic velocity
formulation, which is nonlinear, and an infinitesimal velocity
formulation, which is linear. These are described in detail in the
following sections.

¢ In some analyses, either ADINA-F/ADINA-FSI or the
potential-based fluid elements can be used in the modeling.
ADINA-F/ADINA-FSI is far more general than the potential-based
fluid elements and can model a much wider range of flow
conditions. In addition, in ADINA-FSI, the fluid mesh need not be
compatible with the structural mesh.

However, for the class of problems in which the assumptions
given above are acceptable, the potential-based fluid elements are
more efficient. This is because

» The number of degrees of freedom in the fluid region is less
for the potential-based formulation. In 3-D analysis, each
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ADINA-F node requires a minimum of 4 degrees of freedom,
whereas each node in the interior of a potential-based mesh
requires only one degree of freedom.

» If the velocities are small, then the linear infinitesimal
velocity formulation can be used. ADINA-F is always
nonlinear.

» In addition, frequency analysis is not possible in ADINA-F.

o The potential-based element formulation has been extensively
revised in version 8.0. Some of the features of earlier versions of
ADINA are superseded by new features of ADINA 8.0. Features
of earlier versions of ADINA that are superseded by new features
of ADINA 8.0 include:

The F, degree of freedom (superseded in ADINA 7.4)
Volume infinite elements (superseded in ADINA 8.0)

These features are retained in ADINA 8.0 so that models developed
for earlier versions of ADINA still work in ADINA 8.0. However
these features are not described here, and are not recommended for
new models.

e For another description of the potential-based fluid element,
including examples, see the following reference:

ref.  T. Sussman and J. Sundqvist, "Fluid-structure interaction
analysis with a subsonic potential-based fluid
formulation," Computers & Structures, Vol. 81 (2003),
pp. 949-962.

2.11.1 Theory: Subsonic velocity formulation

e Figure 2.11-1 shows a fluid region with volume and bounding
surface. In the fluid, we use the basic equations of continuity and
energy/momentum, as written in terms of the velocity potential:

P+Ve(pVg)=0 (2.11-1)

and
h=Q(x)-¢—1VpV g (2.11-2)
ADINAR & D, Inc. 289



Chapter 2: Elements

where p is the density, ¢ is the velocity potential (v =V ¢ where
v is the fluid velocity), 4 is the specific enthalpy (defined as

d
h= I —p), p is the pressure and Q(x) is the potential of the
Yo,

(conservative) body force accelerations at position X . For
example, when the body forces are due to gravity, V€ =g, where

g is the acceleration due to gravity.

Body force acceleration g,
body force acceleration potential Q

Bounding surface S ~
Unknowns on S:
¢ = fluid potential
u = displacements

Fluid region V

Unknowns in V:
¢ = fluid potential

Essential boundary condition: ¢ prescribed
Natural boundary condition: pin prescribed

Figure 2.11-1: Fluid region

Equations (2.11-1) and (2.11-2) are valid for an inviscid
irrotational fluid with no heat transfer. In particular, (2.11-2) is
valid only when the pressure is a function of the density (and not
of, for example, the density and temperature).

For the pressure-density relationship, we use the slightly
compressible relationship

P 142 2.11-3)
K

where x is the bulk modulus and p, is the nominal density.
(2.11-3) then directly gives the density-enthalpy relationship and
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the pressure-enthalpy relationships:

P = P, eXp (p—ohjp = /{exp (p_oh) — 1} (2.11-4a,b)
K K

The continuity equation (2.11-1) is then approximated using the
standard Galerkin approach to obtain

SF, = [(p+V(pV$))SpdV =0 (2.11-5)

where & is the “variation of” symbol and SF), is the “variation in

the mass flux rate”. (2.11-5) can be rewritten as

SF, = [(p 54— pV -V op)dV —[ pV penspds (2.11-6)

where S is the boundary of V' and n is the inwards normal on S .
From this equation, we observe that the natural boundary condition
is pV@en prescribed, in other words, prescribed mass flux rate.

At this point, we notice that p is a function of the fluid velocity
and position through the density-enthalpy relationship (2.11-4a),
because the enthalpy is a function of fluid velocity and position. In
V', we compute the enthalpy using (2-11.2). Hence, in V', the
density is a function only of the fluid potential and position. But
on S, we anticipate that part or all of § might be a moving
boundary with velocity u(x). We adopt the convention that the
fluid velocity v used in the enthalpy calculation on S is computed
in terms of both the boundary velocity u and the internal fluid
velocity V¢ using

v, =(en)n, v,=Vg—(Vgen)n, v=v, +v, (2.11-7a,b,c)

In other words, the fluid velocity normal to the surface is taken to
be the velocity of the moving boundary and the remainder of the
fluid velocity (which is tangential to the surface) is taken from the
fluid potential. We also include the motions of S in the body
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force potential calculations in the enthalpy. Combining the above
considerations, we take

h=Q(x+u)—g—1v v, —L1vev, (2.11-8)

on §.

(2.11-6) can be written as
op - .
SF, = I(a—’;h 5¢—pV¢-V5¢] dV +[-piundpds  (2.11-9)
4 S

The surface integral is obtained using (2.11-7).

On §, we assume that the boundary motion u(x) is small

enough so that the volume 7 and the normal n can be assumed
constant. In other words, we perform all integrations on the
undeformed fluid boundary. We discuss the implications of this
assumption later.

e From (2.11-9), if no boundary conditions are applied to S, the
boundary condition pu-n =0 is implied. This boundary
condition corresponds to no fluid flow through the boundary.

From (2.11-9), the natural boundary condition is
pu-n=prescribed. We use this boundary condition to apply the
structural motions to the fluid domain. We also use this boundary
condition to model infinite fluid regions. Both of these cases are
discussed in more detail below.

Notice that there is no boundary condition corresponding to
flow tangential to the boundary. In other words, fluid can slip
tangential to the boundary without restriction.

Also from (2.11-9), the essential boundary condition
@ = prescribed is possible. Through (2.11-2) this boundary
condition corresponds to a partially prescribed enthalpy and hence
a partially prescribed pressure. The enthalpy and pressure are not
fully prescribed since V¢ is not prescribed when ¢ is prescribed

only on the boundary.
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Modifications to equations of motion for the structure

e We assume that part of the boundary § is adjacent to the
structure (Figure 2.11-2). The part of the boundary adjacent to the
structure is denoted S .

Surface S;  (Fluid and structure
are separated for

f\ clarity)
Fluid Structure
n
Pressure p Traction -pn

]

Figure 2.11-2: Forces on structure from fluid

The fluid pressure on S| provides additional forces on the

structure adjacent to S :

~SF, =—jpn-5uds, (2.11-10)

Si
where OF, is the variation in the applied force vector and the

minus signs are used in anticipation of F, being considered an

internal force vector in (2-11.12) below. The pressure is evaluated
using

P =p(h)=p(Q(X+u)—¢—%Vn°Vn —%v,-v,) (2.11-11)

We emphasize that n points into the fluid (and out of the
structure).

Finite element equations of motion

e Equations (2.11-6) and (2.11-9) are linearized using standard
procedures to obtain
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0 o0 [ai] |Cw Cur Au
|:0 _MFF:||:A(T)j|+ CFU _(CFF+(CFF)S) |:A¢:|+
KUU KUF Au 0 FU

KFU _(KFF+(KFF)S) {A¢:|:|:0:|_ FF+(FF)S

(2.11-12)
where the increment in the vector of unknown potentials ¢ is

written A¢ and the increment in the vector of unknown

displacements u is written Au. (We drop the left superscript
t + At here and below for ease of writing.) In the linearization
process, increments in both the nodal displacements and increments

in the nodal potentials (and their time derivatives) are considered.
In (2-11.12),

F, = vector from (2.11-10)
F; = vector from volume integration term in (2.11-9)

(FF ) ¢ = vector from surface integration term in (2.11-9)

and the matrices are obtained by linearization. Note that vectors
and matrices with the subscript S are integrated over the surface.
Also the matrices with displacement degrees of freedom are
integrated over the surface.

The sum of F; and (FF ) ¢ can be interpreted as an “out-of-

balance” mass flux vector. (2-11.12) is satisfied only if this sum is
zero at every node in the fluid, that is, if the consistent mass fluxes
at each of the nodes from all of the attached fluid elements sum to
Zero.

In (2.11-12), we do not include any of the structural system
matrices. (2.11-12) only gives the contribution of the potential-
based fluid elements to the system matrices. Of course, the rest of
the structure will make additional contributions to the first row of
the above equations.
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e Equation (2.11-12) is a nonlinear system of equations. The
nonlinearities come from several sources:

1) The =3V @V @ term in & . This term is sometimes called
the Bernoulli effect.

2) The nonlinear relationship between the density, pressure and
the enthalpy (2.11-4).

Because the system is nonlinear, equilibrium iterations must be
employed for an accurate solution, just as in nonlinear structural
analysis.

o There is no explicit restriction on the magnitude of the fluid
velocities in equation (2.11-12). However, in practice, there are
several restrictions

1) The velocity must be smaller than the speed of sound,
otherwise, the equations (2.11-9) become hyperbolic and cannot
be solved using ordinary finite element techniques.

2) The density change should not be too great, otherwise the
change in mass flux may be quite different than the change in
volume flux when the boundary velocities are perturbed.

3) Also, the pressure-density relationship in (2.11-3) only holds
for relatively small density changes.

With these restrictions, the Mach number of the fluid flow
should not exceed about 0.3 or so.

e Equation (2.11-12) is in general nonsymmetric. But in the limit
of very small velocities, equation (2.11-12) becomes symmetric
(see equation (2.11-19) below). Even for finite velocities, equation
(2.11-12) is “nearly” symmetric. This means that we can
symmetrize (2.11-12) and use the usual symmetric equation solvers
of ADINA for the solution of (2.11-12). The convergence rate is
very fast for small velocities and becomes slower as the velocities
become larger.
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2.11.2 Theory: Infinitesimal velocity formulation

o If we assume that the velocities and the density changes are
infinitesimally small, then the continuity equation (2.11-1)
becomes

PV V)~ pt+ pV2d~LL s pV2=0  (2.11-13)
K

The momentum/equilibrium equation (2.11-2) becomes
h~L~Q(x)-¢ (2.11-14)
o,

from which we see

p~p(Q(x)-4)~ p, (Q(x)-9) (2.11-15)
Substituting (2.11-15) into (2.11-13) gives

—p0¢+KV o= —po (2.11-16)

Equation (2.11-16) is a special form of the wave equation. It is
linear in the solution variable @ . (2.11-16) can be written in
variational form using standard techniques. The result is

—jp04}55¢dV—jxv¢-5v¢ dV—jxu-n 54 dS

:—jp0§25¢dV 2.11-17)
Vv

The fluid pressure onto the structure becomes

oF = Ipn'5u ds, = J(pOQ+pO %Qou—poé]n-é'u ds, (2.11-18)

l

The finite element contributions to the system matrices
corresponding to (2.11-17) and (2.11-18) are
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oo Jille ST L]

where

(2.11-19)

M,, = matrix from ¢ 6¢ term in (2.11-17)
K, = matrix from V¢-6V¢ termin (2.11-17)
pu = matrix from w-nd¢ termin (2.11-17)

-ujn-é‘u term in (2.11-18)
ox

K, )S = matrix from ( o at

(
(RUB )s = loads vector from (pOQ)n~5u term in (2.11-18)

R, = loads vector from p, Q¢ term in (2.11-17)

U = vector containing unknown nodal displacements
¢ = vector containing unknown nodal fluid potentials.

We note that the term (KUU )S
compared with the rest of the structural stiffness matrix, when there
is a structure adjacent to the fluid. But (KUU ) ¢ 1s important in the

is numerically very small

case when there is no structure adjacent to the fluid.

e The left-hand-side of equation (2.11-19), with the exception of
the term (KUU ) s » Is identical to the formulation presented in the

following reference:

ref.  L.G. Olson and K.J. Bathe, “Analysis of fluid-structure
interactions. A direct symmetric coupled formulation
based on the fluid velocity potential”, J. Computers and
Structures, Vol 21, No. 1/2, pp 21-32, 1985.
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2.11.3 Theory: Infinite fluid regions

¢ Both the subsonic and infinitesmal velocity formulations
include special boundary conditions for the modeling of infinite
fluid regions.

e The basic approach is to replace the infinite fluid region with a
boundary condition that simulates the infinite fluid region. The
boundary condition allows outwards-going waves to be propagated
into the infinite fluid region without reflection.

e There are many approaches for setting up infinite elements.
One approach that is physically intuitive is to use the results from
acoustic analysis regarding outwards-going waves.

Planar waves. To illustrate the procedure, we consider a planar
boundary, that is, a boundary on which plane acoustic waves
propagate outwards through the boundary (Figure 2.11-3). If the
waves have very small amplitude,

Ap = pcAv (2.11-20)

where Ap is the change in pressure applied to the boundary from

the fluid on the outside of the boundary (in other words, the change
in pressure applied to the boundary from the fluid that is not
explicitly modeled), Av is the change in the outwards velocity of
the fluid and c is the speed of sound in the fluid. Hence the
pressure on the boundary is

p=p.+pc(v-v,) (2-11.21)

where Vv is the outwards velocity at the boundary, and p_ and v_

are the pressure and outwards velocity at infinity ( p, and v_
must be specified as part of the model definition).
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At infinity
Direction of - 5 P=Pe
wave propagation v=v
a) Physical problem
- The pressure and
Fluid velocity on the boundary
- are related by
P=Peo + PE(V - Voo )

b) Modeling with planar infinite boundary

Figure 2.11-3: Planar infinite boundary

The variation in mass flow through the boundary is

SF, =—[ pVgnspds = [ pvopds (2.11-22)

S S

We need to express the mass flow through the boundary in terms of
the potential on the boundary. This can be done as follows. First,
we assume that there is no fluid flow tangential to the boundary
and that the boundary does not move. Under those conditions,

p(h)=p(Q-¢—1v?) (2.11-23)

Given a value of ¢, v can be numerically evaluated by combining

equations (2.11-21) and (2.11-23) and hence, given a value of ¢,

(2.11-22) can be numerically evaluated. We use this procedure in
the implementation of the planar infinite element for the subsonic
velocity formulation.

As an illustrative example, in the special case when there are no
body forces, the velocities are small, and the velocities and pressure
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at infinity are zero

pv="=—"—+ (2.11-24)
so that the variation in mass flow rate is, in this special case,

SFyy =~ j %¢5¢ds (2.11-25)
Sp

We use (2.11-25) in the implementation of the planar infinite
element for the infinitesimal velocity formulation.

Spherical waves: The same technique can be used for spherical
waves, provided that the appropriate relationship is used for the
relationship between p and pv. The relationship that we use for

spherical waves is based on the relationship between pressure and
mass flux in the frequency domain

ov=L+ 2 (2.11-26)

c lwr

where i =+/—1 , @ is the frequency of the outwards-going wave
and 7 is the radius of the boundary. Here we assume that both the
pressure and velocity at infinity are equal to zero and that the
velocity itself is small. The equivalent of (2.11-26) in the time
domain is

dt
£Jrj‘p— (2.11-27)
C r

pV=

We now neglect body force effects, so that p =— p¢ on the
boundary. Then

P _pré (2.11-28)

C r

pV=

so that the variation in mass flow rate is
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=] [P_¢+P_¢J5¢ds (2.11-29)

Note that this derivation holds regardless of the wave frequency @

Cylindrical waves: The same technique and derivation can be used
for cylindrical waves. For cylindrical waves, the relationship
between pressure and mass flux in the frequency domain is

=£{J1(k’”)‘ix(k’”)} (2.11-30)
ic

Jy(hkr) =i, (kr)

where J,,J,,Y, Y, are the Bessel’s functions of the first and

second kinds of orders 0 and 1, and k» = or . (2.11-30) cannot be
c

transformed into the time domain, but for frequencies higher than

w
about o _ 1, it turns out that (2.11-30) is well approximated by
c

(2.11-26), so that the spherical wave derivation can be used,
provided that the frequency is high enough.

e For planar, spherical and cylindrical infinite boundaries, only
surface integrations are required. Also, no additional degrees of
freedom are required on the boundary. For planar waves, the

infinite boundaries contribute to (FF ) s (CFF ) s and for spherical
and cylindrical waves, the infinite boundaries contribute to (FF)

(CFF )S and (KFF)

S’
S

e It is instructive to compare the above approach with the doubly-
asymptotic approach in Olson and Bathe.

ref. L.G. Olson and K.J. Bathe, “An infinite element for
analysis of transient fluid-structure interactions”,
Engineering Computations, Vol 2, pp 319-329, 1985.
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In the DAA, the infinite fluid region is modeled as the
superposition of two effects, an added mass approximation and a
plane wave approximation. The added mass approximation
dominates for low frequencies and the plane wave approximation
dominates for high frequencies. The plane wave approximation
gives exactly the results given above for planar waves (equation
2.11-25). But the added mass approximation in the DAA requires a
volume integral and hence volume infinite elements are required
for modeling non-planar waves. Provided that the nodes in the
volume infinite elements “at infinity” are placed at the correct
locations, the volume infinite elements give exactly the same
results as the spherical infinite elements (equation (2.11-29).

Since the surface integral formulation given in equations (2.11-
20) to (2.11-30) gives the same results as the DAA approach, and
since the surface integral formulation does not require volume
elements, we feel that the surface integral formulation is preferable.

2.11.4 Theory: Ground motion loadings

¢ Ground motion loadings require special treatment. In this case,

U=U +U, (2.11-31)

where U, is the vector of nodal point ground displacements and

U._ is the vector of nodal point displacements relative to the

r

ground motion. The ground motions are expressed as

U, => u,d, (2.11-32)
k

where u,, are the ground displacements in direction £ and d, is
the vector of nodal point values in which d k( i ) =1 if equation i

corresponds to a translation in direction k£ and d k(i ) =0 otherwise.

Because the ground motions are known, the increment in
displacements AU is equal to the increment in the relative

displacements AU, Hence the left hand sides of equations (2.11-
12) and (2.11-19) are unchanged and the right-hand-sides of these
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equations are updated only by additional internal forces. For
example, the additional internal forces added to (2.11-19) from the
fluid elements are

_ (KUU)Sdk U, — 0 i,
0 & -C.d, | ¢

Note that ¢ still contains the nodal point values of ¢ and ¢ is

the potential corresponding to the absolute (not relative) velocities.

Also note that ground motions are handled differently than
physical body forces. This is quite different than in ordinary
structural analysis, in which physical body forces and ground
motions are both modeled using mass-proportional loads.

2.11.5 Theory: Static analysis
e The case of static analysis also requires special attention. It is
not correct simply to set the velocities to zero in (2.11-1), because
(2.11-1) is identically satisfied for zero velocities.
e We envision the process of obtaining a static solution as a
quasi-static process. In this process, all fluid velocities are

assumed negligible and therefore the fluid potential is constant (in
space). Under these conditions,

h=Q—-¢ (2.11-32)
and the variational statement of continuity is
SF,=[ popav - pu-nspds (2.11-33)
Vv N
Equation (2.11-33) is simply the integral equation of
conservation of mass because 0@ is constant in space.

e We now numerically integrate (2.11-33) in time. We use the
Euler backwards approximations

t+Atp (t+Atp p)/At Aty (t+At )/AZ (2.11-34a,b)
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and then obtain, at time ¢+ Af ,

SF, :I(”A’p—tp)éédV—J. HA’p(”mu —tu)~n§¢5dS (2.11-35)
14 N

where we write 8¢ = 5¢/ At .

The modification to the structural equations of motion is

SF, = [ "> pnesuds, (2.11-36)

S

which is the same as equation (2.11-10), except that the ¢+ At is
explicitly written.

We prefer the Euler backwards approximations because then the
stiffness matrix remains symmetric when the displacement
increments are infinitesimally small. Of course, the steps must be
small enough so that the Euler backwards approximations apply,
but in many problems, these approximations are quite good,
especially when the fluid is almost incompressible.

Note that we assume that the domain of integration and its
boundary remain (nearly) unchanged during the time integration.
All integrations are performed over the original domain of
integration.

Also note that the solution in the fluid is the single value ¢ .

This value represents the Bernoulli constant.
The linearized equations of motion for the subsonic formulation
become

(Ko, Ky {Au}:m_ F, o117
Ky _(KFF+(KFF)S) Ad) 0 FF+(FF) |

S

where we use the ~ to emphasize that the vectors and matrices are
different than the corresponding dynamic vectors and matrices,

along with the constraints ¢ = constant (if there is more than one

fluid region in the problem, then ¢ = constant in each fluid
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region). As in the dynamic case (equation 2.11-12), equation

(2.11-37) is in general non-symmetric, but (2.11-37) becomes

t+At

symmetric when the displacement increment “*'u —"u becomes

infinitesimally small. So, as in the dynamic case, we symmetrize
the system and use the usual symmetric equation solver.

In (2.11-37) the sum of FF + (FF )S can be interpreted as an

“out-of-balance” mass vector. (2.11-37) is only satisfied if the total
mass of each fluid region is conserved. Motions of the boundary
that do not change the total mass of any fluid region are associated
with zero pivots in the system matrices, unless there is structural

stiffness associated with these motions. Note that the (KUU )S
matrix also provides structural stiffness, so if there are body forces,

motions of the boundary that do not change the total mass of any
fluid region are not associated with zero pivots.

The equations of motion for the infinitesimal velocity
formulation can be obtained either from the above derivation, or
can be formally derived from (2.11-19) by applying the Laplace
transform to both sides of (2.11-19) and applying the final value
theorem. The result is

{(KUU ) Cw }F}:{(Rw )S} (2.11-38)
CFU _MFF ¢ _RFB

together with the condition
K., $=0 (2.11-39)

e There are a number of unusual characteristics of (2.11-37),
(2.11-38) and (2.11-39):

» The solution involves (I) instead of ¢ . This makes sense as

(2.11-32) then implies that p is constant (in time) in a static
solution.

» The condition (2.11-39) must be satisfied. When there are
no infinite boundaries, this condition is satisfied whenever
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(i) = constant within each separate fluid region. Hence the

number of unknown potential degrees of freedom in static
analysis is equal to the number of separate fluid regions in the
analysis.

» The condition ¢ = constant within each separate fluid
region implies that p = p, €2+ C where C is a constant

determined from the solution. Hence the variation of pressure
within each separate fluid region is contained within C and any

choice of constant of integration within p,{2 (recall that Q is a

potential and therefore includes an arbitrary constant of
integration) is balanced by an opposite change in C'.

» Ifthe ¢ degree of freedom is fixed at a node, or if infinite

boundaries are included in the fluid region, then you must set
¢ = 0 for all the nodes in the fluid region. This condition

implies p = p,Q within the fluid region. Any choice of

constant of integration within € then affects the solution.

» It is necessary to enter the density of the fluid in static
analysis, even when the solution does not depend on the
density.

2.11.6 Theory: Frequency analysis
¢ Frequency analysis is possible when there is no structural
damping, when the infinitesimal velocity formulation is used, and

when there are no infinite boundaries. The eigenvalue problem to
be solved is

M 0 ol Cl, N K+(Ky)g 0 [}u2]_[o
1o MFF J CFU 0 0 KFF F(j) 0
(2.11-40)

where F9 = —i¢", i =+/—1 and in which we also include the
structural stiffness matrix K and structural mass matrix M .
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(2.11-40) is derived from (2.11-19) by taking the Fourier transform
of the left-hand-side.

(2.11-40) is a non-standard eigenvalue problem in which all of
the eigenvalues are real and non-negative. It is solved using either
the determinant search method or the Lanczos iteration method.

The eigenvectors are scaled according to the following
orthogonality condition:

u(i)CEUFU) + F(i)CFUuU) + (a)l. + o, )(u(i)MUUu(j) + F(i)MFFF(j) )

=2,|0,0; 5,
(2.11-41)

where 517 is the Kronecker delta. Notice that when there is no
fluid, (2.11-41) reduces to the usual orthogonality condition

O 0 —
u’Myur=9,.

(2.11-40) has one rigid body mode for each separate fluid
region in which all of the ¢ degrees of freedom are free. Each
rigid body mode is of the form UY =0, F¥ = constant in each

separate fluid region. For future reference, we term these rigid
body modes ¢ rigid body modes. The determinant search method

can determine all ¢ rigid body modes. The Lanczos frequency
solver does not print the ¢ rigid body modes.

The modal pressures and modal fluid particle displacements are
computed using

p(j) — pa)jf(”, ut” :va(j) (2.11-42)
.
J

in which p(j ) is the modal pressure at the point of interest for
mode j, f “) is the fluid potential eigenvector FY interpolated to

the point of interest and u"” is the modal displacement vector at
the point of interest for mode ;.

2.11.7 Theory: Mode superposition

. Mode superposition is possible when there is no structural
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damping, the infinitesimal velocity formulation is used and when
there are no infinite boundaries. The theory used to determine the
modal equations of motion is given in Chapter 6 of the following
reference:

ref. L. Meirovitch, Computational Methods in Structural
Dynamics, Sijthoff & Noordhoft, 1980.

The derivation starts with the equations of motion (2.11-19)
being put into the form

M P )
B HE e e

(2.11-43)

where we include the structural stiffness matrix K and structural
mass matrix M. We also include the ground motion loading terms
in (2.11-43) in anticipation of the response spectrum derivation
below. (2.11-43) corresponds to an undamped gyroscopic system.
The modal expansion used is

U, = in@, b= Z_g FY (2.11-44a,b)
Jj=1 C()j J=1 ’

where & ; 1s the generalized coordinate for modej. The modal
equation is

£ 2 ()

E+wé =TY (2.11-45)

where

r=—(F) R, +w,(U”) R, (2.11-46)
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and, from (2.11-43),

R, =R+(Ry;, )S - (K )S d,u,
R, =C, d,i, (2.11-47a,b)

With modal damping (damping ratio ¢ ), (2.11-45) becomes

E+20( E v+, =T" (2.11-48)

Then we use

g & n o
U,=>->uY, u,=>-=2uY, u=)-=2uY
= 2, >

@; j=1 @;
(2.11-49a,b,c)

J=1

=

E=a
I
o —

_éj th(j)a ¢:z _éjFG)a ¢:z _éjF(j)
J=1 J=1

(2.11-50a,b,c)

~.
Il
KR

to obtain the structural and fluid response.

The initial modal coordinates are computed from the initial
conditions (displacements, velocities, fluid potentials and time
derivatives of fluid potentials). Initial accelerations and initial
second time derivatives of fluid potentials are not used.

In the first solution step, we use the Newmark method with
a =1/2, O =1 because this choice of Newmark parameters does
not require initial accelerations. In the successive solution steps,
we use the Newmark method with the usual Newmark parameters

a=1/4, 6=1/2.

2.11.8 Theory: Response spectrum, harmonic and random vibration
analysis

e Modal participation factors are calculated for response spectrum
analysis, harmonic vibration analysis and random vibration
analysis. There are two cases: modal participation factors
corresponding to applied forces (in which case we do not consider
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response spectrum analysis) and modal participation factors
corresponding to ground motions.

In the modal participation factor calculation, we only consider
the dynamic solution (due to dynamically applied loads).

To begin the derivation, we introduce

X, == (2.11-51)
as the new generalized coordinate. The modal expansion is then

U =) xU% ¢=> -0xF% (211-52ab)
j=1 j=1
and the modal equation of motion is
¥ 4200 %+ o ——L(FU’)TR +(U?) R, (2.11-53
X)W X O =T o o (2.11-53)
J
Applied forces: As it is assumed that the physical body forces are

entirely static and that there are no ground motions, the modal
equation of motion becomes

%, +20, %, +o'x,=(U) R (2.11-54)
J S22 JJ .
and evidently the modal participation factor is simply

— -\T

r=(u?) R (2.11-55)

We use 7 rather than the 77" given in (2.11-45) because then
the modal expansion for U, is then the commonly used one.

As a consequence of (2.11-55), the modal participation factor for
any ¢ rigid body mode is zero.

Ground motions: The loads vectors are
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R, =—(Kyy), d,u, —Md,ii,
R, =C,d,i, (2.11-56a,b)

Hence

.. . 1 T AT
B 420, % +0'x, = —(—(F(’)) Cpyd, +(U?) Mdk]ugk
@; (2.11-57)

- (U(j) )T (KUU )s dk”gk

T
We neglect the term (UG)) (KUU )s d,u, (which is probably

small anyway) to obtain

X+ 20,6 %, + wjxj = _f(j)iigk (2.11-58)

where the ground motion modal participation factor is

— . 1 AT AT
I =—(F") Cyd, +(UV) Md,
@;
This factor has the usual physical interpretation, provided that
each fluid region is completely surrounded by interface elements.

The modal participation factor for a ¢ rigid body mode can be

zero or non-zero. It can be shown that the modal participation
factor for a ¢ rigid body mode is zero if each fluid region is

completely surrounded by interface elements.

Note: static corrections (residual calculations) are not
implemented for the potential-based fluid element because residual
displacement calculations are based upon non-constant (in space)
body force loading. Such loading is not possible in general for the
potential-based fluid elements.

2.11.9 Modeling: Formulation choice and potential master degree of
freedom

The potential-based formulation discussed in this section is
introduced in ADINA 7.4 and extensively modified in ADINA 8.0.
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You can select the potential-based formulation in the AUI
command-line input using the parameter FLUIDPOTENTIAL in
the MASTER command:

FLUIDPOTENTIAL=AUTOMATIC: The potential-based
formulation of ADINA 7.4 and 8.0 is employed. This is the
default.

FLUIDPOTENTIAL=YES: The potential-based formulation of
ADINA 7.3 and lower is employed.

FLUIDPOTENTIAL=NO: The potential-based formulation is not
employed.

Note, it is not possible to select the potential-based formulation
using the AUI user interfaces. The potential-based formulation of
ADINA 8.0 is employed when using the AUI user interfaces.

When FLUIDPOTENTIAL=AUTOMATIC, the AUI
automatically detects the presence of potential-based elements, and,
if there are any potential-based elements, activates the potential
master degree of freedom.

2.11.10 Modeling: Potential degree of freedom fixities

Subsonic formulation: Deleting the potential degree of freedom
along part of the bounding surface has the effect of partially
specifying the enthalpy along that surface, see equation (2.11-2).
This has no physical meaning.

Infinitesimal velocity formulation: Deleting the potential degree of
freedom along part of the bounding surface has the effect of setting

the pressure equal to p,{2 along that part of the bounding surface,

see equation (2.11-15). If there are no body forces, then Q=0
and the pressure is therefore set to zero along that part of the
bounding surface. This boundary condition can be used if the
displacements of the boundary are not of interest.

It is recommended that the potential degrees of freedom not be
deleted anywhere in the fluid.
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2.11.11 Modeling: Elements

The volume V of the fluid domain is modeled using two-
dimensional or three-dimensional fluid elements. These elements
are analogous to the two-dimensional or three-dimensional solid
elements and the nodal point numbering of the fluid elements is the
same as the nodal point numbering of the solid elements.

The two-dimensional elements are either planar (unit thickness
of fluid assumed) or axisymmetric (1 radian of fluid assumed).

These elements are defined within 2-D and 3-D fluid element
groups (in ADINA). Set the formulation of the element group to
either “Linear Potential-Based Element” (for the infinitesimal
velocity formulation) or “Subsonic Potential-Based Element” (for
the subsonic velocity formulation).

The bounding surface S of the fluid domain is modeled with
potential-interfaces and/or interface elements, as discussed in detail
below.

It is required that each separate fluid domain be modeled with
separate fluid element groups. This is because the AUI constrains
the potential degrees of freedom of each element group together in
static analysis during phi model completion, step 7, see Section
2.11.15.

It is not permitted to have fluid regions of different densities
sharing the same potential degrees of freedom. This is because the
nodal pressure would be different as computed from the fluid
regions connected to the node.

It is recommended that the fluid and adjacent structure not share
the coincident nodes. This allows the AUI to construct appropriate
constraint equations between the fluid and structural degrees of
freedom that are most appropriate during phi model completion,
see Section 2.11.15.

2.11.12 Modeling: Potential-interfaces

For ease of modeling, you can define potential-interfaces of
various types along the surface of the fluid domain. When you
generate a data file, the AUI places interface elements along the
boundaries specified by the potential-interfaces, except as noted
below. ADINA itself does not use the potential-interfaces.

There are several types of potential-interface:
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Fluid-structure: Place a fluid-structure potential interface on the
boundary between a potential-based fluid and the adjacent
structure.

In many cases, the AUI can automatically generate fluid-
structure interface elements along the boundary between the fluid
and structure during phi model completion, step 1, see Section
2.11.15. So you typically do not need to define fluid-structure
potential-interfaces.

Free surface: Place a free surface potential interface on the
boundary where the pressures are to be prescribed and the
displacements are desired, for example, on the free surface of a
fluid. Surface waves can be approximately modeled in this
manner, but note that the displacement of the waves is assumed to
be small.

ADINA-F: Place an ADINA-F potential interface on the
boundary adjacent to an ADINA-F mesh.

Usually the AUI automatically generates ADINA-F interface
elements along the boundary adjacent to an ADINA-F mesh during
phi model completion, step 1. So you typically do not need to
define ADINA-F potential-interfaces.

Infinite: Place an infinite potential-interface wherever infinite
boundary conditions are desired.
There are three types of infinite potential-interface.

Planar: In the subsonic formulation, the pressure and
velocity “at infinity” must be specified. In the infinitesimal
velocity formulation, the pressure and velocity are assumed to
be zero.

Spherical: The radius of the boundary must be specified.
The pressure and velocity at infinity are assumed to be zero, and
the velocities at the boundary are assumed to be small.

Cylindrical: The radius of the boundary must be specified.
The pressure and velocity at infinity are assumed to be zero, and
the velocities at the boundary are assumed to be small. This
element cannot accurately model low-frequency waves, that is,
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.. or
waves with — < 1.
c

Inlet-outlet: Place an inlet-outlet potential-interface wherever the
pressure of the boundary is specified, and where the displacements
of the boundary are not of interest. For example, the outlet of a
pipe on which the pressure is known can be modeled using an inlet-
outlet potential-interface.

If there is more than one inlet or outlet in the model, each inlet
and outlet must have its own inlet-outlet potential-interface.

Fluid-fluid: Place a fluid-fluid potential-interface on the boundary
between two potential-based fluid elements of two different
element groups.

Note that only one fluid-fluid potential-interface need be
defined for each boundary. The AUI generates a fluid-fluid
interface element for each of the two elements that share a common
boundary during phi model completion, step 1, see Section 2.11.15.

Rigid-wall: Place a rigid-wall potential interface wherever the fluid
is not to flow through the boundary.

Note that this boundary condition is modeled in ADINA by the
absence of any interface element. Therefore a rigid-wall potential-
interface suppresses any automatic generation of interface elements
along the boundary of the rigid-wall potential-interface. However
the AUI uses the rigid-wall potential interface during phi model
completion, step 2, in constructing structural normals, see Section
2.11.15.

2.11.13 Modeling: Interface elements

Interface elements are used on the surface of the fluid domain to
specify a boundary condition. In many cases, you do not have to
define interface elements. Rather you define potential-interfaces
and the AUI then generates the interface elements. However we
describe the interface elements here for completeness.

Interface elements are defined within the same element group as
the fluid elements themselves. In 2-D analysis, the fluid-structure
interface elements are 2 or 3 node line segments, in 3-D analysis,
the fluid-structure interface elements are 3 to 9 node area segments.
The nodal point numbering conventions are shown in Figure
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2.11-4. The AUI automatically reorders all interface elements
when generating the ADINA input data file so that the interface
element normals point into the fluid.

n n

a) 2-D elements

b) 3-D elements

Figure 2.11-4: Fluid-structure interface elements, showing
the local node numbering convention

There are several types of interface elements:

Fluid-structure interface element: This element connects the
potential-based fluid element with an adjacent structural element
(Figure 2.11-5). Each node of the element contains the potential
degree of freedom and displacement degrees of freedom. It is
assumed that the displacements of the nodes of the interface
element are small.

It is assumed that the structure provides stiftness to all
translational degrees of freedom, because the fluid-structure
interface element does not provide stiffness, mass or damping to
the tangential directions.

We emphasize that the potential-based fluid element, fluid-
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structure interface element and adjacent structural element must all
be compatible.

Structural element
Nodal unknown:u

Fluid-structure
interface element
Nodal unknowns: ¢, u

Fluid element

Nodal unknown: ¢ Nodes circled by

share degrees of
Assumptions: u is small. freedom

Figure 2.11-5: Fluid-structure interface element

Free surface interface element: This element is placed onto the
boundary of a potential-based fluid element wherever the pressure
is to be prescribed, and wherever the displacements of the fluid are
required (Figure 2.11-6). For example, the free surface of a fluid in
a basin can be modeled using free surface interface elements. Each
node of the element contains the potential degree of freedom and
displacement degrees of freedom. It is assumed that displacements
and velocities of the nodes of the interface element are small.

Applied pressure

or no applied pressure

Free surface
interface element

Nodal unknowns: ¢, u
Fluid element

Nodal unknown: ¢

Assumptions: u,, is small.
i, is small.

Figure 2.11-6: Free surface interface element

It is necessary to fix all displacements that are tangential to the
free surface interface element, because the free surface interface
element does not provide stiffness, mass or damping to the
tangential directions.

In many cases, the AUI can generate skew systems and fixities
corresponding to the tangential directions during phi model
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generation, see Section 2.11.15.

ADINA-F interface element: This element is placed onto the
boundary of a potential-based fluid element wherever the boundary
is adjacent to an ADINA-F mesh (Figure 2.11-7). Each node of the
element contains the potential degree of freedom and displacement
degrees of freedom. It is assumed that displacements and velocities
of the nodes of the interface element are small.

Note that the coupling between ADINA and ADINA-F is
through the displacements of the shared boundary. Therefore,
because the displacements of the ADINA-F interface element are
assumed to be small, the ADINA/ADINA-F coupling cannot be
used for modeling actual fluid flow between the ADINA and
ADINA-F models.

It is necessary to fix all displacements that are tangential to the
ADINA-F interface element, because the ADINA-F interface
element does not provide stiffness, mass or damping to the
tangential directions. In many cases, the AUI can generate these
fixities automatically during phi model completion, see Section
2.11.15.

The ADINA-F interface element need not be compatible with
the elements from the adjacent ADINA-F mesh .

It is necessary to define an ADINA-F fluid-structure boundary
in the ADINA model to connect the ADINA and ADINA-F
models, just as in ordinary ADINA-F FSI analysis.

In most cases, the AUI automatically generates the ADINA-F
interface elements during phi model completion, step 1, see Section
2.11.15.

Applied tractions
from ADINA-F

ADINA-F
interface element

Nodal unknowns: ¢, u

Fluid element
Nodal unknown: ¢

Assumptions: u,, is small.
u,, is small.

Figure 2.11-7: ADINA-F interface element

Infinite interface elements: This element is placed onto the

318

ADINA Structures — Theory and Modeling Guide



2.11: Potential-based fluid elements

boundary of a potential-based fluid element wherever infinite
boundary conditions are desired. Each node of the element
contains only a potential degree of freedom.

There are three types of infinite interface element:

Planar infinite element: In the subsonic formulation, the
pressure and velocity “at infinity” must be specified. In the
infinitesimal velocity formulation, the pressure and velocity are
assumed to be zero. A planar infinite element is shown in
Figure 2.11-8.

Psos Voo specified

Planar infinite
interface element

Nodal unknown: ¢

Fluid element
Nodal unknown: ¢

Assumptions: ¢ constant along boundary.
Flow velocity is close to v,

Figure 2.11-8: Planar infinite interface element

Spherical infinite element: The radius of the boundary must be
specified. The pressure and velocity at infinity are assumed to
be zero, and the velocities at the boundary are assumed to be
small.

Cylindrical infinite element: The radius of the boundary must be
specified. The pressure and velocity at infinity are assumed to
be zero, and the velocities at the boundary are assumed to be
small. This element cannot accurately model low-frequency

. .. r
waves, that is, waves with — < 1.
c

When considering where to place the infinite interface elements,

remember that the infinite elements are derived under the
assumption that waves travel normal to the boundary. Hence the
boundary must be placed so that any anticipated waves travel
normal to the boundary (Figure 2.11-9).
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Direction of
wave propagation

indicated by
—>
- \
oo (oe)
a) Correct modeling b) Incorrect modeling

Figure 2.11-9: Direction of wave propagation must be normal to the
infinite interface element

Inlet-outlet interface element: This element is placed onto the
boundary of a potential-based fluid element wherever the pressure
of the boundary is specified, and where the displacements of the
boundary are not of interest (Figure 2.11-10). For example, the
outlet of a pipe on which the pressure is known can be modeled
using inlet-outlet interface elements. Each node of the element
contains the potential degree of freedom and displacement degrees
of freedom. The displacement degrees of freedom are only used to
compute velocities and accelerations; the displacements themselves
are not used.

Applied plr.ezsure Inlet-outlet
OF O applied Pressure ;o terface element
pal 1/) i Nodal unknowns: ¢, u
Fluid %l{ment

Nodal unknown: ¢

Assumptions: u, constant along boundary.
¢ constant along boundary.

Figure 2.11-10: Inlet-outlet interface element

It is necessary to fix all displacements that are tangential to the
inlet-outlet interface element, because the inlet-outlet interface
element does not provide stiffness, mass or damping to the
tangential directions. In addition, it is necessary to set the
tangential fluid velocity to zero by constraining all of the potential
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degrees of freedom to be equal. Finally it is necessary to set the
normal velocity to be uniform along the element, by constraining
the normal velocities to be equal. In many cases, the AUI can
generate these fixities and constraints automatically during phi
model completion, see Section 2.11.15.

Fluid-fluid interface element: This element is placed along the
interface between two potential-based fluid elements of two
different element groups (Figure 2.11-11). For example, the
interface between air and water can be modeled using fluid-fluid
interface elements.

Fluid element of Fluid-fluid interface
element group 2 element of element
group 2

Nodal unknown: (I)(2) (1
Nodal unknowns: ¢/, u,

Fluid-fluid interface
element of element
group 1

Nodal unknowns: q><2), u,

Fluid element of
element group 1

Nodal unknown: ¢!

Assumptions: u, is small.
i, is small.

Figure 2.11-11: Fluid-fluid interface element

Each node of the interface element contains the potential degree
of freedom and displacement degrees of freedom. The normal
velocities and displacements are assumed to be small. It is
necessary to fix all displacements that are tangential to the fluid-
fluid interface element, because the fluid-fluid interface element
does not provide stiffness, mass or damping to the tangential
directions.

Each of the potential-based elements that share a common
boundary requires a fluid-fluid interface element. The two fluids
are connected by constraining the normal displacements of one of
the interface elements to the corresponding normal displacements
of the other interface element.
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In many cases, the AUI can generate these fixities and
constraints automatically during phi model completion, see Section
2.11.15.

2.11.14 Modeling: Loads

Concentrated forces, pressure loads, prescribed displacements

Concentrated forces, pressure loads and/or prescribed
displacements can be applied directly to any part of the fluid
boundary on which there are fluid-structure, free surface, inlet-
outlet or fluid-fluid interface elements. However, when applying
concentrated forces, remember that the AUI can apply skew
systems to certain nodes on the fluid boundary during phi model
completion, see Section 2.11.15. Therefore you should make sure
that the nodes on which you apply concentrated forces have the
degree of freedom directions that you anticipate.

Mass-proportional loads

Mass-proportional loads can be applied. However the AUI and
ADINA make a distinction between those mass-proportional loads
used to model physical body forces and those mass-proportional
loads used to enter ground accelerations. For each mass-
proportional load, you must specify its interpretation: body force or
ground acceleration.

Body force: Mass-proportional loads interpreted as physical
body forces must be constant in time when there are
infinitesimal velocity potential-based fluid elements in the

model. These loads are used in the construction of g, and €2
as follows:

g, = MAGNITUDE x A(k) x TF

where MAGNITUDE is the magnitude of the mass-proportional
loading, A(k) is the vector giving the direction of the mass-
proportional loading and TF is the value of the time function.
Then
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3
Q=> g (x-x,) (2.11-59)
k=1

where x,,is a datum value (entered as part of the fluid material

description). Notice that the choice of the datum value affects
the solution only when infinite interface elements are present, or
if at least one potential degree of freedom is fixed in the fluid
region.

Body forces can be applied in a static analysis as the only
loads in the analysis. Then, if other time-varying loads are
present, a restart to dynamic analysis can be performed. The
body forces should be kept in the restart dynamic analysis.

Ground acceleration: Mass-proportional loads interpreted as
ground motions can be time-varying, and are used in the
construction of ug as follows: Suppose that you specify a
mass-proportional load interpreted as ground motions of
magnitude g(¢), where gi(?) is entered as for body force loads
(but the time function need not be constant). Then ADINA
computes the ground motions using

t t
iy == Uiy = | digdt, uy = [ tidt 2.11-60abs)

tstart tstart

Note that it is assumed that u, (fstart) =0, u,, (&start) =0.

For example, if g, =sin @t then the above equations imply

i ! (1—cos wr) L sin o

u, =——\1-— u, =——|t—— .

gk ® , gk ® @ . It is seen that
the average ground velocity is non-zero, which is probably not
realistic. As an alternative, use

r .
g :t—sma)t, 1<t,,
p

=sin wt, 121,
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. : 2r . . .
in which 7, =—— is one period of the ground motion.
w

The choice of interpretation for the mass-proportional loads
does not affect the structural elements used in the model.

Centrifugal loads

Centrifugal load effects are not included in the potential-based
fluid elements.

Mass flux loads (phiflux loads)

Mass flux loads (also referred to as phiflux loads) can be
prescribed directly onto potential-based fluid elements. The mass
fluxes can be distributed or concentrated. The dimensions of

. mass
distributed mass flux are L ]

[mass]

[area]

—————— in dynamic analysis and
[time]x[area]

are in static analysis). The dimensions of concentrated

[mass]

[time]

mass flux are in dynamic analysis and are[ mass] in static

analysis.
Positive mass flux is assumed to represent mass flowing into the
fluid domain.
No interface elements or potential-interfaces should be defined
on boundaries with distributed or concentrated mass fluxes.

2.11.15 Modeling: Phi model completion

As can be seen above, there are many restrictions and conditions
that must be considered when specifying boundary conditions on
potential-based fluid elements. Many of these conditions have
been automated in the AUI in the following way. The AUI
performs “phi model completion” whenever generating a data file
in which potential-based fluid elements are used. The steps in phi
model completion are:
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1) The AUI loops over all fluid element sides on the boundary
of each fluid element region. If the fluid element side already has
an interface element, the side is skipped. If the fluid element side
has a potential-interface, an interface element of the appropriate
type is generated. Otherwise, the side is checked to see if it is
attached to a structure (shares structural degrees of freedom with
structural elements), close to a structure (nodes coincident with
nodes of a structural element) or on a ADINA-F fluid-structure
boundary; and, if any of the above conditions are met, an interface
element of the appropriate type is generated. The intent of this step
is to cover as much of the fluid boundary as possible with interface
elements.

Note that phi model completion relies on determining the nodes
that are “close” together. The tolerances used in this determination
are controlled by command PHI-MODEL-COMPLETION,
parameters CLOSE-TOL, XTOL, YTOL, ZTOL. By default, the
tolerances used during phi model completion are the same
tolerances used in mesh generation coincident node checking .

2) The AUI loops over all nodes attached to interface elements.
If the node is attached to structural elements, the node is skipped.
Otherwise the types of the attached interface elements are
determined. Then

a) If the node is attached only to a free surface interface,
ADINA-F interface, inlet-outlet interface or fluid-fluid interface,
then the node has a free normal direction (normal to the interface)
and zero stiffness directions that are tangential to the free normal.
The free normal and zero stiffness directions are identified, and if
they are not aligned with the global directions, a skew system is
generated that is aligned with the free normal and zero stiffness
directions.

b) If the node is attached to a free surface interface, ADINA-F
interface, inlet-outlet interface or fluid-fluid interface, and is also
attached to a fluid-structure interface or rigid-wall interface, the
AUI proceeds as follows. The node has a free normal direction
(determined from the free surface interface, ADINA-F interface,
inlet-outlet interface or fluid-fluid interface), a structural normal
direction (determined from the fluid-structure interface or rigid-
wall interface), and, in 3D, another direction orthogonal to the free
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normal and structural normal directions, which may be a zero
stiffness direction or another structural normal direction. The free
normal direction is modified to be orthogonal to the structural
normal directions. The free normal, structural normal and zero
stiffness directions are identified, and, if they are not aligned with
the global directions, a skew system is generated that is aligned
with the free normal, structural normal and zero stiffness
directions.

This process relies on an angle tolerance in 3D analysis to
determine if the structure is “smooth”. This tolerance is parameter
PHI-ANGLE in command PHI-MODEL-COMPLETION. See
Example 2 below.

The intent of step 2 is to identify the zero stiffness and free
normal directions of the nodes.

3) The AUI loops over all nodes attached to interface elements.
If the node is attached to a structural element, the node is skipped.
If the node (node A) is attached to a fluid-structure interface
element and is close to a structural node B, node A is constrained to
node B as follows. Each displacement degree of freedom for node
A is constrained to the corresponding degrees of freedom for node
B, accounting for differences in skew systems between A and B,
accounting for B possibly being a slave node in a constraint
equation (but not accounting for B possibly being a slave in a rigid
link), accounting for B possibly being fixed. But a displacement
degree of freedom for node A is not constrained if the degree of
freedom is a free normal direction (see 2 above).

The intent of step 3) is to connect the fluid mesh with the
structural mesh, when different nodes are used for the fluid and
structure. The connection still allows the fluid nodes to slip
relative to the structural nodes on intersections between free
surfaces and the structure.

4) In static analysis, when there are no body force loads, the AUI
loops over all nodes on a free surface, ADINA-F interface, or fluid-
fluid interface. If the node is attached to a structural element, the
node is skipped. Otherwise, constraint equations are defined for all
nodes so that the displacements in the direction of the free normal
are equal.
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The intent is to remove the zero pivots in the system matrices
that are otherwise present (see the discussion after equation
(2.11-37)).

5) The AUI loops over all nodes on an inlet-outlet interface. If the
node is attached to a structural element, the node is skipped.
Otherwise, constraint equations are defined for all nodes so that the
displacements in the direction of the free normal are equal.

The intent is to make the displacement / velocity constant over
the inlet-outlet interface.

6) In dynamic analysis, or in static analysis when there are body
force loads, the AUI loops over all nodes on a fluid-fluid interface.
If the node is attached to a structural element, the node is skipped.
Otherwise constraint equations are defined for all pairs of nodes, so
that the displacements in the direction of the free normal are
compatible.

The intent is to enforce displacement compatibility between the
fluids.

7) The AUI then loops over all nodes with zero stiffness degrees of
freedom and defines fixities for each zero stiffness degree of
freedom.

8) In static analysis, the AUI constrains all of the potential degrees
of freedom for an element group together.

9) In dynamic analysis, the AUI constrains all of the potential
degrees of freedom on an inlet-outlet together. The intent is to
remove the tangential flows on an inlet-outlet.

Note that the model that results from the phi model completion
process is not stored in the AUI, but is immediately written to the
ADINA data file. Therefore the model that results from phi model
completion cannot be displayed during model definition. Phi
model completion does write some messages to the log file or user
interface, which you may find helpful. However, we recommend
that you also check the model by running the model through
ADINA, for example, for one load step; then use ADINA-PLOT to
display the model.
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Example 1: We now present a detailed example for a 2-D fluid
filled basin with flexible walls.

Figure 2.11-12(a) shows the model before phi model
completion. The model is defined with separate nodes for the fluid
and the structure. One way to guarantee that the nodes on the fluid
and structure are separate is to generate the structural elements as
usual, but to set coincidence checking to “group” when generating
the fluid elements.

A potential-interface of type free surface is defined on the
geometry line corresponding to the free surface.

Potential-interface of type
free surface is defined on

this lineA
16, 3 2 1 .10

) 3 Potential-based
Fluid nodes are at the same fluid elements
coordinates as structural nodes. 6 5 4
The fluid nodes and structural p 11 Beam elements

d e 15 —
nodes are separated in this figure
for clarity. ——\ \9 8 7
o - Y
U sy 13 12
a) Finite element model before phi model completion
Figure 2.11-12: Example 1 of phi model completion
In step 1 of phi model completion, the AUI generates fluid-
structure interface elements where the fluid is adjacent to the
structure, and free surface interface elements corresponding to the
potential-interface (Figure 2.11-12(b)).
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Interface elements
of type free surface

Interface elements of
type fluid-structure interface

b) Step 1 of phi model completion;
interface elements are created

Figure 2.11-12: (continued)

In step 2 of phi model completion, the AUI classifies the
displacement directions on the free surface (Figure 2.11-12(c)).
Notice that the free normal for node 2 is taken from the free
surface, but the free normal for node 3 is modified by the presence
of the adjacent structure. A skew system is defined for node 3
because the free normal and structural normal are not aligned with
the global coordinate directions. The zero stiffness direction of
node 2 will be fixed in step 6 below.
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b Ii z
RE 27 1Y

Node 1: y = structural normal direction,
z = free normal direction

Node 2: y = zero stiffness direction,
z = free normal direction

Node 3: b = free normal direction,
¢ = structural normal direction

¢) Step 2 of phi model completion: classification
of displacement directions on free surface

Figure 2.11-12: (continued)

In step 3 of phi model completion, the AUI constrains the fluid
displacement directions to the structure (Figure 2.11-12(d)). At
node 1, only the y displacement direction is constrained; the z
displacement is left free so that the free surface can slip along the
wall. Atnode 3, only the c displacement direction is constrained;
the b displacement is left free so that the free surface can slip along
the wall.

Notice that at node 4, both the y and z displacements are
constrained to the structure. The fluid still slips in the z direction
because only the normal displacement (the y displacement in this
case) is used by the fluid equations. Similar statements hold for
nodes 6 and 8.

Nodes 7 and 9 are fixed because corresponding nodes 12 and 14
are fixed.
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16 3 1/@10

4 13 &12
oo 10
Node 1: u,=uy,
Node 3: u.=-cos 3001@16- sin 3O°uz16

S b I b |
Node 4: uy=u,", u;=u.- Node 6: uy=u}5, uz:uZIS
Node 7: uy=u.=fixed ~ Node 8: uy:uyl3, uz:uZB

Node 9: u,=u.=fixed
d) Step 3: Creation of constraint equations and fixities
Figure 2.11-12: (continued)
If the analysis is static without body forces, then the AUI

performs step 4 of phi model completion (Figure 2.11-12(e)). The
free surface can only translate vertically as a rigid body.

b Ii z
RE 27 IR

Node 2: uz=u;

Node 3: ub:uzl / c0s30°

Step 4 is only performed in static analysis when
there are no body forces.

e) Step 4 of phi model completion: defining constraint
equations to set normal displacements equal on free surface

Figure 2.11-12: (continued)
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This motion affects the total mass of the fluid region, so that
there is no zero pivot in the system matrices.

If there are body forces, then step 4 is not necessary because all

boundary motions are given stiffness by the matrix(KUU ) s -

Step 5 of phi model completion is skipped because there are no

fluid-fluid interfaces.

In step 6 of phi model completion, the zero stiffness direction at

node 2 is fixed (Figure 2.11-12(f)). Vertical motions of the nodes
attached only to free surface interface elements are allowed, but
horizontal motions of these nodes are not allowed (because the
fluid does not provide stiffness, damping or mass to horizontal
motions).

V4

oy

Node 2: uy:ﬁxed

f) Step 6 of phi model completion: defining fixities to
eliminate zero stiffness degrees of freedom

Figure 2.11-12: (continued)
If the analysis is static, then the AUI performs step 7 of phi

model completion (Figure 2.11-12g). Only constant (in space)
potentials are allowed in static analysis.
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1

N

\VERY
VY

02=0". . 0%=0'

Step 7 is performed only in static analysis

~

g) Step 7: defining constraint equations to set all potential
degrees of freedom equal

Figure 2.11-12: (continued)

Example 2: An alternative way to model the problem of Example
1 is shown in Figure 2.11-13. Here the free surface is shifted
downwards slightly so that the nodal coincidence checking feature
will not reuse any existing nodes on the free surface boundary.
Depending on how much you shift the fluid free surface, you may
need to adjust the tolerance used in the coincidence checking
algorithms.

Potential-interface of type
free surface is defined on

this lineN
11 2‘

° 10 Potential-based
Y \ fluid elements
6 5 4
\ _— Beam elements
o\ 9 8 7
(6]
30 X S 4

Figure 2.11-13: Alternative modeling of problem in Figure 2.11-12

During phi model completion, it is necessary to set the
coincidence tolerance to be loose enough so that node 1 is
considered “close” to node 10 and node 3 is considered to be close
tonode 11. Then steps 1, 2, 4, 6, 7 of phi model completion
proceed as in Example 1, and step 3 only processes nodes 1 and 3.
The solution results will be almost exactly the same as in Example
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1 (the solutions will be slightly different because the geometry is
slightly different).

We think that the user input for Example 2 is more difficult than
the user input for Example 1 because Example 2 requires a good
working knowledge of the nodal coincidence checking features.

Example 3: In 3-D analysis of a fluid-filled basin, there is one
additional consideration. Consider the model shown in Figure
2.11-14, in which only the free surface and the adjacent structural
nodes are shown.

y
Loy
13 14 15
1 > 3‘ Sides of 3-D potential-based
fluid elements on free surface
16
21 5 6
- Sides of shell elements
21 ¢ 17 Fluid nodes are at the same
7 8 9 coordinates as structural nodes.
The fluid nodes and structural
10 11 12 nodes are separated in this figure
. d for clarity.
20 19 18

a) Top view of finite element model
Figure 2.11-14: Example 3 of phi model completion

During step 2 of phi model completion, the AUI determines the
structural normal direction(s), zero stiffness direction(s) and free
normal direction for the nodes of the free surface (Figure 2.11-
14(b)). Notice that node 3 has two structural normals, but node 6
has only one structural normal. That is because the angle between
the two structural normals for node 3 is greater than PHI-ANGLE,
but the angle between the two structural normals for node 6 is less
than PHI-ANGLE.

Nodes 3, 6, 9 and 12 are assigned skew systems because the
structural normal directions are not aligned with the global system.

334

ADINA Structures — Theory and Modeling Guide



2.11: Potential-based fluid elements

l n; l 1,3
1 2 3
My < My
4 5 6
o
7 8 9
y
10 11 12 L» X
Node 1: Structural normal 1 = ny4 Node 2: Structural normal = nj, = n,;
Structural normal 2 = n;, Zero stiffness direction = x
Free normal =z Free normal = z
Node 3: Structural normal 1 = ny; Node 5: Zero stiffness direction 1 = x
Structural normal 2 = ny Zero stiffness direction 2 =y
Free normal =z Free normal =z

Node 6: Structural normal = average of ny5 and ng,
Free normal =z
Zero stiffness direction = remaining orthogonal direction

b) Classification of structural normals and zero stiffness directions
for some nodes on the free surface

Figure 2.11-14: (continued)

During step 3 of phi model completion, the AUI creates
constraint equations for the fluid nodes adjacent to the structural
nodes. For example, node 1 is constrained in both the x and y
directions to node 13, because both directions are structural normal
directions. Node 2 is also constrained in both the x and y
directions to node 14, here because the y direction is a structural
normal direction and the x direction is a zero stiffness direction. (It
is assumed that the structure provides stiffness in the x direction.)

During step 6 of phi model completion, the AUI fixes the x and
y directions for nodes 5 and 8, because these directions are zero
stiffness directions, and there is no adjacent structure.
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Example 4: We now present some of the steps for phi model
completion of an enclosure with two distinct fluid regions. Figure
2.11-15(a) shows the model before phi model completion.

Fluid nodes are at the same coordinates as structural nodes.
The fluid nodes and structural nodes are separated in this figure
for clarity.

15 14 13 2-D potential-based
_ fluid elements, group 1
3 2 1
Beam elements
/
6 15 4l Enclosed nodes all lie on
17 1 __ the same geometry line,
) I potential-interface of type
o— 8 77 fluid-fluid is defined on
this line
| | 2-D potential-based
12 11 /10 fluid elements, group 2
20 19 18

a) Finite element model before phi model completion
Figure 2.11-15: Example 4 of phi model completion

In step 1 of phi model completion, the AUI generates fluid-
structure interface elements where the fluid is adjacent to the
structure, and fluid-fluid interface elements corresponding to the
potential-interface. Four fluid-fluid interface elements are
generated, two for each shared element side.

In step 2 of phi model completion, the AUI classifies the
displacement directions on the fluid-fluid interface. Here the free
normal is always in the z direction and the zero stiffness directions
for nodes 5 and 8 are in the y direction.

In step 3 of phi model completion, the fluid nodes are
constrained to the adjacent structural nodes (Figure 2.11-15(b)).
Notice that the nodes on the fluid-fluid interface are allowed to slip
relative to the structure.
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<\LS 1?:\) 13

3 2 I
6 5
1</ Bl
‘ )
B 3 7L
12 1 10]
L)
<”Z/O 19 18
Node 1: uy=u)l,3, uz:uz13 Node 2: uy=u)1,4, uZ=uzl4
Node 3: uy=u;5, uz=u215 Node 4: uy=uy16
Node 6: uy=uyl7 Node 7: uy=u}6
Node 9: uy:uy17 Node 10: uy:ujg, uZ:uZIS

Node 11: uy=u)],9, uz=u219 Node 12: uy=u§0, uz=u220
b) Step 3: constraining fluid nodes to adjacent structural nodes
Figure 2.11-15: (continued)

If the analysis is static without body forces, then the AUI
performs step 4 of phi model completion. In this case, the z
displacements of nodes 5 to 9 are constrained to be equal to the z
displacement of node 4. The free surface can only translate
vertically as a rigid body.

In step 5 of phi model completion, the fluid nodes on the fluid-
fluid interface are constrained to each other (Figure 2.11-15(¢)).
Step 5 is not performed if step 4 was performed. Notice that the
potential degrees of freedom are not constrained.
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15 14- 13
3 2 1
6 'S5 4
17l ) ( ) ( 16
9 8 7
12 11 10
20 19 18

Node 4: uZ:uZ

Node 6: uzzug

Node 5: uz:u§

¢) Step 5: constraining adjacent nodes of the two fluid groups together

Figure 2.11-15: (continued)

In step 6 of phi model completion, the zero stiffness direction of
nodes 5 and 8 are fixed. Vertical motions of the nodes attached
only to fluid-fluid interface elements are allowed, but horizontal
motions are not allowed (because the fluid does not provide
stiffness, damping or mass to horizontal motions).

If the analysis is static, then the AUI performs step 7 of phi
model completion (Figure 2.11-15(d)). Only constant (in space)
potentials are allowed in static analysis, but the potential can be
different for the two fluid element groups.
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15 14 13
3 2 1
6 5 4

17] 16
9 8 7
12 11 10

20 19 18

02=0". . o0=0! 08=07. . 0'2=¢’
Step 7 is performed only in static analysis

d) Step 7: defining constraint equations to set the potential
degrees of freedom of each element group together

Figure 2.11-15: (continued)

Example 5: We demonstrate how to model an initial pressure in
a confined fluid region. This can be done in a static analysis as
follows: Define an auxiliary fluid element, physically unattached
to the fluid region but belonging to the same fluid element group.
On the auxiliary fluid element, place a potential-interface of type
inlet-outlet, and apply the specified initial pressure to the inlet-
outlet.

The constraint equations that the AUI defines in static analysis
connects the auxiliary fluid element to the confined fluid region.

The result is that the value of ¢ in the confined fluid region is the
same as the value of ¢ in the auxiliary fluid element; the value of

¢ in the auxiliary fluid element is determined by the pressure that

you apply to the inlet-outlet.

If you restart to a dynamic or frequency analysis, fix all of the
degrees of freedom of the auxiliary fluid element. Since, in
dynamic or frequency analysis, the AUI does not define constraint
equations connecting the potential degrees of freedom, the
auxiliary fluid element is no longer connected to the confined fluid
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region. The initial values of ¢ in the confined fluid region are that

from the static analysis, so the confined fluid region has the same
initial pressure as in static analysis.

The modeling process is schematically illustrated in Figure
2.11-16.

Potential-interface
of type inlet-outlet

plied pressure

Confined
fluid region

with nonzero
fluid pressure

Finite fluid
elements

Auxiliary
Constraint equations fluid element,
automatically generated in same fluid
by the AUI during phi element group

model completion

a) Physical problem b) Modeling in static analysis

Pressure at
beginning of
restart analysis
= pressure at
end of static
analysis.

Fix all degrees of freedom
attached to the auxiliary fluid
element.

¢) Restart to dynamic or frequency analysis
Figure 2.11-16: Modeling an internal pressure in a confined fluid region
2.11.16 Modeling: Considerations for static analysis

In static analysis, the potential degree of freedom output should
be interpreted as ¢, not ¢ .
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2.11.17 Modeling: Considerations for dynamic analysis

Any of the direct time integration methods available in ADINA,
except for the central difference method, can be used in direct time
integration. Rayleigh damping can be specified in the structure.

Please remember that there is no damping within the fluid.
Therefore the choice of initial conditions is extremely important,
because poorly chosen initial conditions will cause transient
responses that are not damped out.

2.11.18 Modeling: Considerations for frequency analysis and modal
participation factor analysis

Frequency analysis (and all analyses that depend upon
frequency data) cannot be performed if infinite interface elements
are present in the analysis.

For ground motion modal participation factor calculations, it is
recommended that each fluid region be completely surrounded by
interface elements. This sets the modal participation factors for the
¢ rigid body modes to zero.

Figure 2.11-17 shows a one-dimensional example in which
there is a ¢ rigid body mode and the ground motion modal
participation factor is nonzero. The motion excited by the nonzero
ground motion modal participation factor corresponds to a constant
ground acceleration. Notice that this ground motion causes the
unbounded expansion of the fluid region.
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Fixed to
ground
0, = constant ground motion
k k
. . u, is the absolute
Fluid Fluid displacement
No boundary u,=0
condition
a) Finite element model b) Interpretation of ¢ rigid body mode

Figure 2.11-17: Problem in which the ground motion modal
participation factor for the ¢ rigid body mode
is nonzero

2.11.19 Modeling: Element output

Each fluid element outputs, at its integration points, the
following information to the porthole file (the integration point
numbering is the same as the numbering convention used for the
solid elements): FE_ PRESSURE,

FLUID REFERENCE PRESSURE, ELEMENT X-VELOCITY,
ELEMENT Y-VELOCITY, ELEMENT Z-VELOCITY
(ELEMENT X-VELOCITY is applicable only for 3-D elements).
FE PRESSURE is the value of p and

FLUID REFERENCE PRESSURE is the value of pQ (see
Equation (2.11-59)).

In the output of modal quantities, ELEMENT X-VELOCITY,
ELEMENT Y-VELOCITY, ELEMENT Z-VELOCITY should be
interpreted as modal particle displacements, not velocities, in
accordance with equation (2.11-42). However in all other types of
analysis (static, direct time integration, modal superposition,
response spectrum, harmonic and random), these quantities are
velocities. The velocities are absolute velocities, even when
ground motions are entered using mass-proportional loads.

Interface elements do not have any output.
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2.12 Alignment elements

2.12.1 Overview

o The alignment element is a two-node element, as shown in Fig
2.12-1. The element is used to prescribe the relative translations,
distances and/or rotations of the two nodes.

¢ Possible applications for the element include:

» Bringing two bodies together

» Robot arms and other parts in which the relative rotations are
prescribed

» Simulation of body-body contact

o There are three types of alignments

» Translation alignments
» Distance alignments
» Rotation alignments

Any or all of these alignments can be used in the alignment element
definition.

e FEach alignment can be prescribed as a function of time. Thus
the alignment element has some of the characteristics of a
prescribed load or prescribed constraint boundary condition.
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LOCal
node 2
(_)ffSet
Local “”“””‘””“_“
node | - -
) node 2
Local

Figure 2.12-1: Alignment element

¢ In order to introduce the concepts used in the alignment
element, we present some illustrative examples. Details are given
later on.

Example 1) Translational alignment: As a simple example,
consider an alignment element that aligns translations only. In Fig
2.12-2, there is a misalignment between the two nodes. This
misalignment is measured by the vector connecting the two nodes.
Also shown in this figure are equal and opposite forces generated
by the alignment element. These forces are proportional to the
misalignment, and these forces act to reduce the misalignment. The
element provides stiffness in all three translational directions.

This element can be used to keep the two nodes nearly coincident.
Notice that, although the nodes are nearly coincident, their relative
rotations are not affected by the element, so the nodal rotations can
be very different.
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F

* Local
node 2

F
Local / Misalignment vector

node 1

Figure 2.12-2: Example 1, translational alignment

Example 2) Translational alignment with prescribed translational
alignment: This example considers the same alignment element as
in Example 1, but now a prescribed alignment is included (Fig
2.12-3). The prescribed alignment is a vector measured from local
node 1. The misalignment is the vector difference of the total
alignment and the prescribed alignment. The forces generated by
the alignment element are equal and opposite, and these forces act
to reduce the misalignment. Notice that the forces do not in
general act along the line connecting the two nodes, in particular a
moment is generated by the alignment element force acting on local
node 1.

The prescribed alignment is a function of time, entered as part of
the definition of the translation alignment.

As a common special case, the prescribed alignment can be
specified as a fraction of the initial alignment. This case is useful
when the two nodes are initially misaligned, and the nodes are to be
brought into alignment through several solution steps. In each
solution step, the fraction is reduced, until the fraction is zero; then
the prescribed alignment is zero.

In Fig 2.12-3(b), the prescribed alignment is equal to the initial
misalignment. Therefore the misalignment is zero and no forces are
generated by the alignment element. In Fig 2.12-3(c), the
prescribed alignment is reduced, therefore the misalignment is non-
zero and forces are generated. The forces will cause the nodes to
approach each other.
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Misalignment vector

Prescribed translational alignment
Local

1
node (a): General case

* Local
node 2

Prescribed translational alignment

Local
node 1

(b): Special case, prescribed alignment equals initial misalignment

Misalignment vector

Local '/

node 1 Prescribed translational alignment

(c): Special case, prescribed alignment equals a fraction of the initial misalignment

Figure 2.12-3: Example 2, translational alignment with prescribed alignment

Example 3) Translational alignment with prescribed translational
alignment and nodal offsets: This example considers the same
alignment element as in Example 2, but now nodal offsets are
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1b

included (Fig 2.12-4). Thus the prescribed alignment, total
alignment and misalignments are measured from positions 1b and
2b. As in Example 2, the forces generated by the alignment
element are equal and opposite, and these forces act to reduce the
misalignment. Notice that the forces do not in general act along the
line connecting the two nodes, and in this example moments act on
both local nodes 1 and 2.

F
F
—
Prescribed alignment +—— 2
Misalignment

Offset for
local node 2 Local

Actual alignment node 2

Offset for
local node 1

¢ Local
node 1

Figure 2.12-4: Example 3: Translational alignment with
prescribed alignment and nodal offsets

Example 4) Distance alignment with prescribed distance alignment
and nodal offsets: This example considers an alignment element
that aligns distance, instead of aligning the translational
components (Fig 2.12-5). Here the prescribed distance is a scalar
quantity, measured from local node 1. The distance misalignment
is the scalar difference of the total distance and the prescribed
distance. The forces generated by the alignment element are equal
and opposite, and these forces act to reduce the misalignment.

Of course, it is also possible to not use nodal offsets, then the
distance is measured directly between the two nodes.

For the distance alignment, the force always acts along the line
connecting points 1b and 2b. The element provides stiffness only in
the direction of the line connecting points 1b and 2b.
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Misalignment \ Offset for

F 2b local node 2
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Offset for
local node 1
Local ¢
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Figure 2.12-5: Example 4: Distance alignment with prescribed
alignment and nodal offsets

Example 5) Rotation alignment: The discussion of rotational
alignments is more difficult than the discussion of translational or
distance alignments. In order to provide simple examples, we
consider only planar rotations here. The general case of 3D
rotations is discussed below.

Fig 2.12-6 shows an example of rotational alignments in the plane.
Here each local node is seen to have a local coordinate system,
called a triad, attached to it. The directions of the triad axes for

local node 1 are denoted al', a2' and the directions of the triad
axes for local node 2 are denoted al?,a2*. The angle giving the
orientation of the directions al?, a2? in terms of the directions

al', a2' is the rotational misalignment angle @ . This

misalignment creates equal and opposite moments acting onto the
two nodes.

As the nodes rotate, the triads also rigidly rotate.

The alignment element in this example can be used to keep the
rotations of the two nodes nearly coincident. Notice that, although
the rotations of the nodes are nearly coincident, their translations
are not affected by the element, so the nodal positions need not be
coincident.
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Figure 2.12-6: Example 5: Rotation alignment

Example 6) Rotation alignment with prescribed rotational
alignment: Fig 2.12-7 shows another example of a rotational
alignment element, here including a prescribed rotational alignment
y . Angle y is used to construct another triad, with directions

denoted d1',d1?, relative to the directions al',a2"'. The rotational
misalignment angle @ is measured from directions d1',d1* to

directions al”, a2’. Again, the misalignment creates equal and
opposite moments acting onto the two nodes.
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Figure 2.12-7: Example 6: Rotation alignment with prescribed
rotational alignment

Example 7) Rotation alignment with prescribed rotational

alignment and offset triads: Figure 2.12-8 shows another example
of a rotational alignment element, here including both a prescribed
rotational alignment and offset triads. The offset triad for node 1 is

given by directions b1',b2' and the offset triad for node 2 is given
by directions b1*,b2* . The prescribed rotational alignment y is
measured from directions b1',b2" and the rotational misalignment
angle @ is measured from directions d1',d1* to directions
b1%,b2%.

Although in the figure, the origins of the b triads is different than
the origins of the a triads, it is certainly possible to have the origins
of the b triads coincident with the origins of the a triads, and to
have the b triad directions different than the a triad directions.
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) Jo 2
a2
Offset for
M local node 2
1b /y
1
32“ M Loca
|
| Offset for node 2
‘ local node 1 5
\ al
|
o 7a11
Local
node 1

Figure 2.12-8: Example 7: Rotation alignment with prescribed
rotational alignment and offset triads

e A single alignment element can align translations and/or
distances and/or rotations. For example, a single element that aligns
both translations and rotations can be used to keep two nodes
nearly coincident, and also the relative rotations of the two nodes

nearly equal.

2.12.2 Triads

In this section the nodal offsets and triads are discussed in more
detail.

Figure 2.12-9 shows the triads at a node.
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Figure 2.12-9: Triads at a node
A triad

Each node of the alignment element has a triad attached to the
node. This triad is called the "a" triad, and the coordinate axes of
the a triad are denoted al, a2, a3. This triad is an orthonormal
right-handed coordinate system, with origin at the node. As the
node translates and rotates, the triad rigidly translates and rotates
with the node.

B triad

Each node of the alignment element also has a triad which is in
general offset from the a triad. This offset triad is called the "b"
triad, and the coordinate axes of the b triad are denoted b1, b2, b3.
The b triad is an orthonormal right-handed coordinate system, with
the origin of the b triads given by vector xba.

The origin and coordinate axes of the b triad are defined with
reference to the a triad. Thus the b triad is rigidly attached to the a
triad. In particular, as the node rotates, vectors xba, b1, b2, b3 also
rotate.
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C triad

Local node 1 of the alignment element also has a triad that provides
a coordinate system in which the prescribed alignments, total
alignments and misalignments are measured. This triad is called
the "c¢" triad and the coordinate axes of the c triad are denoted cl,
c2, ¢3. The c triad is an orthonormal right-handed coordinate
system, with origin at the origin of the b triad. The coordinate axes
of the c triad are defined with reference to the b triad. Thus the ¢
triad is rigidly attached to both the b triad and the a triad.

Thus, for example, the components of the prescribed translational
misalignments are specified in the c triad coordinate system.

D triad

Local node 1 of the alignment element also has a triad that
represents the prescribed translation or rotation. This triad is called
the "d" triad and the coordinate axes of the d triad are denoted d1,
d2, d3. The d triad is an orthonormal right-handed coordinate
system, with origin offset from the origin of the b triad.

The prescribed translational alignment is used to determine the
origin of the d triad relative to the b triad of local node 1 (in other
words, the vector xdb), and the prescribed rotational alignment is
used to determine the orientation of the d triad relative to the
orientation of the b triad of local node 1. This will be discussed in
more detail later.

2.12.3 Notations

The notations used in the discussion of the theory are based on the
triad names (a, b, ¢, d). Although the notations are cumbersome,
the notations clearly show the meanings of the quantities described.

Vectors

xba : vector from a triad origin to b triad origin
xdb : vector from b triad origin to d triad origin
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When it is necessary to denote a particular local node, a superscript
is used:

xb'a': vector from a triad origin of local node 1 to b triad origin of
local node 1

xb’a’: vector from a triad origin of local node 2 to b triad origin of
local node 2

xd'b' : vector from b triad origin of local node 1 to d triad origin of
local node 1

xb’d" : vector from d triad origin of local node 1 to b triad origin of
local node 2.

Obviously the laws of vector addition hold, for example
xd'a' =xd'b' +xb'a’.

Since the above quantities are vectors, they can be expressed using
components in any convenient coordinate system. In order to
denote which coordinate system the components are expressed in,

we use a letter in the subscripts, for example (xd'b.,,xd'b,,xd'b.,)

are the components of vector xd'b', expressed in the ¢ triad
coordinate system.

Rotation matrices

For rotations, we need to express the directions of one triad in
terms of the directions of another triad. For example

2 2 2
blm‘ blbz1 b1b3'

21 2 2 2
VB’B'=|b2), b2:, b2},
b3, b3 b3’

b1 b2! b3'

The first row of the matrix gives the direction b1 for local node 2,
the second row gives the direction b2 for local node 2, and the third
row gives the direction b3 for local node 2. Each of these direction
vectors is expressed using the coordinate system of the b triad of

local node 1.

Clearly if the directions of the b triad axes are the same for both
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local nodes, then there is no relative rotation between the b triads of
local nodes 1 and 2, and this matrix reduces to the identity matrix.

We also use
142 2 2
bldll bldzl b1d3'
VB’D' = bZZ . bZZ ; b2§31 . the b triad directions for local
2 2 2
_173‘1”1 b3d21 173‘1,31

node 2 in terms of the d triad directions for local node 1

| dl;l' dliﬁl d1;3'
VD'B' =|d 2; .o d 2}7 g d 2;} 4 |+ the d triad directions for local
d3' d3' d3'

L~ ! b2! b3!

node 1 in terms of the b triad directions for local node 1

The rules of matrix multiplication apply, for example
VB’B' = VB’D' - VD'B'. Also the inverse of the matrix is the

same as the transpose, for example (VD'B')™ =(VD'B')" .

2.12.4 Translation alignment theory

Figure 2.12-10 shows an alignment element that uses a translation
alignment.
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Figure 2.12-10: Translation vectors used in translation alignment

Translation alignment calculation

When the translation alignment is used, the vector between the
origin of the b triad of local node 1 and the origin of the b triad of

local node 2 is calculated (xb*b").

Notice that the directions of the b triad coordinate axes are not used
in the translation calculation.

Prescribed translation

The user enters a table giving the "prescribed translation" for
various times. This prescribed translation can be specified using
the following options:

Aligned: The prescribed translation is set to zero.

Components.: The prescribed translation is directly specified as
the vector xd'b', given in terms of components in the ¢ triad
coordinate system (xd'b.,,xd'b.,,xd'b.,) .

cl>

Thfactor: The prescribed translation is specified relative to the
translations at the time of the birth of the alignment. The vector
xb’b' is evaluated at the time of birth of the alignment, and this
vector is used to construct a prescribed translation with the same
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direction, but with a scaled value of the magnitude, that is
xd'b' = factor x xb’b’

birth ~

Same. The prescribed translation is the same as in the previous
row of the align-translation table. (This option cannot be used in
the first row of the align-translation table.)

Notice that the directions of the d triad coordinate system are not
used in this calculation.

The ALIGN-TRANSLATION command is used to enter this table.
Translation misalignment

The difference between the actual translation and the prescribed
translation is calculated using xb’d"' = xb’b' —xd'b" . This
difference is termed the translation misalignment. Then vector
xb’d' is expressed using its components in the ¢ triad coordinate
system: (xb’d.,,xb’d,,xb’d",)

Forces

The alignment element calculates a force from the translation
misalignment in each coordinate direction:
F,=k,-xb*d,F,=k,-xbd,, F,=k,-xb’d,. Notice that
the stiffness can be different in each coordinate direction. Hence,
for example, the user might specify that the stiffness be zero for
any misalignment in the cl coordinate direction, but nonzero for
misalignments in the other coordinate directions. Figure 2.12-11
shows one possibility, drawn in two dimensions for simplicity.
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Figure 2.12-11: Prescribed translations and forces for translation alignment,
two-dimensional case

The stiffness coefficients are entered in the ALIGN-
TRANSLATION command.

All forces act to reduce the translation misalignments.
The principle of virtual work is used to obtain the corresponding
forces and moments acting at the nodes.

2.12.5 Distance alignment theory

Fig. 2.11-12 shows an alignment element that uses a distance
alignment.
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al

Figure 2-12.12: Distance vector used in distance alignment
Distance calculation

When the distance alignment is used, the distance D is measured
using the length of vector xb’b'. Vector xb’b' connects the origin

of the b triad of node 2 with the origin of the b triad of node 1.
Notice that the directions of the b triad axes are not used.

Also notice that the distance changes if the nodes rotate without
translation, since the offset vectors xb'a', xb*a’® also rotate as the
nodes rotate.

Prescribed distance

The user enters a table giving the "prescribed distance" for various
times. The prescribed distance can be specified using the following
options:

Aligned: The prescribed distance is set to zero.

Distance: The prescribed distance is directly specified as the
number D”.

Thfactor: The prescribed distance is specified relative to the
distance at the time of the birth of the alignment. D is evaluated
at the time of birth of the alignment, and this vector is used to
construct a prescribed distance with a scaled value of the
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magnitude, that is D” =factorxDJ, .

Same: The prescribed distance is the same as in the previous
row of the align-distance table. (This option cannot be used in
the first row of the align-distance table.)

The ALIGN-DISTANCE command is used to enter this table.

Distance misalignment
D - D" is termed the distance misalignment.

Forces

The alignment element calculates a force from the difference
between the distance and the prescribed distance F, =k, (D -D" ) .

This force acts along the line connecting the origins of the b triads,
and acts to reduce the difference between the distance and the
prescribed distance. Fig. 2.12-13 shows some possibilities, drawn
in two dimensions for simplicity.
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a2
xb2 az
Local
node 2
a2 al
Local al
node 1 Figure 2.12-13(a): Distance greater than prescribed distance
D b J
Local
node 2
a2
xl)] al
Local al
node 1

Figure 2.12-13(b): Distance equal to prescribed distance
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a2

¢
T~
Local T

node 1 al

Figure 2.12-13(c): Distance less than prescribed distance

Figure 2.12-13: (continued)

The stiffness coefficient is entered in the ALIGN-DISTANCE
command.

The principle of virtual work is used to obtain the corresponding
forces and moments acting at the nodes.

2.12.6 Rotation alignment theory
Fig. 2.12-14 shows an alignment element that uses a rotation

alignment. Only the directions of the triads are used, and not their
origins, as shown in Fig. 2.12-14(b).
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2

~ Local
node 2

a2

Figure 2.12-14(a): Rotation alignment

Figure 2.12-14(b): Relative orientation of b and d triads,
corresponding to (a)

Rotation calculation

When the rotation alignment is used, the relative rotation between
the b triad of local node 2 and the b triad of local node 1 is

b, b, bL,

. 2pl _ 2 2 2
calculated: VBB’ = b2bll b2b2, b2b3,
2 2 2

b3, b3, b3,

It is easier to visualize the relative rotation for the special case in
which the b3 axes of the two triads have the same direction. This
case is shown in Fig 2.12-15(a). In this special case, the matrix has
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the form
2 2
blb1l b1b2, 0
2pl 2 2
VBB = b2bll bZh21 0
0 0 1

(a): Relative orientation of b triads

S

e
P
wbS 1

(b): Prescribed rotations and rotation misalignment

Figure 2.12-15: Rotations in the plane, b3 axes have the same direction
Prescribed rotation

The user specifies the "prescribed rotation" for various times.
Internally, the prescribed rotation is expressed as a coordinate triad
d1, d2, d3, defined relative to the b triad of node 1. In matrix
form, the prescribed rotation can be written as
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1 1 1
dlbl' dlbzl d1b3'

1l _ 1 1 1
VD'B'=|d2,, d2,, d2,
d3', d3 d3!

b1! b2 b3
Again, this situation is easier to visualize for the special case in
which the b3 axes of the two triads, and also the d3 axis, have the

same directions. This case is shown in Fig 2.12-15(b).

The prescribed rotation can be specified using the following
options:

Aligned: VD'B' =1

Angle: The user enters an angle »” and axis of rotation
(nfl, .’ ) . The program normalizes the axis of rotation,

then the program calculates the axis of rotation in the b triad
P

o ,nf}, ) . Next the program calculates

system of node 1 (nbpl1 n

(7})1’“ T ) =y’ (n:l, N ) and then calculates the

prescribed rotation matrix using the formula

P
dlbl' dlbzl d1b3' sin)/P 1 SinL
VD'B' |2, 2, d2, =T+ loSo| kS
Y Y
d3bl1 d3b2' d3b3' 7
P P
0 T T
where S = )/:3, 0 —7:11
P P
Ve Vi 0

Notice that the components of the axis of rotation are specified
in the coordinate system of the ¢ triad of local node 1. Also

: P : : P P P
notice that angle y* and axis of rotation (nc11 NONR O )

represents the total angle and axis corresponding to the
prescribed rotation matrix. If the prescribed rotation is
expressed as a series of incremental rotations, the incremental
rotations must be combined, then converted back into the form
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P P P P
7/ > (ncl‘ ’nc2‘ ’nc‘Sl )

Relative to rotations at time of birth: The matrix

br’, bL},  BL,
VB’B' = b2Zll bZi i b223, is evaluated at the time of birth
b3, b3, b3

b1 b2' b3'
of the alignment, and this matrix is used to construct a
prescribed rotation VD'B' with the same axis, but with a scaled

value of the angle.

Incremental: The matrix VD'B' is computed by incremental
update of the matrix VD'B' for the previous row of the table.
Specifically

siny 1 sin%
VD'B' =|1+ S+— S* |[VD'B'|
7/ 2 Z previous row
2

P

(‘2] 2

P
n

= ) are defined above. If this option is

where S, y” (nj,,n

used for the first row of the table, then the effect is the same as
if option=Angle.

Same: The prescribed rotation is the same as in the previous row
of the align-rotation table. (This option cannot be used in the
first row of the align-rotation table.)

The ALIGN-ROTATION command is used to enter this table.

When angles are specified, the unit is either radians or degrees,
depending on the value of ALIGN-ROTATION UNITANGLE
(the default is radians).
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Rotation misalignment

The rotation misalignment can be calculated as the product of the
actual rotation and the inverse of the prescribed rotation:

VB’D' =VB’B' - (VD'B")’

The rotation misalignment matrix VB*D' is then represented as a
rotation misalignment angle and axis: angle " and axis of rotation

m

o ,n;"3. ) , where the superscript m stands for "misalignment".

m
(ndl, N

The axis of rotation is then transformed from the d1 triad system to

the c1 triad system to obtain (nc11 NN ) .

Moments

The rotation misalignment angle and axis can also be written in
component form:
cl?

(6 (962,4963)=9”’(n:;,nm n”’)

c2! ¢3!

The moments are then calculated using the rotation misalignment
vector:

Notice that the rotational stiffness can be different in each
coordinate direction. Hence, for example, the user might specify
that the stiffness be zero for any rotational misalignment in the cl
coordinate direction, but nonzero for misalignments in the other
coordinate directions.

The unit of £, is always moment/radian.

It is also allowed to enter a sawtooth moment / angle relationship
for any of the coordinate directions. The sawtooth moment / angle
relationship is shown in Fig 2-12.16.
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Figure 2.12-16: Sawtooth moment / angle relationship

Using this option, the moment is zero for misalignments of 0
degrees, 180 degrees, 360 degrees, etc.

The stiffness coefficients, and choices of constant or sawtooth
stiffnesses, are entered in the ALIGN-ROTATION command.

All moments act to reduce the rotation misalignments.

2.12.7 Triadsets and node-triadset pairs
Triadsets
The combination of the a triad, b triad and c triad is called a
triadset. The TRIADSET command is used to define the triads of
the triad set.
The triadset consists of three parts:

Specification of the a triad: The choices are:

ELEMENTS: The a triad corresponds to the local axes of the
element to which the node is attached. Currently, only
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Hermitian beam elements contribute local axes to the a triad.
Thus, for example, if the node is connected to a single
Hermitian beam element, the al direction is the r direction of
the beam element, the a2 direction is the s direction of the beam
element, etc.

If the node is not attached to any element with local axes, the
a triad directions are the global coordinate directions.

If the node is connected to two or more elements with local
axes, then the program averages the local axes to obtain the a
triad axes.

VECTORS: Components (alx, aly, alz) and (a2x, a2y, a2z)
are input. Then the a triad directions are computed using

al =(alx, aly, alz),normalized to unit length
a3 =al x(a2x, a2y, a2z),normalized to unit length
a2 =a3xal

Specification of the b triad: The choices are

ATRIAD: The b triad coincides with the a triad.

VECTORS: The b triad origin is offset from the a triad origin

using components (b0al, b0a2, b0a3) . Using the notation of
2.12.3, (b0al, b0a2, b0a3) = (xb'al,,xb'al,,xb'a.,).

The b triad directions are computed as follows: Components
(blal, bla2, bla3) and (b2al, b2a2, b2a3) are input. Then the

b triad directions are computed using

bl=(blal, bla2, bla3),normalized to unit length
b3 =b1x(b2al, b2a2, b2a3),normalized to unit length
b2 =b3xbl

Specification of the ¢ triad: The choices are:

BTRIAD: The c triad coincides with the b triad.

VECTORS: The c triad directions are computed as follows:
Components (clbl, c1b2, c1b3) and (c2bl, c2b2, c2b3) are
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input. Then the c triad directions are computed using

cl=(clbl, c1b2, c1b3),normalized to unit length
c3 =clx(c2bl, c2b2, c2b3),normalized to unit length
c2=c3xcl

Node-triadset pair

A triadset is assigned to a node using the SET-TRIADSET NODES
command. There can be more than one triadset assigned to a node.
Thus, for example, if a node is attached to more than one alignment
element, one alignment element can use one triadset and the other
alignment element can use a different triadset.

It is also allowed for no triadset to be assigned to a node. Then, if
the node is attached to an alignment element, the program
calculates a default triadset. The calculation of the default is
discussed below.

2.12.8 Align-translation specification

The ALIGN-TRANSLATION command is used to define the
characteristics of the translation alignment of an alignment element.
These characteristics include the translational stiffnesses and the
prescribed translational alignments.

The prescribed translational alignments are input in the form of a
table. Each row of the table gives the prescribed translational
alignment at a time. This time need not be a solution time.

For example, consider the command

ALIGN-TRANSLATION 1
ENTRIES TIME OPTION XCP YCP ZCP TBFACTOR
CLEAR

3.0 TBFACTOR 0. 1.
4.0 COMPONENTS 1. 0.
5.0 ALIGNED

DATAEND

0 0.0 0.0 0
0 2.0 3.0 0
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The lowest time in the table is time 3.0. For solution times before
time 3.0, the translational alignment is inactive (not born yet).

For the first solution time at or after time 3.0, the translational
alignment becomes active. The total alignment for the preceding

solution time is measured and is used to construct xbzbl‘b. . Since
irt

OPTION=TBFACTOR and TBFACTOR=1.0, the prescribed

translational alignment for time 3.0 is set to xd'b' = xb’b' ‘b_‘th .

For solution time 4.0, the prescribed translational alignment is
(xd'b,,xd'b,,xd'b.,) =(1.0,2.0,3.0).

For solution time 5.0, the prescribed translational alignment is
(xd'b,,xd'b.,,xd'b.,) = (0.0,0.0,0.0).

For solution times after time 5.0, the prescribed translational
alignment is the same as the prescribed translational alignment at
time 5.0.

For solution times between times given in the align-translation
table, linear interpolation is used to determine the prescribed
translational alignment.

2.12.9 Align-distance specification

The ALIGN-DISTANCE command is used to define the
characteristics of the distance alignment of an alignment element.
These characteristics include the distance stiffness and the
prescribed distance alignments.

The prescribed distance alignments are input in the form of a table,
analogous to the table used in the align-translation definition. The
options are given in Section 2.12.5.

2.12.10 Align-rotation specification
The ALIGN-ROTATION command is used to define the

characteristics of the rotation alignment of an alignment element.
These characteristics include the rotational stiffnesses and the
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prescribed rotational alignments.

The prescribed rotational alignments are input in the form of a
table, analogous to the table used in the align-translation definition.
The options are given in Section 2.12.6.

2.12.11 Element group specification

The EGROUP ALIGNMENT command is used to define the
characteristics of an alignment element group. The default values
of the align-translation, align-distance and align-rotation definitions
can be entered in the EGROUP ALIGNMENT command.

2.12.12 Element specification

The nodes of the alignment element are specified using the
ENODES command, just as for other element types. Notice that
local node 1 is different than local node 2, because local node 1 is
used to measure prescribed alignments. Thus two elements
differing only in the order of the local nodes will in general give
different results.

Data for the alignment element is specified using the EDATA
command, just as for other element types. Note that it is allowed to
enter the align-translation, align-distance and align-rotation
definitions separately for each element. Therefore one element
might align translations only and another element in the same
group might align rotations only.

The data for the alignment element also includes the triadset to
be used for each local node. This data is entered using parameters
TRIADST1 and TRIADST?2.

The assignment of a triadset to a local node is now discussed in
detail for local node 1 (local node 2 is similar):

Case 1: The global node is not in a node-triadset pair:
The a triad is determined as follows:
Case 1a: Global node is attached to at least one element
with local axes. Then the program averages the triads of

all attached elements with local axes to obtain the a triad
at the node.
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Case 1b: Global node is not attached to any element with
local axes. Then the program sets the a triad to the global
coordinate directions.

The b triad is coincident with the a triad (with no offset).

The c triad is coincident with the b triad.

The TRIADST1 parameter must be set to zero.

Case 2: The global node is in a single node-triadset pair
The TRIADST1 parameter can either be set to zero, or to the
triadset for the global node. The triadset is obtained from the
node-triadset pair.

Case 3: The global node is in more than one node-triadset pair
The TRIADST]1 parameter must be nonzero. This parameter
is used to choose the triadset for the node. The triadset
specified by parameter TRIADST1 must be in a node-

triadset pair with the global node corresponding to local
node 1.

2.12.13 Input examples

Example 1: In this example, nodes 1 and 2 are aligned using a
distance alignment only. The nodes are to be aligned at time 1.0,
with the two nodes coinciding.

TIMESTEP

CLEAR

11.0

DATAEND

*

ALIGN-DISTANCE 1
ENTRIES TIME OPTION
CLEAR

1.0 ALIGNED

DATAEND

*
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EGROUP ALIGNMENT 1 ALIGN-DISTANCE=1
EDATA

ENTRIES N1 N2

CLEAR

12

DATAEND

Example 2: This example is similar to example 1. However, the
alignment starts at time 1.0 with a prescribed alignment distance
equal to the initial alignment distance. In the absence of other

external loads, the solution should immediately converge at time

1.0. The alignment ends at time 2.0, with the two nodes
overlapping.

TIMESTEP

CLEAR

2 1.0

DATAEND

*

ALIGN-DISTANCE 1
ENTRIES TIME OPTION
CLEAR

1.0 TBFACTOR

2.0 ALIGNED

DATAEND

*

EGROUP ALIGNMENT 1 ALIGN-DISTANCE=1
EDATA

ENTRIES N1 N2

CLEAR

12

DATAEND

Example 3: This example is similar to example 2. However the
alignment takes place over two solution steps, with the prescribed

alignment distance at time 2 equal to the initial alignment distance,
multiplied by 0.1.

TIMESTEP

CLEAR

3 1.0

DATAEND

*

ALIGN-DISTANCE 1

ENTRIES TIME OPTION FACTOR
CLEAR

1.0 TBFACTOR
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2.0 TBFACTOR 0.1

3.0 ALIGNED

DATAEND

*

EGROUP ALIGNMENT 1 ALIGN-DISTANCE=1
EDATA

ENTRIES N1 N2

CLEAR

12

DATAEND

Example 4: This example is similar to example 3. However, the
alignment begins at solution time 2.0. The prescribed alignment
distance at time 2.0 is equal to the alignment distance at time 1.0.
Note that time 1.0 is the solution time that immediately precedes
time 2.0. The prescribed alignment distance at time 3.0 is equal to
the alignment distance at time 1.0, multiplied by 0.1.

TIMESTEP

CLEAR

4 1.0

DATAEND

*

ALIGN-DISTANCE 1

ENTRIES TIME OPTION FACTOR
CLEAR

2.0 TBFACTOR

3.0 TBFACTOR 0.1

4.0 ALIGNED

DATAEND

*

EGROUP ALIGNMENT 1 ALIGN-DISTANCE=1
EDATA

ENTRIES N1 N2

CLEAR

12

DATAEND

Example 5: This example is similar to example 4. However, the
times specified in ALIGN-DISTANCE do not correspond to
solution times. The alignment begins at solution time 3.0. The
prescribed alignment distance at time 3.0 is obtained as follows:

Dummy alignment distance at time 2.1 = alignment distance at
time 2.0 (2.0 is the solution time immediately preceding time
2.1)
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Dummy alignment distance at time 3.1 = alignment distance at
time 2.0, multiplied by 0.1.

Prescribed alignment distance at time 3.0 = Linear interpolation
of dummy alignment distances at times 2.1, 3.1. In this case, the
result is equal to the alignment distance at time 2.0, multiplied
by 0.19, since

0.19=1.0+(0.1-1.0)*3.0-2.1)/(3.1-2.1)

The prescribed alignment distance at time 4.0 is obtained as
follows:

Dummy alignment distance at time 3.1 = alignment distance at
time 2.0, multiplied by 0.1

Dummy alignment distance at time 4.1 = zero

Prescribed alignment distance at time 4.0 = Linear interpolation
of dummy alignment distance at times 3.1, 4.1.

The prescribed alignment distance at time 5.0 is equal to zero.

TIMESTEP

CLEAR

51.0

DATAEND

*

ALIGN-DISTANCE 1

ENTRIES TIME OPTION FACTOR
CLEAR

2.1 TBFACTOR

3.1 TBFACTOR 0.1

4.1 ALIGNED

DATAEND

*

EGROUP ALIGNMENT 1 ALIGN-DISTANCE=1
EDATA

ENTRIES N1 N2

CLEAR

12

DATAEND

Example 6: In this example, nodes 1 and 2 are aligned using a
rotational alignment only. The alignment starts at time 3 and the
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rotations are aligned at time 4. Here we suppose that the two nodes
are each connected to Hermitian beam elements. Also, it is not
necessary to set the triads in the EDATA command since there is
only one triad per node.

The nodes are aligned when the b triad axes of the two nodes are
coincident. Since no triadset is defined, the b triad axes correspond
to the r-s-t axes of the attached beam elements.

ALIGN-ROTATION 1
ENTRIES TIME OPTION
CLEAR

3.0 TBFACTOR

4.0 ALIGNED

DATAEND
*

EGROUP ALIGNMENT 1 ALIGN-ROTATION=1
EDATA

ENTRIES N1 N2

CLEAR

12

DATAEND

Example 7: In this example, nodes 1 and 2 are aligned using a
rotational alignment only. The alignment starts at time 3 and the
rotations are aligned at time 4.

Here we explicitly define the a and b triads at the nodes. Triadset 1
gives the triads for node 1 and triadset 2 gives the triads for node 2.

Triadset 1: The a triad initially has directions al=(0,-1,0), a2=(-
1,0,0) (components in the global system). a3 is computed to create
a right-handed orthonormal system.

The b triad has offset (1, 2, 3). This offset is measured in the al, a2,
a3 directions. The b triad directions are b1=(0,1,0), b2=(0,0,1). b3
is computed to create a right-handed orthonormal system. Again,
the components of the b1, b2, b3 axes are expressed in the a triad
coordinate system.

Thus for demonstration, the initial b triad offset and directions in
the global system can be calculated as follows:

a3=(0,0,-1) in global system
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b3=(1,0,0) in a triad system

offset=1*(0,-1,0) + 2*(-1,0,0) + 3*(0,0,1) = (-2,-1,3) in global
system

b1=0%(0,-1,0) + 1%(-1,0,0) + 0%(0,0,-1) = (-1,0,0) in global system
b2=0%(0,-1,0) + 0%(-1,0,0) + 1*(0,0,-1) = (0,0,-1) in global system
b3=1%(0,-1,0) + 0%(-1,0,0) + 0*(0,0,-1) = (0,-1,0) in global system

Triadset 2: The a triad initially has directions al=(1,0,0),
a2=(0,0,1). a3 is computed to create a right-handed orthonormal
system.

The b triad has offset (-1, -2, -3). The b triad directions are b1=
(-1,0,0), b2=(0,1,0) (again, the components of b1, b2 are expressed
in the a triad coordinate system). b3 is computed to create a right-
handed orthonormal system.

The nodes are aligned when the b triad axes of the two nodes are
coincident. The triad offsets are not used in this example.

TRIADSETS
ENTRIES,
TRIADSET,
AOPTION AlX AlY AlZ A2X A2Y A2z,
BOPTION BOAl BOA2 BOA3,
B1Al B1A2 B1A3 B2Al B2A2 B2A3

CLEAR
1,
VECTORS 0.0 -1.0 0.0 -1.0 0.0 0.0,
VECTORS 1.0 2.0 3.0,
0.0 1.0 0.0 0.0 0.0 1.0
2,
VECTORS 1.0 0.0 0.0 0.0 0.0 1.0,
VECTORS -1.0 -2.0 -3.0,
-1.0 0.0 0.0 0.0 1.0 0.0
DATAEND
SET TRIADSET NODES
CLEAR
11
2 2
DATAEND

ALIGN-ROTATION 1
ENTRIES TIME OPTION
CLEAR
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3.0 TBFACTOR
4.0 ALIGNED
DATAEND

*

EGROUP ALIGNMENT 1 ALIGN-ROTATION=1
EDATA

ENTRIES N1 N2

CLEAR

12

DATAEND

Example 8: In this example, nodes 1 and 2 are aligned using both a
translational and a rotational alignment. The same triadsets are used
as in the previous example. However different triadset numbers are
assigned to the nodes, just to show that the triadset number need
not be the node number.

The translational alignment starts at time 1 and the translations are
aligned at time 2. The nodes are translationally aligned when the
offsets of the b triad axes of the two nodes are coincident.

The rotational alignment starts at time 3 and the rotations are
aligned at time 4. The nodes are rotationally aligned when the b
triad axes of the two nodes are coincident.

TRIADSETS
ENTRIES,
TRIADSET,
AOPTION AlX AlY Alz A2X A2Y A2%Z,
BOPTION BOAl BOA2 BOA3,
B1Al B1A2 B1A3 B2Al B2A2 B2A3

CLEAR
10,
VECTORS 0.0 -1.0 0.0 -1.0 0.0 0.0,
VECTORS 1.0 2.0 3.0,
0.0 1.0 0.0 0.0 0.0 1.0
20,
VECTORS 1.0 0.0 0.0 0.0 0.0 1.0,
VECTORS -1.0 -2.0 -3.0,
-1.0 0.0 0.0 0.0 1.0 0.0
DATAEND
SET TRIADSET NODES
CLEAR
110
2 20
DATAEND
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ALIGN-TRANSLATION 1
ENTRIES TIME OPTION
CLEAR

1.0 TBFACTOR

2.0 ALIGNED

DATAEND

*

ALIGN-ROTATION 1
ENTRIES TIME OPTION
CLEAR

3.0 TBFACTOR

4.0 ALIGNED

DATAEND

*

EGROUP ALIGNMENT 1 ALIGN-TRANSLATION=1,
ALIGN-ROTATION=1

EDATA

ENTRIES N1 N2

CLEAR

12

DATAEND

Example 9: In this example, nodes 1 and 2 are assumed to be at the
end of a straight line of beam nodes. It is desired to bend the
straight line so that the line becomes a circle.

The rotational alignment starts at time 1. At time 2, the prescribed
rotational alignment is approximately 120 degrees with alignment
axis (0,0,1). The components of the axis are in the c triad system
of node 1. (For this problem, since no triadset is used, the a, b and ¢
triads of node 1 all coincide, therefore the components of the axis
are in the a triad system of node 1, in other words, the direction of
the t axis at node 1.)

At time 3, the prescribed rotational alignment is approximately 240
degrees with alignment axis (0,0,1). At time 4, the prescribed
alignment is set to 0. Since the rotational interpolation always takes
the shortest angular distance, the prescribed alignment between
times 3 and 4 increases from 240 degrees to 360 degrees.

The nodes are rotationally aligned when the b triads at node 1 and 2
have the same directions.

The change in prescribed rotational alignment is always less than
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about 120 degrees. This change must be less than 180 degrees per
time step.

At time 5, the translational alignment starts and at time 6, the
translational alignment ends. The nodes are translationally aligned
when the nodes coincide.

ALIGN-TRANSLATION 1

ENTRIES TIME OPTION

CLEAR

5.0 TBFACTOR

6.0 ALIGNED

DATAEND

*

ALIGN-ROTATION 1

ENTRIES TIME OPTION ANGLE AXISC1l AXISC2 AXISC3

CLEAR

1.0 TBFACTOR

2.0 ANGLE 2.1 0.0 0.0 1.0

3.0 ANGLE 4.2 0.0 0.0 1.0

4.0 ALIGNED

DATAEND

*

EGROUP ALIGNMENT 1 ALIGN-TRANSLATION=1,
ALIGN-ROTATION=1

EDATA

ENTRIES N1 N2

CLEAR

12

DATAEND

Example 10: In this example, we want to simulate body-body
contact.

Fig 2.12-17 shows the bodies in the aligned configuration.
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Figure 2.12-17: Simulation of body-body contact
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Triadset 5 is attached to node 5 and triadset 8 is attached to node 8.

The triadsets are defined so that the b triads are aligned in the
aligned configuration:

a triads: The a triads are the same as the triads from the attached
elements.

b triads, triadset 5: The b triads are offset from the node in the a2
direction:

(b0al, b0a2, b0a3) = (0,2,0)

The b triad directions are the same as the a triad directions (the
default)

(blal, bla2, bla3) =(1,0,0)
(b2al, b2a2, b2a3) = (0,1,0)
(b3al, b3a2, b3a3) =(0,0,1)

b triads, triadset 8: The b triads are offset from the node in the
negative a2 direction:

(b0al, b0a2, b0a3) = (0,-3,0)

The b triad directions are rotated relative to the a triad directions:
(blal, bla2, bla3) = (cos 30°,0, sin 30°)

(b2al, b2a2, b2a3) = (0,1,0)

(b3al, b3a2, b3a3) = (-sin 30°,0, cos 30°)

¢ triads: The c triads are the same as the b triads.

The alignment element is defined using node 5 as local node 1 and
node 8 as local node 2.

At alignment, we would like to have the b triad origins coincide.
This means that we need high translational stiffnesses in all three
coordinate directions.
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We would also like to have the axis of rotation correspond to the
c2 = b2 direction of node 5. Therefore we need high rotational
stiffnesses in the c1 and c¢3 coordinate directions, but a low
rotational stiffness in the ¢2 coordinate direction. In addition, we
would like the stiffness in the c2 coordinate direction to be
periodic. Thus, if node 5 is rotated 360 degrees relative to node 8,
the alignment element forces are unchanged.

We will reach alignment by simultaneously applying the
translational and rotational alignments in five time steps.

TRIADSETS
ENTRIES TRIADSET,
AOPTION,
BOPTION BOA1l BOA2 BOA3,
B1A1l B1A2 B1A3 B2Al B2A2 B2A3,

CLEAR
5,
ELEMENTS,
VECTORS 0.0 2.0 0.0,
1.0 0.0 0.0 0.0 1.0 0.0
8,
ELEMENTS,
VECTORS 0.0 -3.0 0.0,
0.86603 0.0 0.5 0.0 1.0 0.0
DATAEND
SET TRIADSET NODES
CLEAR
55
8 8
DATAEND

ALIGN-TRANSLATION 1 KTC1l=1E15 KTC2=1E1l5 KTC3=1El5

ENTRIES TIME OPTION

CLEAR

1.0 TBFACTOR

6.0 ALIGNED

DATAEND

*

ALIGN-ROTATION 1 KRC1=1E1l5 KRC2=2 KRC3=1El5,
KRC2TYPE=SAWTOOTH

ENTRIES TIME OPTION

CLEAR

1.0 TBFACTOR

6.0 ALIGNED

DATAEND

*

EGROUP ALIGNMENT 1 ALIGN-TRANSLATION=1,

ALIGN-ROTATION=1
ENODES
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ENTRIES EL N1 N2
CLEAR

158

DATAEND

2.12.14 Element output

The element can either output nodal point forces or alignment data
(the choice is made in the EGROUP ALIGNMENT command).

When the element outputs alignment data, two levels of output can
be selected:

Usual output: The actual (total) alignments are output. In the
notation of Section 2.12.4 to 2.12.6:

Translation: xb’b' in component form:
(xb°b'1,xb*b'c2,xb°b'3) . The postprocessing variables are
ALIGN_TRANS ACTUAL-C{123}.

Distance: D = length of vector xb’b" . The postprocessing
variable is ALIGN DIST ACTUAL.

Rotation: VB*B', transformed into an equivalent angle-axis
representation, with the axis given in the c triad system:

o (”a‘ NI ) . The angle « is output in degrees or radians,
depending upon the setting of ALIGN-ROTATION
UNITANGLE. The postprocessing variables are

ALIGN ROT ACTUAL MAGNITUDE,
ALIGN ROT ACTUAL AXIS-C{123}

Verbose output: In addition to the usual output, verbose output can
be selected.

For printing of results, verbose output is selected either using

PRINTOUT PRINTDEFAULT=STRAINS
EGROUP ALIGNMENT PRINT=DEFAULT
EDATA ... print=DEFAULT
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or

EGROUP ALIGNMENT PRINT=VERBOSE
EDATA ... print=DEFAULT

or
EDATA ... printt=VERBOSE

For saving of results, verbose output is selected using EGROUP
ALIGNMENT SAVE=VERBOSE.

Verbose output includes the usual output described above, and also
the following addtional output:

Translation:
xd'b' in component form: (xd'b'c1,xd'b'c2,xd'b':3) . The
postprocessing variables are ALIGN TRANS PRESC-
C{123}.

xb’d" in component form: (xb°d'c1,xb*d'2,xb*d'c3) The
postprocessing variables are ALIGN_ TRANS MISALIGN-
C{123}.

The alignment forces (F,,, F.,, F.;) . The postprocessing
variables are ALIGN TRANS FORCE-C{123}.

Distance:
D" . The postprocessing variable is ALIGN_DIST PRESC.

D — D" . The postprocessing variable is
ALIGN_DIST MISALIGN.

F, The postprocessing variable is ALIGN_DIST FORCE.
Rotation:

VD'B', transformed into an equivalent angle-axis
representation, with the axis given in the c triad system:
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y" (nfl, ol ) The angle »” is output in degrees or

radians, see above. The postprocessing variables are
ALIGN_ROT_PRESC _MAGNITUDE,
ALIGN_ROT_PRESC_AXIS-C{123}

VB’D', transformed into an equivalent angle-axis
representation, with the axis given in the c triad system:

a" (n”’ n,ny ) . The angle 8" is output in degrees or

el
radians, see above. The postprocessing variables are
ALIGN_ROT MISALIGN MAGNITUDE,
ALIGN_ROT MISALIGN AXIS-C{123}

The alignment moments (M, M, M ), output as a
resultant moment about an axis M (n% ,ng, ,nﬁl ) . The

postprocessing variables are
ALIGN ROT MOMENT MAGNITUDE,
ALIGN_ROT MOMENT AXIS-C{123}

2.12.15 Recommendations

1) When using the rotation alignment, it is best to define the b
triads so that they have the same orientation at alignment.

2) When using the distance alignment, the directions of the b triads,
and also the c triads, are not used.

3) When using the translation alignment, the directions of the b
triads are not used.

4) If it is necessary to keep the translational misalignment small for
all coordinate directions, then the stiffness in each translational
direction should be set to a large value. In this case the directions
of the c triads are not important and therefore the c triads can be set
to the b triads (the default).

5) If it is necessary to keep the rotational misalignment small for all
coordinate directions, then the stiffness in each rotational direction
should be set to a large value. In this case the directions of the ¢
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triads are not important and therefore the c triads can be set to the b
triads (the default).

6) Hence the directions of the c triads only become important when
the stiffnesses are different in the different coordinate directions, or
when the translational components are explicitly specified, or when
the rotation angle-axis is explicitly prescribed.

7) When defining the triadsets, it is easiest to consider the nodes in
the aligned configuration, then define the triadsets in the aligned
configuration.

8) The nonsymmetric solver can be useful when the direction of the
prescribed rotational alignment changes during the analysis.

2.13 Cohesive elements

2.13.1 General considerations

e The cohesive element is a 4-node (for 2-D) or 8-node (for 3-D)
element that can be employed to model the separation at zero-
thickness interfaces, such as laminated composites, bonded
interfaces, etc.

2.13.2 Element formulation

e The cohesive element is composed of top and bottom surfaces
with initially zero thickness. As shown in Figure 2.13-1, the 2-D
cohesive element has 4 nodes that connect 2-D 4-node solid
elements (axisymmetric, plane stress or plane strain elements). The
3-D cohesive element has 8 nodes that only connect 3-D 8-node
solid elements.

e The mid-surface of the cohesive elements is tracked by
averaging the coordinates of nodal pairs from the top and bottom
surfaces so that the effect of geometrical nonlinearity can be taken
into account.
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2-D Solid Elements

“ | 2-D Solid Elements
3 i 4
Thickness = 0| | 2-D Cohesive"-_Elemem > | il - 2
\ S \
1 B 2
y 2-D Cohesive Element

2-D Cohesive Element in ADINA  2-D Cohesive Element in AUI-PLOT

(a) 4-node 2-D cohesive element

3-D QSolid Elements

;3 AT 2 3-D Solid Elements
P o
. |-3 ------------------------ 2
Z! 1 P
? — L @ e o L
) 4 I 1
8 LA S R 6 i A4
';5) CIRS R I e 3-D Cohesive Element
A " 3-D Cohesive Element

3-D Cohesive Element in ADINA 3-D Cohesive Element in AUI-PLOT
(b) 8-node 3-D cohesive element

Figure 2.13-1: 4-node and 8-node cohesive elements

2.13.3 Constitutive law of cohesive element

e The following is a quick summary of the basic concepts used in
the constitutive law of the cohesive element. For further
information, please see the following references:

ref.  Turon, A., Camanho, P.P., Costa, J., and Davila, C.G.,
"A Damage Model for the Simulation of Delamination in
Advanced Composites under Variable-Mode Loading,"
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Mechanics of Materials, Vol. 38, No. 11, pp. 1072-1089,
2006.

ref.  Camanho, P., Davila, C., "Mixed-mode decohesion finite
elements for the simulation of delamination in composite
materials," NASA/TM-2002-211737, pp. 1-37, 2002.

ref.  Alfano, G., Crisfield, M.A., “Finite element interface
models for the delamination analysis of laminated
composites: mechanical and computational issues,”
International Journal for Numerical Methods in
Engineering, 50 (7), pp. 1701-1736, 2001.

e The cohesive element uses a bilinear constitutive law that
relates the traction, T, to the relative displacement, A, at the
element mid-surface as shown in Figure 2.13-2. Initially linear
elastic behavior followed by the initiation and evolution of damage
is assumed. After the onset of damage, the stiffnesses of the
cohesive element are gradually reduced to zero in its softening
envelope. Unloading and reloading in the softening envelope are
indicated by the arrows in Figure 2.13-2. d is a scalar damage
variable which is output as “COHESIVE_DAMAGE” in the AUL

T

A

K reloading _.-

-
-
-
-

=ak

Woading

unloading

A
-

Figure 2.13-2 Bilinear constitutive law of cohesive element

e For pure mode I, II or III loading, after the interfacial normal or
shear tractions reach their respective tensile or shear strengths, the
stiffnesses are gradually reduced to zero. The area under the curve
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is the respective (mode I, II or III) fracture toughness. The onset of
damage at the interface can be determined by comparing the
tractions with their respective allowable.

e Under mixed-mode loading, the onset of damage may occur
before any of the traction components involved reach their
respective allowable. In this case, the following criteria are
provided in ADINA to predict delamination growth under mixed-
mode loadings.

» Power law criterion
» Benzeggagh—Kenane (B-K) criterion

e The power law criterion is established in terms of a linear or
quadratic interaction between the energy release rates using

GIC GHC
where G, and G, are the mode I and mode II energy release rate;

G, and G, are the mode I and mode II fracture toughness; « is

mixed-mode interaction parameter which is usually between 1 and
2.
e With Benzeggagh—Kenane (B-K) criterion, the critical energy

release rate G is expressed as a function of the mode I and mode

II fracture toughness and a mixed-mode interaction parameter 77,

G n
Gc = GIC + (Guc - GIC )[_SJ

where G is total energy release rate under mixed-mode loading;

G; is the energy release rate for shear loading.

e The properties required to define the bilinear constitutive law
are the mode I and mode II fracture toughness (G,., G ), the

penalty stiffness ( K '), the normal and shear interfacial strengths,

ADINA R & D, Inc.
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and the mixed-mode interaction criterion and its parameter. Please
note that the same penalty stiffness is assumed for all three modes
and the shear interfacial strengths in the two orthogonal directions
are assumed to be the same.

2.13.4 Numerical integration

For the calculation of all element matrices and vectors, numerical
Newton-Cotes integration is used. As shown in Figure 2.13-3, 2x1
Newton-Cotes integration points are used for 2-D 4-node cohesive
element, and 2x2 Newton-Cotes integration points for 3-D 8-node
cohesive element.

2 & o7
N+ o
1 2

2-D cohesive element

3-D cohesive element

Figure 2.13-3: Newton-Cotes integration points layout
2.13.5 Element output
You can request that ADINA either print or save stresses/strains.

Stresses/strains: Each element outputs, at its nodal points, the
following information to the porthole file. This information is
accessible in the AUI using the given variable names.

COHESIVE NORMAL STRESS,

COHESIVE TANGENTIAL STRESS,

COHESIVE NORMAL STRAIN,

COHESIVE TANGENTIAL STRAIN, COHESIVE DAMAGE
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2.14 Connector elements

2.14.1 Overview

The connector element is a two-node generalized spring/damper
element that can undergo large rotations and translations. The
connector element calculates forces and/or moments from the
translational and/or rotational motions of its nodes relative to the
element’s undeformed state and its reference triad, each of which
can be defined by the user to suit a given modeling purpose.

Possible applications for the connector element include:

» Any modeling situation requiring a linear or nonlinear
spring/damper which can undergo large rotations with
individual properties for each degree of freedom which
convect with the element’s local coordinate system

» Modeling mechanical connections such as flexible bushings,
bearings, or sliders

» Simulations involving networks or “spiders” of linkages with
arbitrarily defined elastic and damping properties

» An inexpensive 2-node element representation of a complex
(and potentially nonsymmetric) linear or multilinear elastic
and/or damping response of a connecting structure which
can undergo large rotations

An important defining feature of the connector element is its
convecting local coordinate system such that for rigid body
motions, the relative nodal positions and orientations remain
unchanged and the element’s internal forces transform with the
rigid body motions.

Connector elements are always geometrically nonlinear. There are
three subtypes of connector elements

» Joint connector
» Matrix connector
» Multilinear matrix connector

The three connector element subtypes denote the input required.
Matrix type connector elements are always materially linear.

ADINA R & D, Inc.
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However, the joint connector subtype can either be materially
linear or nonlinear. Multilinear matrix connector elements have
stiffness and damping matrices defined as multilinear function of
relative displacement, relative velocity, elastic force, damping
force, or temperature.

Connector element properties can be scaled as a function of time.
Thus, depending on how the user defines the element’s nodal triads
and undeformed state, the connector element can generate internal
forces to resemble a prescribed load or constraint.

2.14.1.1 Joint connector elements

Joint type connector elements take as input constant stiffness
and/or damping coefficients or multilinear force-relative
displacement/velocity responses for each of six degrees of freedom.
For joint type connector elements, the user supplies the response in
terms of its generalized (local) coordinates.

2.14.1.2 Matrix connector elements

Matrix type connector elements are useful for modeling the
symmetric or nonsymmetric linear elastic and/or damping response
of an arbitrary connecting structure which can undergo large
translations and rotations. Rather than use a fully-3D model of the
structure, the user can employ the matrix type connector element to
substitute an inexpensive 2-node element with the appropriate
structural response. The response convects properly with the
element as it undergoes arbitrary motions.

The user may enter directly the stiffness and/or damping matrices
which relate the local forces and moments to the element’s
translational and rotational motions, relative the element’s local
reference coordinate system. The user must input a full 12x12
stiffness (and/or damping) matrix for the nonsymmetric case or the
upper triangular portions for the symmetric case.

Note: For a detailed demonstration of obtaining the stiffness
matrix for a structure and constructing an equivalent connector
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element model, see Primer Problems 67 and 68.

It is, in general, possible for the user to enter a stiffness matrix that
results in forces being generated under rigid body motions. This is
known as a “non-equilibrium” matrix. By default, however, the
program ignores any portion of the matrices that will cause the
element to develop forces under rigid body motions.

2.14.1.3 Multilinear matrix connector elements

Multilinear matrix type connector elements extend the capabilities
of the matrix connector and allow modeling the symmetric or
nonsymmetric multilinear elastic and/or damping response of an
arbitrary connecting structure. Rather than possessing a constant
response, a multilinear matrix connector element’s response can be
defined as a function of relative displacement, relative velocity,
elastic force, damping force, or temperature.

The user may enter directly a series of stiffness and/or damping
matrices and reference them as functions of relative displacement,
relative velocity, elastic force, damping force, or temperature.
Matrix responses are linearly interpolated between discrete entries.

As with the matrix connector element, each matrix relates the local
forces and moments to the element’s translational and rotational
motions, relative the element’s local reference coordinate system.
The user must input full 12x12 stiffness (and/or damping) matrices
for the nonsymmetric responses or the upper triangular portions for
the symmetric responses. A multilinear matrix connector element’s
response may include symmetric and nonsymmetric matrices.

2.14.1.4 Nodal triads

The connector element’s local nodes have an attached set of
orthogonal base vectors known as triads. These triads translate and
rotate with each local node and determine the nodes’ relative
positions and orientations. The user can specify the triad
orientations in a variety of ways and, in so doing, specify the initial
state of the connector element to suit a given modeling
requirement.
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2.14.1.5 Reference axes

The user can select how the connector element’s local convecting
coordinate system is defined. The reference axes can either
correspond to the axes defined by the triad at local node 1, or the
reference axes can be taken as the average of the triads at local
nodes 1 and 2. Of course, these triads and the reference systems can
rotate in space during an analysis.

2.14.1.6 Undeformed configurations

The user can select one of three different ways of defining a
connector element’s undeformed configuration. In addition to
initially placing nodes at specific locations relative to each other
and the reference axes, the user can specify that the original
configuration to be the underformed configuration, or if the
element is undeformed when its local nodes are coincident.
Additionally, the user can specify that the element be undeformed
when its nodes are at the projections of their original locations onto
the element’s local 1-direction. This ability to specify undeformed
configurations is most useful for linear joint connector elements
and matrix connector elements which always have constant
responses with zero forces generated at the undeformed
configuration.

2.14.2 Theory

2.14.2.1 Triads

Triads are sets of orthonormal base vectors. The connector element
uses triads to describe rigidly translating and rotating frames which
may then, in turn, be used to define relative motions (both
translations and rotations) and describe a coordinate system for
defining local convecting properties and forces.

Connector elements have two a-triads (one for each local node)
and a single b-triad. The user specifies a-triads at each local node
via the CONN-DEFINE TRIAD1OPT and TRIAD20OPT parameters.
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The EGROUP CONNECTOR REFERENCE parameter then controls
how the a-triads are used to determine the element’s b-triad. The b-
triad is used as the connector element’s reference system to define
the element properties and measure the relative displacements and
velocities and, ultimately, to compute the internal forces and
moments.

A-triads

Each node of the connector element has an attached triad. This triad
1s called the "a-triad,” and the coordinate axes of the a-triad are

denoted al", a2", and a3" for the n™ local node (the connector
element always has 2 nodes). This triad is an orthonormal, right-
handed coordinate system, with origin at the node. As the node
translates and rotates, the triad rigidly translates and rotates with
the node. Fig. 2.14-1 shows a 2D representation of the a-triads at
each local node.

a2?

local
node 2 al?

local
node 1 al!

Figure 2.14-1: Connector element local nodes 1 and 2 with
corresponding a-triads, in blue. In this case, both a-triads are
aligned with the global X- and Y-axes (shown in black).
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B-triad

Each connector element also has a reference triad, known as the b-
triad. The connector element’s properties are defined with respect
to the b-triad, and the relative local displacements and velocities
are measured with respect to the b-triad. The coordinate axes of the
b-triad are denoted b1, b2, and b3.

The b-triad is an orthonormal right-handed coordinate system, with
its origin either at local node 1 or midway between local nodes 1
and 2, depending on the option selected by EGROUP CONNECTOR
REFERENCE. When REFERENCE is set to AXES1, the b-triad is the
a-triad at node 1. When REFERENCE is set to AXESAVG, the
orientation of the b-triad is averaged from the a-triads at local
nodes 1 and 2, and the origin of the b-triad is midway between
local nodes 1 and 2. Fig. 2.14-2 illustrates the b-triad when
REFERENCE = AXESAVG.

al?

local all
node 1

Figure 2.14-2: Illustrative 2D example showing the orientation
of a connector element’s b-triad (in green) when REFERENCE

= AXESAVG. Note the orientation of the b-triad; it is rotated 25
degrees from the horizontal (dashed line), which is the
orientation obtained by averaging the a-triads at nodes 1 and 2.
The orientation of the b-triad depends only upon the orientations
of the a-triads — it does not depend upon the locations of local
nodes 1 and 2.
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In either case, the b-triad translates and rotates as the element’s
nodes translate and rotate in space. The relation between nodal
motions and reference axis orientation depends upon the
REFERENCE option. In all cases, the element’s properties convect
with the reference axes.

It is possible to view the triads in AUI by selecting “Display Local
System Triad” in the element depiction dialogue, or by using the
AUI command ELDEPICTION TRIAD=YES. Fig. 2.14-3 shows the
triad depictions. The b-triad is displayed separately midway
between the nodes only when REFERENCE=AXESAVG.

a3l a32
1 1 2
al at local a2 al at local
node 1 b3 node 2
b1 b2

b-triad only displayed when
REFERENCE = AXESAVG

Figure 2.14-3: Connector element triad depictions in AUI
when enabling “Display Local System Triad.”

In the following sections, the b-triad is not drawn when
REFERENCE=AXES1. This is because the b-triad is the same as the
a-triad at node 1 when REFERENCE=AXES1.
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2.14.2.2 Undeformed configurations and local displacements and
rotations

In the connector element, the undeformed configuration is defined
by the relative positions of local nodes 1 and 2 for which no
translational internal forces develop.

Consider the original state of the connector element shown in Fig.
2.14-4. That element is defined with REFERENCE = AXES1, which
means that all local displacements and rotations are measured using
the a-triad at local node 1. Local node 2 is originally located at

local coordinates (Llo, L, L?) , as measured in the b-triad

coordinate system, with the “O” superscript denoting original local

coordinates.
local
a2! node 2
local 10 .
node 1 l
all Lo\
a31

Figure 2.14-4: Original location of local node 2 with respect to
the element’s local origin when REFERENCE = AXES1. The
original location of local node 2, with respect to the reference

axes at node 1 is (LTLOLT) . This figure shows the original

configuration of the connector elements shown in Figs. 2.14-5
through 2.14-7, below.

The relationship between the local displacements of node 2 relative
tonode 1 z,, current translational coordinates /;, and undeformed

translational coordinates L, is
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where subscript i = 1, 2, 3 denotes components along the b1, b2,
and b3 directions, respectively. The connector element’s local
translational forces depend upon the local displacements z,, as

discussed in detail below.

The relationship between the original configuration and the
undeformed configuration is specified using CONN-DEFINE
UNDEFORMED. The choices are
ORIGINAL/LOCALORIGIN/B1PROJECT.

Note well that these options only refer to the element’s internal
translational degrees of freedom. Relative rotations are always
computed using the a-triads at local nodes 1 and 2 with respect to

the current reference axes. Local rotations z,, z,, and z, are the

relative rotations of node 2 with respect to node 1 about the local
b1, b2, and b3 axes, respectively.

UNDEFORMED = ORIGINAL

When UNDEFORMED = ORIGINAL, the connector element is
undeformed when its local nodes are in their original locations, as

shown in Fig. 2.14-5. That is, L, = L . Thus, the element is
undeformed (z, =0,i =1,2,3) when /, = L’ . This is the default

selection.
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position of local node 2 in
undeformed configuration

a2'
local I =[° :
node 1 - i
al! L=1g
1 5
a3 :
UNDEFORMED = ORIGINAL -

Figure 2.14-5: Important geometric quantities when
UNDEFORMED = ORIGINAL and REFERENCE = AXESI.
The location of local node 2, with respect to the reference axes at
node 1 in the element’s undeformed configuration is

(L. =L,L =L,L = L”) as shown by the open red circle. In the
element’s original configuration, the local translational
displacements z, , z,, and z,, are all zero.

UNDEFORMED = LOCALORIGIN

When UNDEFORMED = LOCALORIGIN, the connector element is
undeformed when its local nodes are coincident, as shown in Fig.
2.14-6. That is, L, =0. Thus, the element is undeformed when /,,

l,, and [, are zero. If the connector element in Fig. 2.14-6 were to
remain in its original configuration, the original coordinates L? ,
L, and L{ would be interpreted as local translational

displacements z, , z,, and z;.
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position of local node 2 in
undeformed configuration

UNDEFORMED = LOCALORIGIN

Figure 2.14-6: Important geometric quantities when
UNDEFORMED = LOCALORIGIN and REFERENCE =

AXES1. The location of local node 2, with respect to the reference
axes at node 1 in the element’s undeformed configuration is

(L. =0,L, =0,L = 0) as shown by the open red circle. In the
element’s original configuration, the quantities L? s L(z) , and L30
are interpreted as local translational displacements z, , z,, and

z, , respectively.

UNDEFORMED = B1PROJECT

When UNDEFORMED = B1PROJECT, the connector element is
undeformed when its local nodes are at the projections of their
original positions onto the local b1 axis, as shown in Fig. 2.14-7.

Thatis, L, = L, and L, and L, are zero. Thus, the element is

undeformed when /, = L and [, and [, are zero. If the connector
element in Fig. 2.14-7 were to remain in its original configuration,
the original coordinates LS and L] would be interpreted as local

translational displacements z, and z;, respectively.
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position of local node 2 in
undeformed configuration

1
local |32

node 1 L=L°

UNDEFORMED = BI1PROJECT

Figure 2.14-7: Important geometric quantities when
UNDEFORMED = B1PROJECT and REFERENCE = AXESI.
The location of local node 2, with respect to the reference axes at
node 1 in the element’s undeformed configuration is

(L1 =L,L =0,L = 0) as shown by the open red circle. In the
element’s original configuration, the quantities L) and L are

interpreted as local translational displacements z, and z,,
respectively. Recall that when REFERENCE = AXES1, the
local b1 direction corresponds to the al' direction.

2.14.2.3 Local forces and moments for joint type connector element

By default, joint connector elements compute the internal
displacements and rotations from the motions of local node 2
relative to the triad at local node 1 (REFERENCE=AXES1). Given
those local displacements z, , z,, z, and rotations z,, z,, z, of
local node 2 relative to local node 1 in the connector element’s
reference system, the conjugate force or moment corresponding to
the i degree of freedom for joint connector elements is

Fz, :fzi (Zi)+gz, (Zi)’
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where f_ (Zi) and g, (z',.) are the user-defined (linear or

nonlinear) force-displacement and force-velocity responses,
respectively.

2.14.2.4 Local forces and moments for matrix type connector element

By default, matrix and multilinear matrix connector elements
compute internal displacements and rotations by averaging the
motions of the local nodes (REFERENCE=AXESAVG). Consider the

incremental displacements Au;, Au}, Auj and rotations A6,

AG;, AG; for local node i. The relationship between the 12 nodal

displacements and rotations and the connector element’s 6 local
displacements is given by

Auy
Au)
Au,
AG) 1
A, 2
AG;
Au}
Au 1
Au 2
AG;
AG2
AG;

&

N —_

W

w

rkEEFRFE

™

where I is the 6x6 identity matrix, and Az, , Az,, Az, and Az,

Az, , Az, are the element’s local incremental displacements and

rotations, respectively. These local displacements and rotations are
also known as generalized coordinates. Thus, the conjugate force or
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moment corresponding to the i degree of freedom for matrix
connector elements is

in = Kz,»zj z,+ C’le/ z,,

where

K. . = %(KAAv — KA4B, - KB4, +KBB”> ’

Z,-Zj

and KAA, KAB, KBA, and KBB are the four 6x6 submatrices taken
from the user-defined stiffness matrix where

F'] u
F i
F iy
Mll : 911
M; KAA KAB 921
%31 = ‘;" 9_31
F u |
F; KBA i KBB u;
o |
M 6
M3 6,
| M 67 |

and where F',F,,F; and M|, M}, M, are the consistent nodal

forces and moments, respectively, at local node i.

C._ _ is computed in the same manner.
J

z;z
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2.14.2.5 Local forces and moments for multilinear matrix type
connector element

Determination of K__ from user-defined, displacement-,
i“j

velocity-, or temperature-dependent stiffness matrix K__ (z),
iZj

Kzl-zj (Z)’ or Kz,-zj (T)

When the stiffness matrices are functions of local displacements,
velocities, or temperature, the program execute a
lookup/interpolation for the stiffness matrix for the given quantity.
The stiffness matrix components are then interpolated between the
discrete, user-provided matrices.

Once the stiffness matrix 1s obtained, the elastic force vector is
obtained by using HAIF: = [er + Kz,vz, (0) . ( Aty i 'z i )

Formulas for C__ are similar to formulas for K__ , and the
i“j =]

damping forces are computed in the same way.

Determination of K__ from user-defined generalized elastic
i“j

force-dependent stiffness matrix K__ ().
iZj

In this case, the stiffness matrix is defined in terms of a scalar

K. =K _ (HA[,B ) , which is, in turn, a function of the current
=J =

A A e .
force vector "V 3 = ﬂ( S Oy ) . For example, if MATRTX-NL-K

t+At e
z;*

TYPE-ELASTIC-1 (see section 2.14.3.4), then " 3=

Thus, it is necessary for the program to implicitly determine the
stiffness matrix which satisfies

t+At yre _ tpre t+At e t+At t
Fr='Fra K, (PUF) ("2 -0z
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Formulas for C__ are similar to formulas for K__ , and the
i“j =]

damping forces are computed in the same way.

2.14.2.6 Consistent nodal point forces and moments

Consistent nodal point forces and moments are computed using the
principle of virtual work, and the virtual work due to local forces
and local displacements must equal the virtual work due to nodal
point forces/moments and nodal point displacements.

1 1 1 1 2 2 2 2
F.6z,= 2 (Fi5uj +M 00, + Fjou; + M;60; )’

j=13

where subscripts i =1,...,6 correspond to the local degrees of
freedom, and j =1,...,3 correspond to the global directions.

It is important to note that the local conjugate forces depend only
upon the local nodal displacement, rotations and the element’s local
properties. Consequently, it is possible for a connector element to
develop no local moments but to have consistent forces and
moments develop at the nodes.

2.14.2.7 Illustrative examples

To provide more concrete demonstrations of the important concepts
introduced above, we present some illustrative examples. In all the
following examples, the connector element is shown in its initial
state as defined by the user (at the top of the figure) and in a
subsequent state (center of the figure).

The connector element’s local forces are shown separately in an
inset at the bottom of each figure. Fig. 2.14-8 describes how the
local forces are shown. Consistent nodal point forces and moments
are shown schematically acting on the local nodes.
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b2
F,
5
bl
F
b3 )
: -F,,
F. F : | £
Z4 Zl :
. F F
V4 -Il [ ] Zl Z4
F., ,3/
| -
2
|~
5

Figure 2.14-8: Schema showing the local forces and
moments associated with a connector element. All forces and
moments are shown here acting in the positive direction and
are aligned with the reference axes (b-triad).

Note that although the initial state may represent a deformed state
(as for Illustrative examples 5, 6, and 7), no forces are shown for
the initial state. Also, for our purposes, it suffices to consider
purely elastic cases.

Ilustrative example 1

Joint type connector element with relative “axial” nodal
displacements without rotations.: As a simple example, consider a
connector element defined with its a-triads initially aligned as
shown in Fig. 2.14-9. The axes of each triad are parallel, and the
reference axes are defined as the a-triad at node 1
(REFERENCE=AXES1). Node 2 moves relative to node 1 in the local
I-direction. In this case, the connector element will develop an
internal force in the local 1-direction. The consistent nodal forces at
each node are shown as F.
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a2l

local
node 1

a3!

21

local forces/moments

Figure 2.14-9: Illustrative example 1. Joint type connector element with
REFERENCE=AXES1 and local node 2 undergoing a translation z, in the

local b1 direction. This element will generate a conjugate local force le ,

as shown. If this element were to undergo rigid-body motions, the local
force would remain unchanged.
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lustrative example 2

Joint type connector element with relative “transverse” nodal
displacements without rotations: As a simple example, consider a
connector element defined with its a-triads initially aligned as
shown in Fig. 2.14-10. The axes of each triad are parallel, and the
reference axes are defined as the a-triad at node 1
(REFERENCE=AXES1). Node 2 moves relative to node 1 in the local
negative 2-direction, and the nodes do not undergo any relative
rotations. In this case, the connector element will develop an
internal force in the local 2-direction. The consistent nodal forces
and moments at each node are shown as F and M. Note that
although the connector element develops no internal moments,
consistent nodal point moments will arise to satisfy moment
equilibrium.
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Figure 2.14-10: Illustrative example 2. Joint type connector
element with REFERENCE=AXES1 and local node 2

undergoing a negative displacement z, . This element will

generate a conjugate local force FZ2 , as shown.

It may surprise the reader to see that a consistent nodal moment M
arises at local node 1 but no consistent nodal force moment arises
at local node 2. To understand why this occurs, it is important to
recall the principle of virtual work and consider variations in
displacements about the element’s final state.

412 ADINA Structures — Theory and Modeling Guide



2.14: Connector elements

Here, we can consider the principle of virtual work for planar
motions
1 1 1 1 1 1
F 6z, = F éu, + F,ou, + M;60; +
F’ou} + Fous + M:66;

Setting each nodal point variation nonzero in sequence reveals the
corresponding nodal point force or moment. For example, by

setting 56, # 0 only, we obtain the equation F 6z,=M 100;
and what remains is to determine how &6, affects 5z, in the final
configuration. Fig. 2.14-11 conceptualizes how variations in 931

affect variations in z, .

a2l

a3l local
node 1

Figure 2.14-11: Conceptualization of how variations in 1931 affect

variations in z, about the connector element’s final

configuration. Due to how the generalized coordinates are defined
for connector elements when REFERENCE=AXES], it is clear

that 8z, = 1,66,.
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Setting 66; # 0 only, we now obtain the equation
F 6z,=M 260; . Fig. 2.14-12 conceptualizes how variations in

932 affect variations in z, about the connector element’s final

configuration.
a2l
h
a3l local
node 1

Figure 2.14-12: Conceptualization of how variations in (932 affect

variations in z, about the connector element’s final configuration.
Due to how the generalized coordinates are defined for connector
elements when REFERENCE=AXES1, 5(932 never affects 0z, ,

Due to the way in which the connector element is defined when
REFERENCE=AXES1, variations in 6’31 will have an effect on

variations in z, , but variations in &; will not have an effect on

variations in z, . Thus, there can be no consistent nodal moment

acting on local node 2 when the connector element is in the final
configuration shown in Fig. 2.14-10.
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Ilustrative example 3

Joint type connector element with local node 2 undergoing
rotations relative to local node 1: Consider the case of a connector
element with node 2 undergoing a rotation relative to node 1, but
no translations with respect to the local coordinate system. The
reference axes are defined as the a-triad at node 1
(REFERENCE=AXES1). This element will generate an internal
moment, as shown in Fig. 2.14-13. The consistent nodal moments
at each node are shown as M.
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Figure 2.14-13: Illustrative example 2. Joint type connector
element with REFERENCE=AXES1 and stiffness associated with
rotational degrees of freedom. As node 2 rotates, the element

generates a local moment £, , as shown. The consistent nodal

moments are shown as M.
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Ilustrative example 4

Joint type connector element with local node 1 undergoing a
rotation with local node 2 fixed in the global system: As a
converse of Illustrative example 3, consider now the case of a
connector element with node 1 undergoing a rotation relative to
node 2, and with no translations with respect to the global system.
The reference axes are defined as the a-triad at node 1
(REFERENCE=AXES1). This element will generate a negative
internal moment (due to local node 2’s negative rotation relative to

the local system z, = —6), but it will also generate internal
translational forces, as shown in Fig. 2.14-14. This is because as

local node 1 rotates, the reference axes rotate with it, and so local
node 2’s coordinates relative to the local reference system are

z, <0 andz, < 0. The consistent nodal forces and moments at

each node are shown as F, M|, and M,, where M, # M, .
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Fz
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Figure 2.14-14: Illustrative example 4. Joint type connector
element with REFERENCE=AXES1 with local node 1 undergoing
a rotation and with local node 2 fixed in the global system. As
local node 1 rotates, the reference axes also rotate. Thus, local
node 2 rotates and translates with respect to the local reference

system. Note also that node 2 undergoes a rotation of z, = —6

with respect to the local reference system.

Comparing Illustrative examples 3 and 4 demonstrates an inherent
asymmetry of REFERENCE=AXES1. Thus, care must be taken when
considering local node numbering when creating connector
elements using this option.
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Ilustrative example 5

Joint type connector element with UNDEFORMED=LOCALORIGIN
with nodes undergoing relative translations and rotations: Recall
that the option UNDEFORMED=LOCALORIGIN sets all undeformed
local displacements to zero. If a connector element with this option
is defined with its nodes initially separated by some distance, and if
the element’s local properties resist translational motions, then the
element will generate internal forces tending to bring the local
nodes together. Furthermore, if the element’s local properties also
resist rotational motions, then the element will generate internal
moments tending to align the local a-triads. Fig. 2.14-15 shows that
as local node 1 rotates, the reference axes rotate with it, and so
local node 2’s coordinates relative to the local reference system are
zZ,, z,,and z, = —@ giving rise to corresponding conjugate local

forces. In fact, any relative motions between nodes 1 and 2 will
generate local forces. The consistent nodal forces and moments at
each node are shown as F, and M , respectively.
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~F

“6

Figure 2.14-15: Illustrative example 5. Joint type connector element
with REFERENCE=AXES1 and UNDEFORMED=LOCALORIGIN
with local node 1 undergoing a rotation and with local node 2 fixed
in the global system. As local node 1 rotates, the reference axes also
rotate. Due to the selected undeformed configuration, local node 2

has motions z, >0, and z, <0 and rotates by z, = —6 with

respect to the local reference system.
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Ilustrative example 6

Joint type connector element with UNDEFORMED=LOCALORIGIN
with nodes undergoing relative translations and rotations but no
resistance to rotations about local 3-direction: This example is
similar to Illustrative example 5. However, the local rotational
stiffness about the 3-direction is always zero. Thus, the element

does not generate a local moment for any z, . Fig. 2.14-16 shows

that as local node 1 rotates, the reference axes rotate with it, and so
local node 2 undergoes translational displacements z, and z,
relative to the local reference system, giving rise to corresponding
conjugate local translational forces. Although node 2 rotates by

z, =—0 relative to node 1, no local moment is generated. If the
element has stiffnesses associated with the other rotational degrees
of freedom, then the element will generate local moments to
maintain the nodal 3-directions aligned (but permit rotation about
the local 3-direction). The consistent nodal forces and at each node
are shown as F. Note that for this element, no consistent nodal

point moments are generated when f, (O) =1 (0) =0.
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Figure 2.14-16: Illustrative example 6. Joint type connector
element with REFERENCE=AXES1 and
UNDEFORMED=LOCALORIGIN with local node 1 undergoing a
rotation and with local node 2 fixed in the global system. As
local node 1 rotates, the reference axes also rotate. Due to the
selected undeformed configuration, local node 2 has motions

z,>0,and z, <0 and rotates by z, =—6 with respect to the
local reference system. This element does not resist rotations

about the local 3-direction, and thus no local moment (or
consistent nodal moments) is generated.

422 ADINA Structures — Theory and Modeling Guide



2.14: Connector elements

Ilustrative example 7

Joint type connector element with UNDEFORMED=B1 PROJECT with
local node 2 undergoing relative translations: Consider the
element shown in Fig. 2.14-17 with UNDEFORMED=B1PROJECT.
The element undergoes no local rotations and is assumed to have
nonzero stiffnesses associated with all local translations such that

le ( 0) = fz2 (0) = fz3 (0) =0 . Recall that with this undeformed

option, the element is undeformed when /, = L and [, and [, are
zero (see Fig. 2.14-7). Thus, the element shown in Fig. 2.14-17
undergoes local displacements z, and z;, generating corresponding

local conjugate forces. The consistent nodal forces and at each
node are shown as F and the consistent nodal moment is M.
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a2l

local
node 1

Figure 2.14-17: Illustrative example 7. Joint type connector
element with REFERENCE=AXES1 and
UNDEFORMED=B1PROJECT with local node 2 undergoing
relative translations in the local 2 and 3 directions. Note that the

translation z, is measured with respect to the projection of node

2’s original location onto the b1 axis, and likewise for z,.
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Ilustrative example 8

Connector element with REFERENCE=AXESAVG with node 1
undergoing a rotation and node 2 fixed in the global system:
Consider the case of a connector element with
REFERENCE=AXESAVG. As with Illustrative example 4, this
element will generate a negative internal moment (due to local

node 2’s negative rotation relative to the local system z, =—0). It

will also generate internal translational forces, as shown in Fig.
2.14-18. Note, however, that in contrast to [llustrative example 4,
the local displacements are calculated with respect to the averaged
b-triad (shown in green), which is not oriented in the same
direction as the a-triad at node 1. The consistent nodal forces and

moments at each node are shown as F, M, and M, where
M, #M,.

The asymmetry demonstrated by comparing [llustrative examples 3
and 4 (with REFERENCE=AXES1) is not present when
REFERENCE=AXESAVG. This is because when REFERENCE=AXES1,
the orientation of the reference axes depends only upon the
orientation of local node 1 and not local node 2, but when
REFERENCE=AXESAVG, the orientation of the reference axes
depends upon the orientations of local nodes 1 and 2.
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Figure 2.14-18: Illustrative example 8. Connector element with
REFERENCE=AXESAVG. In this case, the moment generated is
proportional to the angle 0. The distance between the nodes has
increased, and the reference axes have rotated. Thus, translations
forces develop in the element’s 1- and 2-directions, as shown.
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It may surprise the reader to see that the consistent nodal moments
M, # M, . Recalling the principle of virtual work for planar
motions

F, 6z, = F, 0u, + Fy6u, + M;66; +
F’Su} + F Sus + M 56; '

By setting 66 # 0 only, we obtain the equation F 6z,=M 100,

and Fig. 2.14-19 conceptualizes how &6} affects 5z, in the final
configuration.

Figure 2.14-19: Conceptualization of how variations in 6?31 affect
variations in z, about the connector element’s final configuration. In

this case, it is clear that 6z, = —51931 .

Setting 5932 # 0 only, we now obtain the equation

F, 6z = M;60; . See Fig. 2.14-20.
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003 =0z

a3!

Figure 2.14-20: Conceptualization of how variations in 932 affect
variations in z, about the connector element’s final

configuration. In this case, it is clear that 5z, = 56; .

By comparing Figs. 2.14-19 and 2.14-20, it can be seen that
variations in @, will have a different effect on variations in z, than

will 0932 . Thus, we should expect different consistent nodal

moments at local nodes 1 and 2.

2.14.3 Modeling
2.14.3.1 Specification of element groups properties

The EGROUP CONNECTOR command is used to define the basic
characteristics of a connector element group. For example, this
command specifies the element subtype (JOINT, MATRIX, or
MATRIX-MULTILINEAR), printing and saving options, the default
time of element death, the connector element property set number,
and the time function label used for scaling the element group’s
properties. EGROUP CONNECTOR also specifies the reference axis
system options (AXES1 or AXESAVG).

The reference axes are specified at the element group level using
EGROUP CONNECTOR REFERENCE. The default option for JOINT
elements is to have the reference axes translate and rotate with local
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node 1 (axXES1). Because the reference axes system (i.e., the
element’s local datum) can be specified to move with local node 1
(but not local node 2), this option will result in the connector
element behaving asymmetrically. Thus, two elements differing
only in the order of the local nodes will in general give different
results, as can be seen by comparing Illustrative examples 3 and 4
above.

The default option for MATRIX and MATRIX-MULTILINEAR
elements is for the reference axes to be the average (AXESAVG) of
the a-triads at local nodes 1 and 2.

Connector element properties can be scaled as a function of time
using EGROUP TIMEFUNCTION. Thus, the connector element can
generate internal forces to resemble a prescribed load or constraint.

2.14.3.2 Specification of joint type properties

The cONN-PROP JOINT command allows the user to specify if the
joint type connector element is to be of TYPE option LINEAR or
NONLINEAR.

When defining a materially linear joint property set using CONN-
PROP JOINT TYPE=LINEAR, the individual joint stiffness and
damping coefficients for each degree of freedom are input directly
using K1, ..., K6 and C1, ..., C6, respectively.

When defining a materially nonlinear joint property set using
CONN-PROP JOINT TYPE=NONLINEAR, labels for the individual
multilinear joint stiffness and damping reponses for each degree of
freedom are specified using XNL1, ..., KNL6 and CNL1, ..., CNL®,
respectively.

In both cases, the numerals correspond to local degrees of freedom,
as follow

DOF 1 = relative displacement z, (or velocity z, ) in local 1
direction
DOF 2 = relative displacement z, (or velocity z, ) in local 2
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direction

DOF 3 = relative displacement z, (or velocity z, ) in local 3
direction

DOF 4 = relative rotation z, (or angular velocity z, ) about local
1 direction

DOF 5 = relative rotation z; (or angular velocity z; ) about local
2 direction

DOF 6 = relative rotation z, (or angular velocity Z, ) about local

3 direction

Properties relating to rotational stiffness or damping behavior are
defined with respect to UNITANGLE, which may either be RADIANS
or DEGREES.

Multilinear approximations to nonlinear behavior are defined using
the commands JOINT-NL-K (for defining forces or moments vs
displacements or rotations) and JOINT-NL-C (forces or moments
vs translational or angular velocities).

These commands have identical syntaxes, so it suffices to discuss
one command. The following examples show force-displacement
definitions, but the same concepts apply for moment-rotation,
force-velocity, and moment-velocity definitions. When specifying
KNL4-KNL6 and/or CNL4-CNL6 in CONN-PROP JOINT, the angles
or angular velocities are interpreted consistently with UNITANGLE.
The program linearly interpolates the response between user-
defined data points.

When the JOINT-NL-K SYMMETRY=YES option is used, the user
must specify only the force-displacement behavior for positive
displacements. The program will automatically construct a
symmetric multilinear relation for negative displacements. In this
case, the curves must pass through the origin. See Fig. 2.14-21.
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Figure 2.14-21: Illustration of a multilinear force-displacement
definition as interpreted by the program when SYMMETRY=YES.
User-supplied input for non-negative displacements is shown by
red circles, and the response between each point is linearly
interpolated (linear blue segments). The symmetric response for
negative displacements (which is automatically assumed by the
program when SYMMETRY=YES) is denoted by the linear green
segments.

Setting SYMMETRY=NO allows the user to specify nonsymmetric
behavior, which need not pass through the origin. See Fig. 2.14-22.
By defining responses which do not pass through their origins, it is
possible to create connector elements with arbitrary undeformed
states for each degree of freedom separately.
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Figure 2.14-22: Illustration of a multilinear force-displacement
definition entered with SYMMETRY=NO. Note that the defined
response need not pass through the origin. This “offset” can be
used to effectively define arbitrary undeformed configurations for
each separate degree of freedom.

The user can specify the desired behavior when the element
undergoes motions beyond its defined force-displacement
definitions using the LIMITS option. By default,
LIMITS=EXTRAPOLATE will simply extrapolate the stiffness
defined by the 2 data points defined by the user nearest the limit.
See Fig. 2.14-23.
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Figure 2.14-23: [llustration of how user-defined data (red circles)
is extrapolated when LIMITS=EXTRAPOLATE. The response
beyond the user-defined limits (green lines) is extrapolated by the
stiffness defined by the 2 data points nearest each limit. As
illustrated by this nonsymmetric example, the extrapolated
responses beyond the limits need not be of equal slope.

Setting LIMITS=BACKSTOP the will result in the stiffness behavior
(that is, the slope of the force-displacement curve) beyond the user-
defined limits to be set to the damping coefficient at the defined
limit scaled by BACKFAC. See Fig. 2.14-24.
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Figure 2.14-24: Illustration of how the program computes
force-displacement response when LIMITS=BACKSTOP and
BACKFAC=4. 0 (relatively small factor selected for ease of
viewing). The stiffness k; (at the leftmost end of the defined
response) is scaled by BACKFAC and extended beyond the
leftmost data point. Similarly, the stiffness k; (at the rightmost
end of the defined response) is scaled by BACKFAC and
extended beyond the rightmost data point. In practice, large
values of BACKFAC can be used to effectively model a firm
backstop.

Note that, by default, BACKFAC is 1.0E10, which may be too large
for some problems and prevent convergence when the displacement
exceeds the defined limits. If this occurs, define BACKFAC such that
the backstop effect is sufficiently stiff for the purposes of the model
but not excessively stiff that it prevents convergence.

2.14.3.3 Specification of matrix type properties

The CONN-PROP MATRIX command allows the user to specify
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properties for MATRIX connector elements. The user must specify
the type(s) of matrices being input and if the matrices are
symmetric or nonsymmetric.

Properties relating to rotational stiffness or damping behavior are
defined with respect to radians only.

CONN-PROP MATRIX TYPE specifies if the STIFFNESS matrix,
the DAMPING matrix, or if BOTH matrices are being entered. Matrix
symmetry is specified using CONN-PROP MATRIX
SYMMETRIC={YES/NO}. The following is a demonstration of how
a symmetric stiffness matrix can be input:

CONN-PROP MATRIX NAME=1 TYPE=STIFFNESS

1 1.11.21.31.41.51.61.71.81.9 1.10 1.11 1.12
2 0.02.22.32.42.52.62.72.82.9 2.10 2.11 2.12
3 0.00.03.33.43.53.63.73.83.9 3.10 3.11 3.12
4 0.0 0.0 0.0 4.4 4.54.6 4.7 4.8 4.9 4.10 4.11 4.12
5 0.0 0.0 0.0 0.0 5.55.65.75.85.9 5.10 5.11 5.12
6 0.0 0.00.00.00.0¢6.66.76.86.9 6.10 6.11 6.12
7 0.0 0.0 0.00.00.00.07.77.87.9 7.10 7.11 7.12
8 0.0 0.0 0.00.00.00.00.08.88.9 8.10 8.11 8.12
9 0.00.00.00.00.00.00.00.09.9 9.10 9.11 9.12
10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.10 10.11 10.12
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.11 11.12
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.12

The floating point entries are in row.column format for clarity.
Note that by default, CONN-PROP MATRIX SYMMETRIC=YES, and
so in this case, the lower triangular portion of the matrix (entered as
zeroes) is ignored. Also note the first column of integers 1. .12
designating the i input row. For cases where TYPE=BOTH, this first
column will run from 1. .24 (12 rows each for the stiffness and
damping matrices). A matrix property set so defined can then be
referenced using:

EGROUP CONNECTOR SUBTYPE=MATRIX CONN-PROP=1
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The degrees of freedom for the user-defined 12x12 matrices are:

1-3 = displacements of local node 1
4-6 = rotations of local node 1

7-9 = displacements of local node 2
10-12 = rotations of local node 2

So, for example, the lower right 6x6 submatrix can be interpreted
as defining the response of local node 2 when node 1 is fixed.

2.14.3.4 Specification of multilinear matrix type properties

The CONN-PROP MATRIX-MULTILINEAR command allows the
user to specify properties for MATRIX-MULTILINEAR connector
elements. The user must specify the nonlinear stiffness and/or
damping matrix definitions being used via the CONN-PROP
MULTI-MATRIX KNL and CNL parameters.

The multilinear behaviors are defined using the MATRIX-NL-K and
MATRIX-NL-C commands. Each nonlinear stiffness (or damping)
definition includes parameters specifying the TYPE of nonlinear
response (that is, if the response depends upon the relative
displacements, velocities, local elastic or damping force, or
temperature), if the nonlinear behavior is or is not SYMMETRIC, and
the behavior beyond the LIMITS of the multilinear response
(extrapolated or if the last matrix is extended).

The stiffness and damping matrices to be referenced are defined
using commands MATRIX-K and MATRIX-C, respectively. Note
that these commands have their own SYMMETRIC parameters,
which specify if the matrix is or is not symmetric. This is not the
same as the SYMMETRIC parameters used in the MATRIX-NL-K and
MATRIX-NL-C commands which specify the symmetry of the
multilinear response. Each command takes as input either the full
12x12 matrix (when SYMMETRIC=NO) or the upper triangular
portion when SYMMETRIC=YES. When SYMMETRIC=YES, the lower
triangular portion of the matrix is ignored. The following input
defines a symmetric damping matrix for use in a multilinear matrix
connector element:

436

ADINA Structures — Theory and Modeling Guide



2.14: Connector elements

=
b
3
el
i
n
@]
2
o
=
i
—

1 1.11.21.31.41.51.61.71.81.9 1.10 1.11 1.12
2 0.02.22.32.42.52.62.72.82.9 2.10 2.11 2.12
3 0.00.03.33.43.53.63.73.83.9 3.10 3.11 3.12
4 0.0 0.0 0.0 4.4 4.54.6 4.7 4.8 4.9 4.10 4.11 4.12
5 0.0 0.0 0.0 0.0 5.5 5.6 5.75.85.9 5.10 5.11 5.12
6 0.0 0.00.00.00.0¢6.66.76.86.9 6.10 6.11 6.12
7 0.0 0.0 0.00.00.00.07.77.87.9 7.10 7.11 7.12
8 0.0 0.0 0.00.00.00.00.08.88.9 8.10 8.11 8.12
9 0.00.00.00.00.00.00.00.09.9 9.10 9.11 09.12
10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.10 10.11 10.12
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.11 11.12
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.12

The floating point entries are in row.column format for clarity.
Note that by default, MATRIX-K and MATRIX-C SYMMETRIC=YES,
and so in this case, the lower triangular portion of the damping
matrix (entered as zeroes) is ignored. Also note the first column of
integers 1. .12 designating the i" input row.

Once the stiffness and/or damping matrices have been input, it is a
simple matter to define the multilinear behavior using MATRIX-
NL-K and MATRIX-NL-C. For example, the following nonlinear
stiffness matrix definition is a function of the element’s local 1-
displacement and specifies a symmetric response which is
extrapolated beyond the defined limit of 0.25. The command
references 3 stiffness matrices defined by MATRIX-K NAME=1,
MATRIX-K NAME=2, and MATRIX-K NAME=3.

MATRIX-NL-K 1 TYPE=DISP-1 SYMMETRIC=YES
LIMITS=EXTRAPOLATE

0.00 1

0.12 2

0.25 3

This multilinear stiffness matrix response can be referenced by a
connector element property set using

CONN-PROP MATRIX-MULTILINEAR KNL=1

Finally, the multilinear matrix connector element property set so
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defined can then be referenced using

EGROUP CONNECTOR SUBTYPE=MATRIX-MULTILINEAR CONN-
PROP=1

2.14.3.5 Specification of element local node triads

As outlined above, the connector element’s triad definition consists
of three parts, each of which must be specified by the user:

Specification of the a-triad at local node 1

The user can select one of several TRIAD1OPT options in the
CONN-DEFINE command. The choices are:

GLOBAL/AXES/AUXPT/AUXNODE/ORIENTATION/AXIAL

GLOBAL: The a-triad at local node 1 is parallel to the global
coordinate axes. That is, the al, a2 and a3 directions at local
node 1 correspond to the global X-, Y-, and Z- directions,
respectively. Fig. 2.14-1 shows the case of
TRIAD1OPT=GLOBAL.

axES: The a-triad at local node 1 is defined directly using axes
defined by the AXxES command. When TRIAD10OPT=AXES, the
label defining the axes is specified using the AXES1 option.

AUXPT: The al direction at node 1 is parallel to the vector from
local node 1 to local node 2, and the a2 direction lies in the
plane defined by the two nodes and the geometry point label
defined by AuxPT1. Direction a3 is orthogonal.

AUXNODE: The al direction at node 1 is parallel to the vector
from local node 1 to local node 2, and the a2 direction lies in
the plane defined by the two nodes and the node label defined
by AUXNODE1. Direction a3 is orthogonal.

ORIENTATION: The al direction at node 1 is parallel to the
vector from local node 1 to local node 2, and the a2 direction
lies in the plane defined by the two nodes and an orientation
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vector. Direction a3 is orthogonal. x01, Y01, and zO1 must also
be specified to define the components of the orientation vector
with respect to the coordinate system defined by 01SYSTEM.
The resulting orientation vector is parallel to that vector which
originates at 01SYSTEM’s origin and terminates at (x01, YO1,
z01). See Fig. 2.14-25.

(X01, X02, X03)

OISYSTEM

al! local
node 2

local
node 1

Figure 2.14-25: When using TRIAD1OPT=0ORIENTATION,
the al direction at node 1 is oriented in the direction from
node 1 to node 2, but the a2 direction is defined using an
orientation vector. The orientation vector (shown in red) is
parallel to the vector defined by coordinates (XO1, XO02,
X03), which is defined in the system O1SYSTEM. Direction
a2 lies in the plane defined by local nodes 1 and 2 and the
orientation vector (plane shown in gray). The a3 direction is
orthogonal.
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AXIAL: The al direction at node 1 is parallel to the vector from
local node 1 to local node 2, and the a2 direction is arbitrary.
Direction a3 is orthogonal. See Fig. 2.14-26.

21
a local
node 2
1
local al
node 1
a3!

Figure 2.14-26: When using TRIAD1OPT=AXIAL, the al
direction at node 1 is oriented in the direction from node 1 to
node 2, but the a2 direction is arbitrary. The a3 direction is
orthogonal. Thus, the a2 and a3 directions lie in the plane
normal to direction al (depicted in gray).

Specification of the a-triad at local node 2

The a-triad at local node 2 can be specified using TRIAD20PT in
the same ways as for node 1, but an additional option is available:
setting TRIAD20PT=TRIADI (the default) uses the same directions
of the a-triad defined at local node 1 and places its origin at local
node 2.

Specification of the b-triad
The definition for the b-triad (the element’s reference system) is

specified at the element group level using the EGROUP CONNECTOR
REFERENCE option. The choices are:
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axES1: The element’s reference system coincides with the a-
triad at node 1. This reference system will move with node 1 as
it translates and rotates in space. This is the default option for
joint type connector elements.

AXESAVG: The orientations of the element’s reference system
are averaged from the orientations of the a-triads at local nodes
1 and 2. The b-triad is located midway between the connector
element’s nodes. The reference system moves and rotates as the
element’s nodes translate and rotate in space. Fig. 2.14-2 shows
how this averaging occurs in 2D. This is the default option for
matrix type connector elements.

2.14.3.6 Specification of connector element sets

Connector element sets are generated using the CONN-DEFINE
command. A single element or a “spider” of multiple connector
elements can be generated within a connector element set in a
variety of ways. For example, connector element sets can be
defined using existing points, nodes, nodesets, lines, faces, bodies,
etc. For more information about generating connector element
spiders, see the Command Reference Manual entry for CONN-
DEFINE.

Triad definitions at local nodes 1 and 2 are also set using CONN-
DEFINE using TRIAD1OPT and TRIAD20OPT, respectively, along
with the associated options. See section 2.14.3.5 for detailed
information about the various triad options. Note, however, that the
element’s reference axes are specified at the element group level
using EGROUP CONNECTOR REFERENCE.

2.14.3.7 Connector element output

The connector element can output consistent nodal point forces
and/or local relative displacements (and velocities, when damping
behavior is defined in dynamic problems) and local conjugate
forces. The selection is made in the EGROUP CONNECTOR
RESULTS = {LOCAL/FORCE/ALL} parameter.
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Printing of local connector element results to the . out file requires
that PRINTOUT OUTPUT = ALL.

Local results output

When a connector element outputs local data, the conjugate
quantities are individually output for each degree of freedom
relative to the element’s current (convecting) reference axes.

In static problems or dynamic problems for which the element has
no damping behavior defined, only the relative displacements and
rotations and their conjugate elastic forces are output.

In dynamic problems for which the element has damping behavior
defined, the relative displacements and velocities are output, along
with the corresponding conjugate elastic and damping forces.

The postprocessing variables for the local element results are

CONNECTOR REL DISPLACEMENT-{123456}
CONNECTOR _ELASTIC FORCE-{123456}
CONNECTOR REL VELOCITY-{123456}
CONNECTOR DAMPING FORCE-{123456}
CONNECTOR_TOTAL FORCE-{123456}

Where the numerals correspond to local degrees of freedom
(DOF), as follow:

DOF 1 = relative displacement z, (or velocity z, ) in local 1
direction

DOF 2 = relative displacement z, (or velocity z, ) in local 2
direction

DOF 3 = relative displacement z, (or velocity Z, ) in local 3
direction

DOF 4 = relative rotation z, (or angular velocity z, ) about local
1 direction

DOF 5 = relative rotation z; (or angular velocity z ) about local
2 direction
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DOF 6 = relative rotation z, (or angular velocity z, ) about local

3 direction

If a joint type element has DOFs with no corresponding user-
defined property sets, then no local element results are saved or
printed for those DOFs.

For matrix elements, if the user defines only a stiffness matrix, then
only relative displacements and conjugate elastic forces are saved
or printed. In the user defines only a damping matrix, then only
relative velocities and conjugate damping forces are saved or
printed.

Force results output

When a connector element outputs force data, the consistent nodal
point forces are output for each of the element’s local nodes. The
consistent nodal forces are output in terms of the coordinate system
used by the node (i.e., the global system or an attached skew
system).

All results output

The connector element can output consistent nodal point forces and
the local results by setting EGROUP CONNECTOR RESULTS=ALL.

Multilinear matrix elements

Multilinear matrix connector elements output additional
information for postprocessing. If a multilinear matrix connector
element has an associated elastic response, then the

CONNECTOR STIFFNESS KEY TYPE and

CONNECTOR STIFFNESS KEY VALUE variables are available for
postprocessing. Similarly, if a multilinear matrix connector element
has an associated damping response, then the

CONNECTOR DAMPING KEY TYPE and

CONNECTOR DAMPING KEY VALUE variables are available for
postprocessing.

ADINA R & D, Inc. 443



Chapter 2: Elements

CONNECTOR STIFFNESS KEY TYPE and
CONNECTORfDAMPINGiKEYiTYPECOHBSpOHdtOtheMATRIX—NL—
K and MATRIX-NL-C TYPE parameters specified at input.

The possible types are as follow:

TEMPERATURE

(temperature)
DISP-{TMAG/RMAG} ; DISP-{123456}

(displacements)
VEL- {TMAG/RMAG} ; VEL-{123456} (velocities)
ELASTIC-{TMAG/RMAG}; ELASTIC-{123456} (elastic
forces)
DAMP- { TMAG/RMAG} ; DAMP-{123456} (damping
forces)

Where the numerals correspond to local degrees of freedom (DOF),
as before, and TMAG and RMAG correspond to the translational and
rotational magnitudes, respectively.

CONNECTOR_STIFFNESS KEY VALUE and

CONNECTOR DAMPING KEY VALUE are the numerical values
corresponding to CONNECTOR_STIFFNESS KEY TYPE and
CONNECTOR DAMPING KEY TYPE, respectively.

2.14.3.8 Modeling examples

The following section contains several input examples for single
elements and includes a brief description of the resulting element
and its behavior under certain conditions. This is meant to provide
additional insight into how the connector element functions, in
practice.

For simplicity, the examples are purely elastic (do not include
damping effects), but they will readily generalize to include
damping by setting the appropriate damping properties and time
integration methods. The reader can examine the following
examples by opening the AUI and generating points 1 and 2 some

444 ADINA Structures — Theory and Modeling Guide



2.14: Connector elements

distance apart and then pasting the commands into the command
window. To view the connector element’s triads, enter the
following commands after generating the element:

ELDEPICTION TRIAD=YES
MESHPLOT

Modeling example 1: Bushing

A joint type connector element is defined with stiffnesses for each
translational and rotational degree of freedom. Local nodes 1 and 2
will be located at points 1 and 2, respectively, though these points
may or may not be originally coincident. By default, the triads at
each local node will be aligned with the global coordinate system,
and the element’s reference axes will correspond to the a-triad at
local node 1. By using the UNDEFORMED=LOCALORIGIN option,
the element is undeformed when its nodes are coincident — see Fig.
2.14-6. Consequently, this element will generate local forces to
maintain its local nodes coincident and moments to maintain the a-
triads at local nodes 1 and 2 aligned. This can be used to effectively
model a flexible bushing joint. For more information, see
lustrative example 5.

CONN-PROP JOINT NAME=1 K1=12.0 K2=11.0 K3=11.0,
K4=57.0 K5=59.0 K6=57.0

*

EGROUP CONNECTOR NAME=1 SUBTYPE=JOINT CONN-PROP=1
*
CONN-DEFINE NAME=1 GROUP=1 SIDEITYPE=POINT
SIDEINAME=1,
SIDE2TYPE=POINT UNDEFORMED=LOCALORIGIN
CLEAR
20
DATAEND

Modeling example 2: Bearing

In this example, a joint type connector element is defined with

stiffnesses for each translational degree of freedom, but for only 2
rotational degrees of freedom. Local nodes 1 and 2 will be located
at points 1 and 2, respectively, and these points may or may not be
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originally coincident. By default, the triads at each local node will
be aligned with the global coordinate system, and the element’s
reference axes will correspond to the a-triad at local node 1. By
using the UNDEFORMED=LOCALORIGIN option, the element is
undeformed when its nodes are coincident — see Fig. 2.14-6.
Consequently, this element will generate local forces to maintain its
local nodes coincident and moments to maintain the nodal 3-
directions aligned but not resist rotations about the local 3-
direction, because K6=0. 0. As a result, this element can be used to
effectively model a frictionless bearing with its axis of rotation
aligned in the local 3-direction. For more information, see
[lustrative example 6.

CONN-PROP JOINT NAME=1] K1l=1.0e3 K2=1.0e3
K3=1.0e3,

K4=1.0e3 K5=1.0e3 K6=0.0

*

EGROUP CONNECTOR NAME=1 SUBTYPE=JOINT CONN-PROP=1
*
CONN-DEFINE NAME=1 GROUP=1 SIDE1TYPE=POINT
SIDEINAME=1,
SIDE2TYPE=POINT UNDEFORMED=LOCALORIGIN
CLEAR
20
DATAEND

Modeling example 3: Slider

This example demonstrates how to use the undeformed option so
that the connector element generates forces that allow node 2 to
“slide” freely along the direction parallel to the b2 direction. The
UNDEFORMED=B1PROJECT option (see Fig. 2.14-7) will set the

undeformed configuration (L1 =17,L,=0,L, = 0) , but because
K2=0.0, the element will not generate a local force F, when

z, # 0. For more information, see Illustrative example 7.

CONN-PROP JOINT NAME=1] K1l=1.0ed4 K2=0.0 K3=1.0e4,
K4=12.0 K5=11.0 K6=12.0

*

EGROUP CONNECTOR NAME=1 SUBTYPE=JOINT CONN-PROP=1

*

CONN-DEFINE NAME=1 GROUP=1 SIDEITYPE=POINT
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SIDE1INAME=1,
SIDE2TYPE=POINT UNDEFORMED=B1PROJECT
CLEAR
20
DATAEND

Modeling example 4: Convecting matrix element

Before showing a modeling example using a matrix type connector
element, it is worth discussing the procedure for obtaining the
required matrices. Below, we see how to obtain the 12x12 matrix
required for modeling the stiffness response of a general
connecting structure. The process for obtaining a damping matrix is
similar but requires that the user prescribe a sequence of nodal
velocities rather than nodal displacements.

Note: For a detailed demonstration of obtaining the stiffness
matrix for a structure and constructing an equivalent connector
element model, see Primer Problems 67 and 68.

To obtain the 12x12 stiffness matrix for a matrix type connector
element, the user must already have a 3D model for the connecting
structure of interest. The user must then create nodes at the
structure’s two connecting points and attach each node to the
structure (using a rigid link spider, for example). These nodes will
represent the corresponding connector element’s local nodes. It is
then up to the user to decide how the element’s triads are to be
oriented and to then define the local 1-, 2-, and 3-directions for the
connecting structure.

The stiffness matrix entries can then be obtained by sequentially
prescribing small displacements in each degree of freedom (while
holding all other degrees of freedom fixed) at each (local)
connecting node and outputting the reactions at the connecting
nodes. For example, the following sequence can be used:

1) Displace local node 1 by a small distance in the local 1-direction
holding all other displacements and rotations zero. Node 2 is
fixed.

2) Displace local node 1 by a small distance in the local 2-direction
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holding all other displacements and rotations zero. Node 2 is
fixed.

3) Displace local node 1 by a small distance in the local 3-direction
holding all other displacements and rotations zero. Node 2 is
fixed.

4) Rotate local node 1 by a small angle about the local 1-direction
holding all other displacements and rotations zero. Node 2 is
fixed.

5) Rotate local node 1 by a small angle about the local 2-direction
holding all other displacements and rotations zero. Node 2 is
fixed.

6) Rotate local node 1 by a small angle about the local 3-direction
holding all other displacements and rotations zero. Node 2 is
fixed.

Then repeat steps 1-6 for local node 2 while holding local node 1
fixed.

For each of the 12 prescribed displacements, obtain the {1/2/3}-
reaction forces and {1/2/3}-reaction moments at local nodes 1 and
2. The matrix entries are then obtained by solving the 12 equations
associated with each load case.

Recall the matrix equation
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(7 [k, k. Kk, K, k. Kk, Kk, k., kK, K, kK, k.4«
F kK, K. K. K, K. K, K. Kk, Kk, K, K, K_|u
F kK, K., K, K, K. K, K., Kk, Kk, K, K, K_|u«
M| |k, k. K, K, K. K. K., K. K, K, K, K.|¢&
M| |k, kK. K., K, K. K., K. K, K, K, kK, k,_|@&
M| |k, kK. K, K, K. K. K. K., K, K, K, K._|é&
F |k k. k. k. K, kK, K. K, K, K, K, K_|lu«
F Kk, K, K., K, K. K, K., K, K, K, K, K,|u
F kK, K. K., K, K. K, K., K, K, K, K, K_|u
M| |k, K, K, K, K, K, K, K, K, K. K. K.|@&
M| |k, K, K, K. K. K. K. K. K, K. K. K.|@

v |k, K. K. K, K. K, K, K. K, K. K. K.|@&

where £, F, ,F; and M|, M, M, are the nodal reaction forces
and moments, respectively, at local node i, and u,, u,, u; and 6,

6?; , (9; are the sequentially prescribed translations and rotations,

respectively, also at local node i.

When % #0 and
uy=uy =6 =60, =0, =u; =u; =u; =6 =6, =6; =0, for
example, the original set of 12 linear equations, each with 12

unknowns, simplifies to a set of 12 equations, each with a single
unknown
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1
. _F
Jl 1°
U,
M!
K i
Jj+3.1 1
,where j=1...3.
_
Kj+6,1 - 10
1
2
% Mj
Jj+9,1 1
U,

Given the 12 reactions (6 at each node) and u]] , we can see that

each load case will furnish the entries of a column in the user-
defined stiffness matrix.
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The following example demonstrates the input for a symmetric
matrix type connector element. In this case, the element is being
used to model a straight section of elastic pipe, with the b1 axis
oriented along the pipe’s axial direction (hence the use of the
TRIAD1OPT=AXIAL option). The initial distance between points 1
and 2 corresponds to the pipe’s undeformed length. During the
analysis, this element may undergo large rotations in space.
However, the element’s properties will convect with the element.
For example, if the element were to undergo rigid body rotations,
its local forces would remain unchanged.

CONN-PROP MATRIX NAME=1 TYPE=STIFFNESS

1 2.3E9 0. 0. 0. 0. 0. -2.3E9 0. 0. 0. 0. 0.

2 0. 9.4E7 0. 0. 0. 4.787 0. -9.4E7 O. 0. 0. 4.7E7
3 0. 0. 9.4E7 0. -4.7e7 0. 0. 0. -9.4E7 0. -4.7e7 0.

4 0. 0. 0. 7.3E6 O. 0. 0. 0. 0. -7.3E6 0. 0.

5 0. 0. 0. 0. 3.3e7 0. 0. 0. 4.7E7 0. 1.487 0.

6 0. 0. 0. 0. 0. 3.3e7 0. -4.7e7 0. 0. 0. 1.4e7
7 0. 0. 0. 0. 0. 0. 2.3E9 0. 0. 0. 0. 0.

8 0. 0. 0. 0. 0. 0. 0. 9.4E7 0. 0. 0. -4.7E7
9 0. 0. 0. 0. 0. 0. 0. 0. 9.4E7 0. 4.7E7 0.

10 0. 0. 0. 0. 0. 0. 0. 0. 0. 7.3E6 0. 0.

11 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.3E7 0.

12 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3.3E7

*

EGROUP CONNECTOR NAME=1 SUBTYPE=MATRIX CONN-PROP=1

*

CONN-DEFINE NAME=1 GROUP=1 SIDEITYPE=POINT SIDEINAME=1,
SIDE2TYPE=POINT TRIAD1OPT=AXIAL

CLEAR

20

DATAEND
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Modeling example 5: Multilinear matrix element

The following example demonstrates the input for a multilinear
matrix type connector element. The stiffness matrices are both
symmetric (though they need not be), and there is no damping
response. The multilinear elastic response depends upon the elastic
force in the local 2-direction.

MATRIX-K NAME=1

1 2.5E5 -1.6E0 -2.7E+0 2.9E2 1.5E3 -1.1E3 -2.5E5 1.6E+0 2.7E+0 -2.9E2 6.1E2
2 0.0 1.6E3 -3.5E-1 2.7E1 1.0E2 3.2E5 1.6E0 -1.6E+3 3.5E-1 -2.7E1 1.7E2
3 0.0 0.0 3.3E+42 1.5E1 -1.1E5 -9.8E1] 2.7E0 3.5E-1 -3.3E+2 -1.5E1 -1.4E5
4 0.0 0.0 0.0 5.5E6 -1.0E4 9.9E3 -2.9E2 -2.7E+1 -1.5E+1 -5.5E6 -1.5E3
5 0.0 0.0 0.0 0.0 5.2E7 3.9E4 -1.5E3 -1.0E+2 1.1E+5 1.0E4 3.6E7
6 0.0 0.0 0.0 0.0 0.0 1.1E8 1.1E3 -3.2E+5 9.8E+1] -9.9E3 3.6E4
7 0.0 0.0 0.0 0.0 0.0 0.0 2.5E5 -1.6E+0 -2.7E+0 2.9E2 -6.1E2
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6E+3 -3.5E-1 2.7E1 -1.7E2
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3E+2 1.5E1 1.4E5
10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.5E6 1.5E3
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.6E7
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

*

MATRIX-K NAME=2

1 5.0E5 -2.2E0 -5.4E+0 5.8E2 3.0E3 -2.2E3 -5.0E5 3.2E+0 5.4E+0 -5.8E2 1.2E3
2 0.0 2.2E3 -7.0E-1 5.4E1 2.0E2 6.4E5 3.2E0 -3.2E+3 7.0E-1 -5.4E1 3.4E2
3 0.0 0.0 6.6E+2 3.0E1 -2.2E5 -2.0E2 5.4E0 7.0E-1 -6.6E+2 -3.0E1 -2.8E5
4 0.0 0.0 0.0 1.1E7 -2.0E4 2.0E4 -5.8E2 -5.4E+1 -3.0E+1 -1.1E7 -3.0E3
5 0.0 0.0 0.0 0.0 1.0E8 8.0E5 -3.0E3 -2.0E+2 2.2E+5 2.0E4 7.2E7
6 0.0 0.0 0.0 0.0 0.0 2.2E8 2.2E3 -6.4E+5 2.0E+2 -2.0E4 7.2E4
7 0.0 0.0 0.0 0.0 0.0 0.0 5.0E6 -3.2E+0 -5.4E+0 5.8E2 -6.1E2
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2E+3 -7.0E-1 ©5.4E1 -3.4E2
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.6E+2 3.0E1 2.8E5
10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1E7 3.0E3
11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5E8
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

*

MATRIX-NL-K NAME=1 TYPE=ELASTIC-2 SYMMETRIC=YES LIMITS=EXTRAPOLATE

0.00 1

0.12 2

*

CONN-PROP MATRIX-MULTILINEAR KNL=1

*
EGROUP CONNECTOR SUBTYPE=MATRIX-MULTILINEAR CONN-PROP=1

*

CONN-DEFINE NAME=1 GROUP=1 SIDE1TYPE=POINT SIDE1NAME=1,
SIDE2TYPE=POINT TRIAD1OPT=AXIAL

CLEAR

20

DATAEND

For simplicity, this example shows a multilinear response defined
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using only two stiffness matrices, but each multilinear definition
can use as many matrices as desired. Also, the multilinear matrix
element may have both elastic and damping responses, and the
responses can depend on different quantities. For example, the
elastic response may depend on a damping force and the damping
response can depend on the temperature.

2.14.4 Notes and Recommendations

1) The connector element cannot be used in explicit dynamic
analysis or cyclic symmetry analysis.

2) In problems involving connector elements undergoing large
rotations, it is recommended to use the nonsymmetric sparse solver
(MASTER SOLVER = NONSYM-SPARSE).

3) In problems involving matrix type connector elements
possessing nonsymmetric stiffness and/or damping matrices, the
nonsymmetric sparse solver should be used.

4) In problems involving nonlinear joint type connector elements, it
is recommended to use the line search feature (ITERATION LINE-
SEARCH = YES).

5) If the user specifies damping behavior for connector elements in
a static analysis, ADINA will emit the following warning message:

###Damping cannot be used in frequency or static
solutions

ADINA will then proceed to perform the static analysis, ignoring
the connector element’s damping behavior. To model damping
behavior in the connector element, the user must run an implicit
dynamic analysis.

6) When a connector element is attached to a shell element, the
attached node on the shell becomes a 6-DOF node which will resist
an applied moment in the shell’s drilling direction. For more
information, see section 2.7.3 Shell nodal point degrees of freedom.

7) The default value for the backstop factor BACKFAC is 1.0E10,
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which may be too large in some instances. If a nonlinear joint
element is experiencing convergence difficulties when reaching its
backstop limit, consider using a smaller value for the backstop
factor.
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3. Material models and formulations

The objective of this chapter is to summarize the theoretical basis
and practical use of the material models and formulations available
in ADINA.

3.1 Stress and strain measures in ADINA

3.1.1 Summary

¢ It is important to recognize which stress and strain measures are
employed in the use of a material model:

» In the preparation of the input data in which the material
parameters are defined with respect to these stress and strain
measures

» In the interpretation of the analysis results in which the type
of stresses and strains output must be considered

o The practical use of the material models available in ADINA
regarding the stress and strain measures used for the input data and
analysis results is summarized in the following. These stress/strain
measures are described in detail in ref. KJB, Section 6.2.

¢ In the following discussion, small strains are strains less than
about 2%.

Small displacement/small strain formulation

Input of material parameters: All elements and material models use
the engineering stress-engineering strain relationship.

Output: All elements and material models output engineering
stresses and engineering strains.

Note that under small displacement, small strain conditions,
engineering stresses and Cauchy stresses are nearly identical.
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Large displacement/small strain formulation

Input of material parameters: 2™ Piola-Kirchhoff stresses and
Green-Lagrange strains. Note that under small strain conditions,
2" Piola-Kirchhoff stresses are nearly equal to engineering
stresses, and Green-Lagrange strains are nearly equal to
engineering strains.

Output:

(1) 2-D, 3-D elements: all material models output Cauchy
stresses and Green-Lagrange strains.

(2) Beam, iso-beam, pipe elements: all material models output
2nd Piola-Kirchhoff stresses and Green-Lagrange strains.

(3) Shell elements, results output in local coordinate system: all
material models output 2nd Piola-Kirchhoff stresses and Green-
Lagrange strains.

(4) Shell elements, results output in global coordinate system:
all material models output Cauchy stresses and rotated small
strains.

Large displacement/large strain formulation, 2D and 3D
elements

For the two- and three-dimensional solid elements, the following
material models can be used:

(1) Plastic-bilinear, plastic-multilinear, thermo-plastic, plastic-
cyclic, thermo-plastic-cyclic. In these cases either the ULH
formulation or the ULJ formulation is used. The default is the
ULH formulation, except when explicit time integration is
employed.

Input of material parameters: Cauchy (true) stresses and
logarithmic (true) strains. For the multilinear stress-strain
curves, it is also possible to enter engineering stress-strain
data along with the input MASTER CONVERT-
SSVAL=YES, see detailed description of the CONVERT-
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SSVAL feature in Section 3.4.1.

Output: ULH formulation: Cauchy stresses and deformation
gradients.
ULJ formulation: Cauchy stresses and Jaumann strains.

(2) Drucker-Prager, Mroz bilinear, creep, plastic-creep,
multilinear-plastic-creep, plastic-creep-variable, multilinear-
plastic-creep-variable, viscoelastic, user-supplied. In these
cases the ULH formulation is always used.

Input of material parameters: Cauchy (true) stresses and
logarithmic (true) strains

Output: Cauchy stresses and deformation gradients.
(3) Plastic-orthotropic. In this case the updated ULJ
formulation is always used.

Input of material parameters: Cauchy (true) stresses and
logarithmic (true) strains

Output: Cauchy stresses and Jaumann strains.

(4) Mooney-Rivlin, Ogden, Arruda-Boyce, hyper-foam, and
Sussman-Bathe. In this case the TL (total Lagrangian)
formulation is used.

Input of material parameters: Mooney-Rivlin, Ogden,
Arruda-Boyce or hyper-foam constants. For Sussman-Bathe,
the uniaxial stress-strain curve (see Section 3.8.1.5 for
details).

Output: Cauchy stresses and deformation gradients.

Large displacement/large strain formulation, shell elements

For the shell elements, the following material models can be used,
provided that the elements are single layer elements described
using 3, 4, 6, 9 or 16 midsurface nodes:
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ref. KUB
Sec. 6.2.2

(1) Plastic-bilinear, plastic-multilinear, plastic-cyclic,
thermo-plastic-cyclic. Either the ULJ formulation or the ULH
formulation can be used. The default is the ULH formulation,
except when explicit time integration is employed.

(2) Plastic-orthotropic. The ULJ formulation is always
employed.

Input of material parameters: Kirchhoff stresses and
logarithmic (true) strains. For the multilinear stress-strain
curves, it is also possible to enter engineering stress-strain
data along with the input MASTER CONVERT-
SSVAL=YES, see detailed description of the CONVERT-
SSVAL feature in Section 3.4.1.

Output: Kirchhoff stresses and left Hencky strains (ULH) or
Jaumann strains (ULJ).

Strain measures: The strain measures used in ADINA are
illustrated hereafter in the simplified case of a rod under uniaxial
tension (see Fig. 3.1-1).

. . . -1,
Engineering strain: €, = 7
0
2 g2
Green-Lagrange strain: e= 17 > b
2 ¢,

Logarithmic strain, Hencky strain, Jaumann strain:

0\ ¢drt

e=In| —|[=|—

l, i /!

Stretch: A=—

EO
Green-Lagrange strains are used in the large displacement/small

strain formulations. This is because large rotations do not affect
the Green-Lagrange strains (Green-Lagrange strains are invariant
with respect to rigid-body rotations), and for small strains, small
rotations, Green-Lagrange strains and engineering strains are
equivalent.
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e In the small strain formulations, the current area is always
assumed to be equal to the initial undeformed area.

.......... N
AL
~— K A, = initial section area
A = final section area
F = applied force
Lo =10y +AL

N

Figure 3.1-1: Rod under uniaxial tension
e Engineering strains are also called nominal strains in the
literature.
e Logarithmic strains are also known as true strains.
Stress measures: The stress measures used in ADINA are

illustrated hereafter in the simplified case of a rod under uniaxial
tension (see Fig. 3.1-1).

. ) F
Engineering stress: o=—
4,
F
Cauchy stress: r=—= o4
A A
2™ Piola-Kirchhoff stress: = F—(O = G—EO
A0 ¢
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Al Ft ot

T = =
AOKO AOEO go

Kirchhoff stress: Jr=

e Cauchy stresses are also known as true stresses.

o For the case in which the material is incompressible,

ol
7 =J7r =— can be used to compute the Cauchy stress and the
0

Kirchhoff stress from the engineering stress.

e  When the strains are small, the 2™ Piola-Kirchhoff stresses are
nearly equal to the Cauchy stresses from which the rigid body
rotations have been removed.

o 2" Pjola-Kirchhoff stresses are input only for the large
displacement/small strain formulation. Because the strains are
assumed to be small, the engineering stresses can be entered as the
stress input quantities.

o 2" Pjola-Kirchhoff stresses are output only for the large
displacement/small strain formulation and for element types in
which the stresses expressed in the element coordinate system of
the deformed element are of physical significance. If the element
does not undergo rigid body rotations, the 2™ Piola-Kirchhoff
stresses are nearly equal to the Cauchy stresses, because the strains
are assumed to be small. If the element undergoes rigid body
rotations, the Cauchy stresses expressed in the element coordinate
system do not change (because the element coordinate system
rotates). Since the 2™ Piola-Kirchhoff stresses, as expressed in the
undeformed element coordinate system, do not change during a
rigid body rotation, these 2" Piola-Kirchhoff stresses remain nearly
equal to the Cauchy stresses. The 2™ Piola-Kirchhoff stresses here
provide a convenient way of removing the rigid body rotations
from the output stresses.

e When the large displacement/small strain formulation is used,
and when stresses and strains are output in an element local
coordinate system, 2nd Piola-Kirchhoff stresses and Green-
Lagrange strains are output. The justification for using 2nd Piola-
Kirchhoff stresses is given in the preceding paragraph, and the
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justification for using Green-Lagrange strains is similar.

e When the shell element is used with the large
displacement/small strain formulation, and when stresses and
strains are output in the global coordinate system, the stresses and
strains are calculated in two steps. First the stresses and strains are
calculated in the element local coordinate system, according to the
preceding paragraph. Then the stresses and strains are rotated from
the element local system into the global system. The resulting
stresses can be interpreted as Cauchy stresses, because the strains
are assumed small. The resulting strains can be interpreted as
rotated small strains.

e When the material is nearly incompressible, the Kirchhoff
stresses are nearly equal to the Cauchy stresses.

¢ Since Kirchhoff stresses are input/output only for materials that
are nearly incompressible, practically speaking, the differences
between Kirchhoff and Cauchy stresses are negligible.

3.1.2 Large strain thermo-plasticity analysis with the ULH formulation

e This section discusses the ULH formulation for large strain
analysis. ULH stands for updated Lagrangian Hencky.

e The following is a quick summary of the theory of large strain
inelastic analysis with the ULH formulation. For further
information, see ref KJB, Section 6.6.4 and also the following
references:

ref.  F.J. Montans and K.J. Bathe, "Computational issues in
large strain elasto-plasticity: an algorithm for mixed
hardening and plastic spin", Int. J. Numer. Meth. Engng,
2005; 63;159-196.

ref. M. Koji¢ and K.J. Bathe, Inelastic Analysis of Solids and
Structures, Springer-Verlag, 2003.

Total deformation gradient tensor: Let X be the total
deformation gradient tensor at time ¢ with respect to an initial
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configuration taken at time 0. For ease of writing, we do not
include the usual left superscripts and subscripts.

Polar decomposition into rotation and right stretch tensor: The
total deformation gradient tensor X can be decomposed into a
material rigid-body rotation tensor R and a symmetric positive-
definite (right) stretch tensor U (polar decomposition):

X=RU (3.1-1)

Principal directions of right stretch tensor: The right stretch
tensor U can be represented in its principal directions by a diagonal
tensor A , such that

U=R,AR’ (3.1-2)

where R, is arotation tensor with respect to the fixed global axes
(see Figure 3.1-2).
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(0) Initial configuration at time 0
"""" Configuration at time t not including rigid body rotation
()  Configuration at time t

Wt) Directions of maximum/minimum total stretches
and strains

R Material rigid-body rotation between time 0 and time t

R; Directions of initial configuration fibers with
maximum/minimum total stretches and strains

Figure 3.1-2: Directions of maximum/minimum
total stretches and strains

(Note that the rotation R, does not correspond to a material

rigid-body rotation, but to a rotation of the coordinate system: U
and A are two representations of the same deformed state,
respectively in the global coordinate system and in the U principal
directions coordinate system.)

Right Hencky strain tensor: The Hencky strain tensor (computed
in the right basis) is given by

Ef=lnU=R,InAR] (3.1-3)
The superscript “R” symbolizes the right basis.
Polar decomposition into rotation and left stretch tensor: The

total deformation gradient tensor X can also be decomposed into a
material rigid-body rotation R and a symmetric positive-definite
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(left) stretch tensor V (polar decomposition):
X=VR (3.1-4)

Rin (3.1-4) is the same as R in (3.1-1).

Principal directions of left stretch tensor: The left stretch tensor
V can be represented in its principal directions by a diagonal tensor
A, such that

V=R,AR/ (3.1-5)

where R, is a rotation tensor with respect to the fixed global axes.
Note that R, =R R, .

Left Hencky strain tensor: The Hencky strain tensor (computed
in the left basis) is given by

E'=InV=R,InAR] (3.1-6)
The superscript “L” symbolizes the left basis.

Comparison of left and right Hencky strain tensors: The
principal values of the left and right Hencky strain tensors are
identical, and equal to the logarithms of the principal stretches.
Hence both of these strain tensors can be considered to be
logarithmic strain tensors. However, the principal directions of the
left and right Hencky strain tensors are different. The principal
directions of the right Hencky strain tensor do not contain the rigid
body rotations of the material, but the principal directions of the
left Hencky strain tensor contain the rigid body rotations of the
material.

Therefore, for a material undergoing rigid body rotations, the
principal directions of the right Hencky strain tensor do not rotate,
however the principal directions of the left Hencky strain tensor
rotate with the material. Hence, the left Hencky strain tensor is
preferred for output and visualization of the strain state.

Multiplicative decomposition of deformation gradient in
inelastic analysis: In inelastic analysis, the following
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multiplicative decomposition of the total deformation gradient into
an elastic deformation gradient X” and an inelastic deformation
gradient X” is assumed:

X=X* X" (3.1-7)

To understand (3.1-7), consider a small region of material under a
given stress state with deformation gradient X. If this region of
material is separated from the rest of the model and subjected to the
same stress state, the deformation gradient is still X. Now if the
stress state is removed, (3.1-7) implies that the deformation

gradient of the unloaded material is X” . The stresses are due
entirely to the strains associated with the elastic deformation

gradient X” .

It can be shown (see Montans and Bathe), that (3.1-7) is equivalent
to the additive decomposition of the displacements into elastic
displacements and plastic displacements.

For the materials considered here, det X’ =1.

Polar decomposition of elastic deformation gradient: The elastic
deformation gradient can be decomposed into an elastic rotation

tensor R” and elastic right and left stretch tensors U*, V*:
X’ =R*U"=V*R" (3.1-8-a,b)

Elastic Hencky strain tensors: The elastic Hencky strain tensors
in the right and left bases are given by

E* =lnU", E* =InV* (3.1-9a,b)

Stress-strain relationships: The stresses are computed from the
elastic Hencky strain tensors using the usual stress-strain law of
isotropic elasticity. However, the stress measures used depend
upon the strain measures used. When the right Hencky strain
measure is used, the stress measure used is the rotated Kirchhoff
stress
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7=(R*) JrR* (3.1-10)

and when the left Hencky strain measure is used, the stress measure
is the (unrotated) Kirchhoff stress Jtr . J =det X is the volume

change of the material, and, using detX” =1, J =detX" .

With these choices of stress and strain measures, the stresses and
strains are work-conjugate.

The choice of right Hencky strain and rotated Kirchhoff stresses
gives the same numerical results as the choice of left Hencky strain
and (unrotated) Kirchhoff stresses.

Implementation notes: For 2-D and 3-D solid elements, the
difference between the Cauchy and Kirchhoff stresses is neglected.
The stress measure used with the right Hencky strains is

T= (RE )T T R”. The input of material properties is assumed to be

in terms of Cauchy stresses, and the output of stresses is in terms of
Cauchy stresses.

For shell elements, Kirchhoff stresses are used throughout. The
input of material properties is assumed to be in terms of Kirchhoff
stresses, and the output of stresses is in terms of Kirchhoff stresses.

These assumptions are justified because they are used with material
models in which the plastic deformations are incompressible and
the plastic deformations are generally much larger than the elastic
deformations.

3.1.3 Large strain thermo-plasticity analysis with the ULJ formulation

e This section discusses the ULJ formulation for large strain
inelastic analysis (ULJ formulation). ULJ stands for updated
Lagrangian Jaumann.

o The following is a quick summary of the theory of large strain
inelastic analysis with the ULJ formulation:

For further information, see ref KJB, Section 6.2.2 and also the
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following reference:

ref. M. Koji¢ and K.J. Bathe, Inelastic Analysis of Solids and
Structures, Springer-Verlag, 2003.

Velocity gradient tensor: The velocity gradient tensor is defined
as

t
axj

0'u, :
Lz{ ”'}zxx' (3.1-11)
Notice that the derivative is taken with respect to the current
coordinates.

Rate of deformation tensor, spin tensor: The rate of deformation
tensor is defined as

1 T
D=E(L+L ) (3.1-12)

and the spin tensor is defined as

1 r
W=E(L—L ) (3.1-13)

D is the symmetric part of L and W is the skew-symmetric part of
L.

Rate of change of Jaumann strain tensor: The rate of change of
the Jaumann strain is defined as

& =D+We’ —&'’W (3.1-14)

The quantity €’ is termed the Jaumann strain in analogy with the
more often-used Jaumann stress. But we do not use the Jaumann
stress in the ULJ formulation.

Jaumann strain tensor: In practice, increments are used in
computing the Jaumann strain tensor, i.e.
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gl =g’ +(DAr)H WAr) ‘e’ — ¢’ (WA?) (3.1-15)

Comparison of Jaumann strain with left Hencky strain: When
the rate of change of the principal directions of the left stretch
tensor V is zero, the rate of change of the left Hencky strain is the
same as the rate of change of the Jaumann strain. Hence the
Jaumann strain can be used as an approximate replacement for the
left Hencky strain. The Jaumann strain can be computed more
efficiently than the left Hencky strain, because it is not necessary to
take the square root or logarithm of a tensor when computing the
Jaumann strain. On the other hand, the time step size affects the
Jaumann strain, so that finite time step sizes lead to an error in the
calculation of the Jaumann strain.

For a uniaxial deformation, the Jaumann strain approaches the
logarithmic strain as the step size is reduced. For a rigid-body
rotation, the Jaumann strain also rotates, with the rotation of the
Jaumann strain approaching the expected rotation as the step size is
reduced.

It can also be shown that the Jaumann strain is path-dependent in
general, so that a deformation history in which the final
deformations equal the initial deformations can produce (non-
physical) non-zero Jaumann strains, even in the limit of
infinitesimally small time steps.

Stress-strain relationships: In elasto-plasticity, the same
algorithms are used as in small-strain elasto-plasticity. The
mechanical strains are computed as the total strains minus the
plastic strains (and also any thermal strains), in which the total
strains are the Jaumann strains.

As in the ULH formulation, the stresses are Cauchy stresses for 2-
D / 3-D elements, and are Kirchhoff stresses for shell elements.

3.1.4 Thermal strains
e Calculation of thermal strains is needed for temperature-

dependent material models, as well as temperature-invariant
material models with non-zero thermal expansion coefficients.
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o The temperature at an integration point is evaluated based on
the nodal temperatures and the element shape functions, and then
used to calculate the thermal strains.

o For isotropic temperature independent materials, the following
expression is used for thermal expansion.

‘e =a('60-"0)s, (3.1-16)

y

where 0, is the Kronecker delta (6, = 1 for i =j and J,= 0 for
i#]j).

e If the thermal expansion is temperature dependent and isotropic,
the thermal strains are calculated as follows:

‘e ='a('0-"0)o, (3.1-17)
where
t— 1 t t
a =m(a( 0)('0— 0y ) - (°0)(°0—Opy ))
(3.1-18)

and 0, is the material reference temperature and is input as a
material property, see below for more details.

e For temperature independent orthotropic materials Eq. (3.1-16)
is replaced by a thermal expansion coefficient vector,

‘e =a,('0-"0)5,

; ; (no summation over i)  (3.1-19)
o For temperature dependent orthotopic materials Eq. (3.1-17) and
Eq. (3.1-18) are modified for each direction similar to Eq. (3.1-19).

e Equations (3.1-17) and (3.1-18) are derived as follows: Suppose
that, from experimental data, the dependence of the length of a bar
as a function of temperature is obtained, as shown in Fig. 3.1-3.

ADINA R & D, Inc.

469



Chapter 3: Material models and formulations

Secant to curve—_

Length, L

D

=

t

-

e e,

Temperature, 6
Figure 3.1-3: Length of bar vs. temperature

The thermal strain with respect to the reference length may be
calculated as

L-L
TH
e REF

LREF
Then we define the mean coefficient of thermal expansion for a
given temperature as follows:

TH
e (0
a(6)= 27(0)
0- eREF
With this definition, the secant slope in Fig. 3.1-3 is LREFa(H) .

Now, in ADINA, we assume that the thermal strains are initially
zero. To do this, we subtract the thermal strain corresponding to

°9 to obtain

‘e =a('0)('0 O ) - a("0)(°0—Op )
which leads to Equations (3.1-17) and (3.1-18).

Notice that if the mean coefficient of thermal expansion is constant,
6.~ no longer enters into the definition of ‘@ and the equations
reduce to Eq. 3.1-16. In general, when the mean coefficient of
thermal expansion is not constant, &,,,. must be chosen based on
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knowledge of the experiment used to determine & (9) since for the

same material curve, different choices of 6,,,. yield different
values of & (9)

3.2 Linear elastic material models

ref. KUB
Section 6.6.1

e The following material models are discussed in this section:

Elastic-isotropic: isotropic linear elastic

Elastic-orthotropic: orthotropic linear elastic

In each model, the total stress is uniquely determined by the total
strain.

e These models can be employed using the small displacement
or large displacement formulations. In all cases, the strains are
assumed small.

When the elastic-isotropic and elastic-orthotropic materials are
used with the small displacement formulation, the formulation is
linear.

o [f the material models are employed with a large
displacement/small strain or large displacement/large strain
formulations, the total Lagrangian formulation is used.

¢ In the small displacement formulation, the stress-strain
relationship is

t _ t
0o=C e
in which {0 = engineering stresses and ,e = engineering strains.
e In the total Lagrangian formulation, the stress-strain relationship
is

0S=C ¢

in which ;S = second Piola-Kirchhoff stresses and & = Green-

Lagrange strains.
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¢ The same matrix C is employed in all of these formulations.

o If'the strains are large, it is recommended that the linear elastic
material model not be used (see ref KJB, pp 589-590 for a
discussion in which a linear elastic material is used under large
strain conditions).

3.2.1 Elastic-isotropic material model

ref. KUIB

Table 4.3,

p. 194

¢ This material model is available for the truss, 2-D solid, 3-D
solid, beam, iso-beam, plate, shell and pipe elements.

e The two material constants used to define the constitutive
relation (the matrix C) are

E = Young's modulus, v = Poisson's ratio

e The same constants are employed in the small and large
displacement formulations, and hence the matrices C are identically
the same in all formulations.

¢ You can specify the coefficient of thermal expansion as part of
the elastic-isotropic material description. The coefficient of
thermal expansion is assumed to be temperature-independent.

3.2.2 Elastic-orthotropic material model

e The elastic-orthotropic material model is available for the 2-D
solid, 3-D solid, plate and shell elements.

2-D solid elements: Figure 3.2-1 shows a typical two-dimensional
element, for which the in-plane orthogonal material axes are "a"
and "b". The third orthogonal material direction is "c¢" and is
perpendicular to the plane defined by "a" and "b". The material
constants are defined in the principal material directions (a,b,c).

e You can specify the coefficients of thermal expansion as part of
the elastic-isotropic material description. The coefficients of
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thermal expansion are assumed to be temperature-independent.

Figure 3.2-1: Principal in-plane material axes orientation for the
orthotropic material model for 2-D solid elements

The stress-strain matrices are as follows for the various 2-D

element types:

Plane stress:

€| | 1 Ve Ve 0 1 o ]
E, E, E,
e, Vi L Vi 0 5,
B E, E, E.
Ve Vo 1
e & E E 0 ||lc,=0
0 0 0 L
Yab I G, | S |
Plane strain:
I S 0 1 o]
E, E, E,
e, Vi L Vi 0 5,
B E, E, E,
Vea Veb 1
=0\ & = E -
1
Yab 0 0 0 G_ab S
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Axisymmetric:

ea i L _Vab _vac 0 ] G”W
Ea Eb Ec

€ _Via L _ Vi 0 c
E, E, E, ’

v Vo 1
_ ca _ Cl _ 0

% E, E E o
0 0 0 1

Yab i ng | Gabj

The seven material constants (E,, Ey, E., Vap, Vaer Voe and Gp)
define the symmetric compliance matrix CZI .

L _ Vab 0 _ Vac
E, E, E.
Czl - b 1 c
— 0
Gab
. 1
symmetric F

where the subscript " /" in C,' indicates that the material law is
given in the local system of the material axes. Note that the
determinant of C,' must not be zero in order to be able to calculate

the inverse C,. This imposes the following restrictions on the

constants. The material constants must be defined so that the
stress-strain constitutive matrix is positive-definite; i.e.,:

|Vﬁ|< g— , Lj=a,b,c
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E E E
Vo ViV <05 1=, =2 —y) —b—y2 —¢ 1<(.5
E "E “E
or
E E E E
VoViVee —= <05 1—v, =2 —y, =t 2 —21<(.5
Ec Eb Ec Ec

using ADINA input values.

Based on the input values for v, , ADINA calculates v ; so as to

have a symmetric constitutive matrix; i.e.,

V.
E.i

<=

Ei
See also for example the following reference:

ref.  Jones, RM., Mechanics of Composite Materials,
McGraw-Hill p. 42, 1975.

In ADINA, the Poisson’s ratio v; is defined differently from

Jones, although it is consistent with Jones’ nomenclature. In Figure
3.2-2, a uniaxial tensile test is illustrated in which the material
under test is loaded in the a-direction. The Poisson’s ratio is
defined in ADINA by

&
b
Ve =7
ga
b Fe— g,—»F
a gu

Figure 3.2-2: Definition of v,,

In general,
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& ..
Vij :_g_l (l,] :a,b,C)

J

In Jones, however, the same Poisson’s ratio is notated

Using the correspondence between the Jones and ADINA
nomenclature for the Poisson’s ratio,

Vi=VYy
and the relationship

Vet

E E,

it is possible to calculate the value of v; given a value for Jvl.j

from

When material data is available from sources that follow Jones’
notation of Poisson’s ratio, the above conversion allows the
equivalent ADINA Poisson’s ratio to be calculated from the Jones
Poisson’s ratio for input to ADINA.

To obtain the stress-strain matrix C corresponding to the global
material axes, first C, is calculated and then

C=Q'C,Q

where
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2w 06, 0
/3 n; m,m, 0
2mm, 200, fm,+0m 0
0 0 0 1

and 7,0, and m,,m, are the direction cosines of the a, b material

axes to the global axes.

Note that in a large displacement analysis it is assumed that the
angle £ remains constant throughout the incremental solution.
Hence, the use of the total Lagrangian formulation is usually most
appropriate.

3-D solid elements: In three-dimensional analysis we have

1/E, v, /E, —v,/E, 0 0 0
1VE, ——v,/E, 0 0 0
» 1/E 0 0 0
C, = ‘
/G, 0 0
/G, 0
| symmetric 1/G,, |

and, as in two-dimensional analysis, this matrix is inverted and then
transformed to the global coordinate axes.

Plate elements: Figure 3.2-3 shows a typical plate element for
which the in-plane orthogonal material axes are "a" and "b". The
material constants are defined in the principal material directions
(a,b), for which we have

e, VVE, ——v,/E —-v, /E, 0 o,
e, -V, /E, 1/E  —v, /E, 0 c,
e. | |-v,/E -v,/E, 1/E, 0 |lo.=0
Yab 0 0 0 /Gy |l Ouw
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Note that the transverse normal strain e, is not calculated for the
plate elements.

7,¢

The a-b and x-y planes
are coplanar. Nodes

1, 2 and 3 belong to
the x-y plane.

Figure 3.2-3: Principal in-plane material axes orientation for the
orthotropic material model for plate elements

In order to obtain the stress-strain matrix C corresponding to the
local x y z directions of the element, we use

c=Q'C,Q

cosPcosf  sinPsinf cosp sinf
where Q" =| sinPsinf  cosPcosp  —cosp sinf
~2cosP sin  2cosP sin  cos’B—sin’P

B is the angle between the a and x axes, see Fig. 3.2-2.
Shell elements: Figure 3.2-4 shows typical shell elements for

which the orthogonal material axes are "a", "b" and "c".
The constitutive relation defined in the a,b,c system is
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e, | [ VE, —v,/E, —v_/E 0 0 0 o,
e, -, E, 1/E, -v,./ E, 0 0 0 o,
e, v, /E, -v,I/E, 1/E, 0 0 0 c.=0
v.l | o 0 0 1G, 0 0 || o,
V.. 0 0 0 0 1/G, 0 o,
7] |0 0 0 0 0 1G,] o, |

e Table 3.2-1 summarizes which material constants are necessary,
depending on the type of element used in the analysis.

Table 3.2-1: Required material constants for the element types

available in ADINA
Required material constants
(these constants must be nonzero except for
Element type Poisson's ratios)
2-D solid E., Ev, E¢, Vab, Vacr Vo, Gab
3-D solid Ea, Eb, EC, Vabs Vacs Vbes Gab, Gac, Gbc
Plate Ea, Eb, Vab, Gap
Shell Eaa Eba Eca Vab, Vacs Vbes Gab, Gaca Gbc
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2

2
(b) 16-node element

Note: (T, §, t) is the local Cartesian system.
The a-b and 1-S planes are coplanar.
d is the unit projection of r|, onto the T-§ plane.
B is the input material angle.

Figure 3.2-4: Definition of axes of orthotropy for shell elements
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3.3 Nonlinear elastic material model

e The nonlinear elastic material model is available for truss, 2-D
solid (plane stress, plane strain and axisymmetric), 3-D solid and
shell elements. The formulations used are slightly different (and
simpler) for the truss element, as detailed in Section 3.3.1.

o This material uses a nonlinear elastic uniaxial stress-strain data
input in tabular form and shown in Fig. 3.3-1. Note that the input
curve must pass through the origin (0,0). This material is not based
on the classical theory of finite elasticity, and is not intended for
large strain analysis. However, it is a useful material model when
used appropriately, and with awareness of its limitations. This
material model is also available as a user-coded material for 2-D
and 3-D solids only.

¢ Note that the material unloads along the same curve, so that no
permanent inelastic strains are introduced.

o The material can have different stress-strain curves in tension
and compression. Under predominantly uniaxial tension or
compression, the material response will follow the input curve
exactly. Under shear dominated loading, the stress is interpolated
from both tension and compression parts of the material stress-
strain curve.

o \ O
— =4
—7

X /

W\

&
o]

N

Figure 3.3-1: Stress-strain behavior of nonlinear elastic material
model
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e In order to use the unaxial stress-stain data & (&) of Fig. 3.3-1,

the effective stress and strain (o and & ) must be calculated based
on the 2-D or 3-D total stress and strain tensors (6 and € ). The
von-Mises stress is used as the effective stress, while the effective
strain is based on

j GdzE = chda (3.3-1)

which equates the deformation work per unit volume in unaxial
loading to the multi-dimensional state. This results in a unique
equation for £ as a function of €, v and the stress-strain state that
depends on the element type.

e The effective strain, £, is defined by
1 r
—E;” = 58 C.e (3.3-2)

where £, is Young’s modulus which is determined by the most
stiff region of the input stress-strain curve, C, is the elastic stress-

strain matrix obtained using £, and v . (£, cancels out from both
sides of Eq. (3.3-2))

Differentiating Eq. (3.3-2) with respect to the total strain, we have

dg = L_sTcoda (3.3-3)
o€

Substituting Eq. (3.3-3) into Eq. (3.3-1), the stresses can be
expressed in terms of total strains, i.e.,

G
6=——Cg 3.3-4
Bz (3.3-4)

or
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9 4 (3.3-5)

6=——0,
E¢

where 6, = Cos which is the elastic trial stress.

o The effective stress o is taken from the tensile part of the
stress-strain curve for predominantly tensile loading, from the
compression part of the stress-strain curve for predominantly
compression loading and is interpolated between the two curves
otherwise.

¢ The consistent tangent stress-strain matrix is obtained by
differentiating Eq. (3.3-4)or (3.3-5) with respect to the total strain
tensor. The stress-strain matrix is symmetric in predominant tensile
or compression loading (when only one of the two material curves
is used), and is non-symmetric otherwise (when interpolation
between the curves is required). If a symmetric solver is used, the
constitutive matrix is symmetrized and in most cases reasonable
convergence is still obtained.

¢ Note that discontinuities are not allowed in user-supplied stress-
strain curve. The table look-up is performed using linear
interpolation within the table and linear extrapolation outside the
table using the two starting or ending points.

Stess update algorithm

, t+Atu(i t+AtG(i)

For an iteration i, given ‘G, ‘¢ ', E,, v, update

b

t+At8(i)

t+At£(i)

Step 1. Calculate the new total strain state based on

displacements "' u"”

Step 2. Calculate the elastic trial stress,
t+AtGe — Co t+At8 (3.3-6)

Step 3. Compute the magnitude of the effective strain, £ .
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Step 4. Calculate the ratio

: (3.3-7)
O

where C is a constant that biases the general stress state towards

the pure tension or compression curves and is internally set to 3/2,

d t+At

I, is the first elastic stress invariant, an o, is the effective

elastic stress which is calculated as follows,
t+At Ee — EO t+At§ (33'8)
Restrict 7 to be between -1 and 1.

Step 5. Calculate the effective stress in tension &, and in

compression &, , based on the user-supplied stress-strain curve and
& , as follows:

1+ 5{ 1A E(HAtE) (3.3-9)

t+At5, — _t+At 5(_I+At E) (33_10)

&

Step 6. Calculate the actual effective stress,”™ & , as

I+At5:HTrt+AIEI +1_Trt+AIEU (33_11)

Step 7. Evaluate the new stress state by

t+At —

(o)
t+AtG — WHNGE (33_12)
0

Step 8. Evaluate the tangential stress-strain matrix. Symmetrize it if
necessary.
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3.3: Nonlinear elastic material model

Step 9. A secant stress-strain matrix can be used if the tangential
stress-strain matrix exhibits a softening behavior.

3.3.1 Nonlinear elastic material for truss element
e For the truss element, an elastic material model is available for

which the stress-strain relationship is defined as piecewise linear.
Fig. 3.3-2 illustrates the definition of the stress-strain law.

Stress A
LS
OF ferererniiiy
o4 |.
€1 € C3 : :
: : G3 ey €5 €6 Strain
-{ 02
S (e} 1

Figure 3.3-2: Nonlinear elastic material for truss element

Note that the stress is uniquely defined as a function of the
strain only; hence for a specific strain ‘e, reached in loading or
unloading, a unique stress is obtained from the curve in Fig. 3.3-2.

e A typical example of the truss nonlinear elastic model is shown
in Fig. 3.3-3. Note that the stress-strain relation shown corresponds
to a cable-like behavior in which the truss supports tensile but no
compressive loading.
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Stress A
Point 3
432104 |cevieeii \ X
Point 1 Point 2
N \ :
-1.0 1.0 Strain

Figure 3.3-3: Example of nonlinear elastic stress-strain material
model for truss

A sufficient range (in terms of the strain) must be used in the
definition of the stress-strain relation so that the element strain
evaluated in the solution lies within that range; i.e., referring to Fig.

3.3-2, we must have ¢, < ‘e < ¢, forall «.

e The truss element with this material model is particularly useful
in modeling gaps between structures. This modeling feature is
illustrated in Fig. 3.3-4. Note that to use the gap element, it is
necessary to know which node of one body will come into contact
with which node of the other body.

ref.  S.M. Ma and K.J. Bathe, "On Finite Element Analysis of
Pipe Whip Problems," Nuclear Engineering and Design,
Vol. 37, pp. 413-430, 1976.

ref.  K.J. Bathe and S. Gracewski, "On Nonlinear Dynamic
Analysis using Substructuring and Mode Superposition,"
Computers and Structures, Vol. 13, pp. 699-707, 1981.

Note that an alternate gap element can be obtained by the use of
the 2-node truss element employing the plastic-bilinear material
model, see Section 3.4.1.

A more general way of modeling contact between bodies is the
use of contact surfaces, see Chapter 4.

e Other modeling features available with the truss element and
this material model are shown in Figure 3.3-5.
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Pipe (beam)
n
3
Gap A
_ v
Gap element L
n
Stress
A
A
L
K>
Strain

Figure 3.3-4: Modeling of gaps

» The model shown in Fig. 3.3-5(a) corresponds to a
compression-only behavior.

» The model shown in Fig. 3.3-5(b) corresponds to a tension
cut-off behavior, the snapping of a cable, for example.

» The model shown in Fig. 3.3-5(c) corresponds to a behavior
exhibiting both tension and compression cut-offs.
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Stress Stress
€2
e] € €3 €4 Strain
(a) Compression only (b) Tension cut-off

Compression  Stress
cut-off limit
AN o
(3] (5]

€s e €8 Strain

€4 .
e Tension

cut-off limit

(c) Tension and compression cut-offs

Figure 3.3-5: Various modeling features available with the
nonlinear elastic truss model

3.4 Isothermal plasticity material models
ref. KUB e This section describes the following material models:

Section 6.6.3

Plastic-bilinear, plastic-multilinear: von Mises model with
isotropic, kinematic hardening or mixed hardening

Mroz-bilinear: von Mises model with Mroz hardening

Plastic-orthotropic: Hill yielding with bilinear proportional
hardening

Gurson: Gurson plastic model for fracture/damage analysis

Plastic-cyclic: von Mises model with hardening rules suitable
for modeling cyclic plasticity.
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3.4: Isothermal plasticity material models

o All elastic-plasticity models use the flow theory to describe the
elastic-plastic response; the basic formulations for the von Mises
models are summarized on pp. 596-604, ref. KIB, and for the Mroz
model in:

ref.  Y.F. Dafalias and E.P. Popov, "Plastic Internal Variables
Formalism of Cyclic Plasticity," J. Appl. Mech., Trans.
ASME, Vol. 43, pp. 645-651, 1976.

The formulation for the Ilyushin model is given in the following
reference:

ref.  K.J. Bathe, E. Dvorkin and L.W. Ho, "Our Discrete-
Kirchhoff and Isoparametric Shell Elements — An
Assessment," J. Computers and Structures, Vol. 16, pp.
89-98, 1983.

e The Drucker-Prager material model is described in Section
3.9.2.

3.4.1 Plastic-bilinear and plastic-multilinear material models

o These material models are based on
» The von Mises yield condition (see p. 597, ref. KIB)
» An associated flow rule using the von Mises yield function

» An isotropic or kinematic, bilinear or multilinear, hardening
rule

Figs. 3.4-1 to 3.4-3 summarize some important features of these
material models.

e These models can be used with the truss, 2-D solid, 3-D solid,
beam (plastic-bilinear only), iso-beam, shell and pipe elements.

ADINA R & D, Inc.

489



Chapter 3: Material models and formulations

Stress‘

Multilinear stress-strain curve

Bilinear stress-strain curve

Strain
Figure 3.4-1: von Mises model

e These models can be used with the small displacement/small
strain, large displacement/small strain and large
displacement/large strain formulations. The large
displacement/large strain formulation can only be used with the
2-D solid, 3-D solid and shell elements (the shell elements must be
3-node, 4-node, 6-node, 9-node or 16-node single layer shell
elements described entirely by midsurface nodes).

(1,1,1) 53
~
70
3%
20
3%

S1 S2

O3

Elastic region

o1
a) Principal stress space b) Deviatoric stress space

Figure 3.4-2: von Mises yield surface
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Stress ) Stress
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a) Bilinear isotropic hardening

Stress A

s

0
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/

/ !
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c¢) Multilinear isotropic hardening

b) Bilinear kinematic hardening

Stress A

0
2%y

.

L‘ /7 4 Swain

d) Multilinear kinematic hardening

Figure 3.4-3: Isotropic and kinematic hardening

When used with the small displacement/small strain
formulation, a materially-nonlinear-only formulation is employed,
when used with the large displacement/small strain formulation,
either a TL or a UL formulation is employed (depending on
element type), and when used with the large displacement/large
strain formulation, either a ULH or ULJ formulation is employed.

e If geometrically nonlinear effects are to be included, the large
displacements/large strain kinematics are preferred to the large
displacement/small strain kinematics, even when the strains are
numerically small. The large displacement/small strain kinematics
should be used only when the large displacement/large strain
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kinematics are not supported by the element. By default large
strain kinematics are used for 2-D solid and 3-D solid elements
when large displacement kinematics are selected.

o For multilinear plasticity, there is no restriction on the number
of stress-strain points in the stress-strain curve.

¢ Mixed hardening is available only in bilinear plasticity.

¢ Plane strain, axisymmetric or 3-D solid elements that reference
these material models should also employ the mixed displacement-
pressure (u/p) element formulation. The u/p formulation is used by
default for these elements.

¢ In the von Mises model with isotropic hardening, the following
yield surface equation is used:

where ’s is the deviatoric stress tensor and ‘o, the updated yield

stress at time .
In the von Mises model with kinematic hardening, the following
yield surface equation is used:

1 1
ty t t t t 0_2 _
f, —5( s — a)-( s — a)—g o,=0
where ‘@ is the shift of the center of the yield surface (back stress
tensor) and anz is the virgin, or initial, yield stress.

In the von Mises model with mixed hardening, the following
yield surface equation is used:

where
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t _ 0 P
o, = 0'y+MEpe

The back stress ‘@ is evolved by
da=C, (1-M)de’

C, is Prager’s hardening parameter, related to the plastic
modulus £, by

and M is the factor used in general mixed hardening (0 <M < 1)
which can be a variable, expressed as

M =M, +(M,—M,)exp(-ne")

The formulation for the von Mises model with mixed hardening
is given in the following reference:

ref  K.J. Bathe and F.J. Montans, “On Modeling Mixed
Hardening in Computational Plasticity”, Computers and
Structures, Vol. 82, No. 6, pp. 535 - 539, 2004.

Note that the convergence might not be good when the mixed
hardening parameter 77 # 0. Therefore, 77 =0 is preferred.

The yield stress is a function of the effective plastic strain,
which defines the hardening of the material. The effective plastic
strain is defined as

—P

te —

ga’e” -de’
3

o t—

in which de” is the tensor of differential plastic strain increments
and in which de” - de” is calculated as de,f alel.j.7 (see ref. KIB, p.

—P
599) . In finite element analysis, we approximate ‘e as the sum
of all of the plastic strain increments up to the current solution
time:

ADINA R & D, Inc.

493



Chapter 3: Material models and formulations

=Y Al

all solution steps

where Ae = "E Ae? - Ae” and Ae” is the tensor of plastic strain

increments in a solution step. Because of the summation over the

solution steps, we refer to the calculated value of teP as the
accumulated effective plastic strain.

o Ifathermal load is applied to the structure, the thermal strains
are taken into account but the material characteristics are
considered to be temperature independent.

Stress-strain input data for multilinear plasticity in large strain
analysis

In large strain analysis, ADINA works internally with true
(Cauchy) stresses and true (logarithmic) strains. However, typical
tension tests used to determine experimental data return forces and
displacements. These forces and displacements are used to compute
engineering stresses (force per unit original area) and engineering
strain (change in length per unit length). Therefore it is necessary
to convert engineering stress-strain data to true stress-strain data.
This conversion is either done by the user, or is done automatically
by the AUI (using the MASTER CONVERT-SSVAL=YES
option). We now discuss this conversion process in detail.

Consider an experiment in which a fully incompressible
material is put into uniaxial tension. The force-displacement curve
is determined, and the following information extracted from the
force-displacement curve:

The engineering stress is computed as the force / original area.
The engineering strain is computed as the displacement /
original length.

This data is determined for a number of points on the force-
displacement curve, starting at point 1, which is considered to be
the elastic limit. And the Young’s modulus is also determined as
the ratio of engineering stress / engineering strain at the elastic
limit.
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Now consider duplicating the experimental results with a finite
element model that uses a large strain formulation. The tension test
finite element model should return the correct force for each
displacement point on the force-displacement curve.

Because the stress and strain measures used in the large strain
finite element formulation are true stress and true strain, it is
necessary to convert the engineering stress / engineering strain data
to true stress / true strain data.

The conversion can be done using an algorithm similar to

{
For (each stress-strain point i, i=1, 2, ... ) {
e, = engineering strain
O, = engineering stress
7, =0,(1+¢;) = true stress
g =In(1+¢;) = true strain
}
E=1/¢
}

Notice that £ also needs to be converted. The reason is as
follows. If E is not converted, ADINA computes &, =7,/ E but

now &, is no longer the true strain at the elastic limit.
Here is a numerical example:

e =0.1, 0, =30MPa, E=0,/¢ =300 MPa
The conversion given above produces

& =0.09531, 7, =33 MPa

This point is assumed to be at the elastic limit. If £ is kept at 300,
then ADINA computes

g =33/300=0.11

and this &, is no longer at the elastic limit. Therefore £ must be
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recalculated as part of the conversion process:

E =33/0.09531=346.2 MPa

Assuming that the above conversion is performed, then the tension
test finite element model will return the correct force for each of
the displacements corresponding to the points on the original force-
displacement curve.

Assumptions in the conversion formulas

There are a number of assumptions in the above formulas, as
follows:

Elastic response

It is assumed that the stress-strain behavior is linearly elastic up
to the elastic limit. However, since ADINA uses true stress / true
strain data internally, the linear elastic behavior is also based on
true stress / true strain data. In the above example, the linear elastic
response computed by the tension test finite element model is based
on a Young’s modulus of 346.2 MPa. This response is, of course,
quite different than a linear elastic response based on a Young’s
modulus of 300 MPa.

The reason that the Young’s modulus is so different is because
the strain at the elastic limit is “large”. When the strain at the
elastic limit is small, then the change in Young’s modulus is also
small. The change in Young’s modulus caused by the conversion is

3
approximately equal to AE = Eel E.

Compressible elastic material

The above conversion assumes that the material response is
fully incompressible, under both elastic and plastic conditions.
However, in most cases, the material is compressible under elastic
conditions.

Nevertheless, the above formulas are frequently used anyway.
The error thus incurred will be largest for point 1, and will diminish
for larger values of strain.
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Response in uniaxial compression

The above formulas use tension data to convert from
engineering to true values. However, it should be recognized that
ADINA uses the same stress-strain curve in both tension and
compression. Therefore, if a large strain finite element model is
put into uniaxial compression, the observed (compressive) force
will not be equal in magnitude to the expected (tensile) force, at a
given (compressive) displacement level.

Here is an example. Suppose that in a tensile test, the following
data is obtained:

Point Engineering Engineering True strain ~ True
strain stress (MPa) stress

3 0.05 50 0.04879 52.5

4 0.05263 51 0.05129 53.7

First consider a materially-nonlinear-only analysis. Enter the
engineering stress and strain values for the two points as part of the
stress-strain input data. When the model is run in compression to
an engineering strain of -0.05, the engineering stress is -50 MPa.
The force-displacement response is symmetric in tension and
compression.

Next consider a large strain analysis. Enter the true stress and
strain values for the two points as part of the stress-strain input
data. Now run the model in compression to an engineering strain of
-0.05. An engineering strain of -0.05 corresponds to a true strain of
-0.05129, therefore the true stress is -53.7 and the engineering
stress is -56.5. The force-displacement response is not symmetric
in tension and compression.

Homogeneous deformation

The above conversion assumes that the specimen is uniform and
that the specimen deforms homogeneously under load. Therefore
the conversion is only valid up to the ultimate tensile strength of
the material, because beyond that point the deformation of the
specimen might be no longer homogeneous due to localized
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necking.
MASTER CONVERT-SSVAL feature

When CONVERT-SSVAL=NO in the MASTER command (the
default), the AUI does not perform any conversion. True stress-
strain data should be input, and the user could compute this true
stress-strain data using the formulas given above.

When CONVERT-SSVAL=YES, then the AUI performs this
conversion using the formulas given above. Therefore engineering
stress-strain data should be input.

The CONVERT-SSVAL=YES feature should only be used
when all of the elements that use multilinear plastic materials also
use large strain formulations.

The CONVERT-SSVAL=YES feature does not perform any
conversions for the bilinear plastic material models, or for the
plastic-cyclic material models.

Material behavior beyond the last point of the stress-strain
curve in multilinear plasticity

The material behavior beyond the last point of the stress-strain
curve in multilinear plasticity can be considered ruptured, or the
curve can be extended indefinitely with the slope of its final
segment. This depends on the global setting of the EXTEND-
SSCURVE paramter in the MASTER command with indefinite
extension as the default.

Modeling of rupture: Rupture conditions can also be modeled
with these material models except for the beam element. For the
bilinear stress-strain curve, a maximum allowable effective plastic

strain EAP can be specified for the rupture condition. For the

multilinear stress-strain curve, the rupture plastic strain corresponds
to the effective plastic strain at the last point input for the stress-
strain curve.

When rupture is reached at a given element integration point,
the corresponding element is removed from the model (see Section
11.5).

There is also the option of user-supplied rupture. You code the
rupture condition into one of the CURUP subroutines: CURUP2
for 2-D solid elements, CURUP3 for 3-D solid elements, CURUP4
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for beam elements, CURUPS for iso-beam elements, CURUP?7 for
shell elements and CURUPS for pipe elements. These subroutines
are in file ovlusr.f. ADINA provides the calculated latest stresses,
total strains, thermal strains, plastic strains, creep strains, yield
stress and accumulated effective plastic strain to these subroutines
and these subroutines return the current rupture state.

In subroutines CURUP2, CURUP3 and CURUP7, ADINA also
provides solution time, accumulated effective creep_strain
(AECST?2) of the creep material model, and user-input real and
integer arrays RRUPTR and IRUPTR. Viscoplastic strains and
accumulated effective viscoplastic strains of the Anand material
model are also provided through EPSP2 and EPSTR2.

Rate-dependent plasticity for truss, 2-D solid, 3-D solid,
isobeam, pipe and shell elements: The rate dependent model in
ADINA is used to simulate the increase in the yield stress with an
increase in strain rate.

The rate-dependent model only applies to the isotropic plasticity
models with isotropic hardening (bilinear or multilinear).

The rate-dependent model is implemented for truss, 2-D solid,
3-D solid, isobeam, pipe and shell (either single-layered or
multilayered) elements.

The effective yield stress including strain rate effects is

(C:'P
o,= O';) {l+bln[l+.—ﬂ
&y

where J;) is the static yield stress, &, is the transition strain rate

and b is the strain rate hardening parameter. Here & is calculated
Ae”
At
For more information on this formula, see the following
reference:

. . p
using £ =

ref.  W.H. Drysdale and A.R. Zak, “Mechanics of Materials
and Structural Theories — A Theory for Rate Dependent
Plasticity”, Computers and Structures, Vol. 20, pp. 259-
264, 1985.

ADINA R & D, Inc.

499



Chapter 3: Material models and formulations

The AUI can determine constants &, and b using curve-fitting.

The input for the curve-fitting is one or more plastic strain rates and
associated user-input stress-strain curves. For each plastic strain

o
. P . . .
rate £, the average overstress ratio —g is determined from the

o,

associated user-input stress-strain curve; then the curve-fitting is
performed using the strain rates and associated overstress ratios. If

only one strain rate is specified, then &, must be specified and b is

determined using curve-fitting. If two or more strain rates are
specified, both &, and b are determined.

Modeling of gaps using the truss element: When used in
conjunction with the 2-node truss element the elastic-plastic
material models can be used to model gaps in the elements (the
nonlinear elastic model can also be used to model gaps with the
truss elements; see Section 3.3.1). In this case the gap elements can
only resist compressive loads, i.e., gap elements have no tensile
stiffness. The gap width input for each element is used to
determine a strain ey, (compressive strain is defined as negative).
The compressive stiffness of a gap element is zero if the strain in
the element is greater than or equal to e,,, and is nonzero when the
strain is less than eg,.

3.4.2 Mroz-bilinear material model

o This material model is based on
» Isotropic elasticity
» An associated flow rule
» The Mroz kinematic hardening rule for the yield surface
» The Prager kinematic hardening rule for the bounding
surface

e The model is described in the following references:

ref.  Z. Mr6z, “On the description of anisotropic work
hardening”, J. Mech. Phys. Solids, 15 (1967) 163-175.

ref.  F.J. Montans, “Implicit algorithms for multilayer J2-
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plasticity”, Comput. Meth. Appl. Engrg., 189 (2000)
673-700.

e The Mroz-bilinear model can be used with the 2-D solid and
3-D solid elements.

e The Mroz-bilinear model can be used with the small
displacement/small strain, large displacement/small strain and
large displacement/large strain formulations.

When used with the small displacement/small strain
formulation, a materially-nonlinear-only formulation is employed,
when used with the large displacement/small strain formulation, the
TL formulation is used, and when the large displacement/large
strain formulation is used, the ULH formulation is used.

¢ Plane strain, axisymmetric or 3-D solid elements that reference
this material model should employ the mixed displacement-
pressure (u/p) formulation.

o The material behavior is characterized by a uniaxial bilinear
stress-strain curve plus a bounding line. A representation of the
stress-strain curve is shown in Fig. 3.4-4. Under uniaxial loading,

plastic deformation initiates at o = o,, and continues along the

line AB until the bounding stress o is reached. With further

plastic deformation, the stress follows the bounding line along BC.
The material response along ABC is the same as in the case of the

plastic-bilinear model with isotropic or kinematic hardening. If the
tangent modulus £, is equal to zero, the deformation along BC

would correspond to perfect plasticity.

The uniaxial loading is represented in the principal deviatoric
stress space in Fig. 3.4-5. The stress path A’ B’ C’ corresponds to
the stress-strain path ABC. When the yield surface has translated so
that it comes in contact with the bounding surface at point B’ (B),
the two surfaces translate together along their common contact
point normal along B” C’ (BC).

e When the loading is reversed, the material undergoes elastic
unloading along CD, and deforms plastically once D is reached, see
Fig. 3.4-4. From this point, the material response differs from that
of the traditional plastic-bilinear model with kinematic or isotropic
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hardening. For example, in the case of kinematic hardening,
continued plastic deformation follows DF with slope E,, , whereas
in the case of the Mroz-bilinear model, continued plastic
deformation follows DF with slope £, . In Fig. 3.4-5, this

corresponds to translation of the yield surface along D’ F’ . During
this translation, the bounding surface does not translate. When the
yield surface again comes in contact with the bounding surface at
point F” (F), the two surfaces translate together along their
common normal along F’ G’ (FG). If the loading is again reversed,
the elastic unloading of the material follows GH in the stress-strain

curve.

Stress A

[
|

Strain

—
—
—

Bounding line

Figure 3.4-4: Mroz-bilinear model; stress-strain curve
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Bounding surface ~ Bounding surface

at stress state C at stress state G
Yield surface Yield surface
$3 gt stress state C  at stress state G 3 S3
>~

(a) Loading path O-A-B-C (b) Reverse loading C-D-F-G

Figure 3.4-5: Mroz-bilinear model behavior in
deviatoric stress space

e In order to describe the Mroz-bilinear material model under
general, non-radial loading (see Fig. 3.4-6), two conditions are
defined for plastic deformation during a time step:

» Casel:
The yield surface translates in the deviatoric stress space
during the time step, but does not come into contact with the
bounding surface.

» Case II:

- The yield surface translates in the deviatoric stress space
until it reaches the bounding surface, after which both
surfaces translate together along their common contact
point normal.

- The two surfaces are already in contact at the beginning
of the time step, and the state of the loading causes both
surfaces to translate together along their common contact
point normal.

The implicit Mroz translation rule for the yield surface is based
on a target normal tensor defined as
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where S” is the trial stress for the time step and ' is the back

stress of the bounding surface at the end of the previous time step.
The target normal tensor is explicit in the sense that no iterations
are required to determine it, but implicit in the sense that it depends
on the trial stress for the time step. This target normal tensor is the
same for both Case I and Case II. In order for the target normal
tensor to be uniquely defined, the following condition on the
choice of the yield stress and the bounding stress must be satisfied:

0,<0,<20,

Case I:

The translation direction for the yield surface, according to the
implicit Mroz translation rule, is given by

2
t+Atm:tB_ta_’_\/;(O_yB_O_y)H—Att

with the increment in the back stress of the yield surface given by

t+At
m

t+At :
m|

t+At t ara
Aa=""0-"a=Ay"C]

In the above equation, the effective plastic modulus C;‘ is given by

o 2 EE
’ 3E-E,

The plastic strain increment for the step is given by the associated
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flow rule

t+AtS _ t+Ata

Aep :A]/a t+Atn:A]/a

t+AtS _ t+Ata

where Ay“? is a consistency parameter which has to be determined

iteratively. The yield condition fy =0 is solved for the

consistency parameter A )/“ :

fv :%(tJrAts_ t+Ata)‘(t+Ats_ HA[(I)—%O'}% =0.

(a) Case [; Only the yield surface translates during the time step

Figure 3.4-6: Mroz model under general, non-radial loading
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(b) Case II; Both surfaces translate during the time step

Figure 3.4-6: (continued)
Case II:

The back stress of the bounding surface evolves according to

AB — t+Atl3_tB:A}/ﬂcf t+Att

where A ;/ﬂ is a consistency parameter associated with translation
of the bounding surface, and C f is an effective plastic modulus

given by
ETETB

cr =2 Libn
3 ET _ETB

P
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By geometry, the position of the yield surface at the end of the time
step is related to that of the bounding surface through

2
t+At  _ t+AL “ _ t+At
a=""p+ 3 (O'yB O'y) t.

The increment in the back stress of the yield surface becomes
Ad, = t+At t,, _t t A ﬂCﬂ 2 t+At
a=""o-"a="f-"a+| Ay°C + E(GyB_Gy) t

from which the consistency parameter associated with translation
of the yield surface is calculated as

« - [A9
e

P

Ay

Finally, the plastic strain increment for the step is given by the
associated flow rule

Ae” = (A;/“ +A7”) At

As the consistency parameter Ay“ is a function of the consistency
parameter A ;/ﬂ , the yield condition for the bounding
surface, f,, =0, can be solved for the consistency parameter Ayﬂ

alone:

f;rB :%(HA:S_ HAtB)'(tJrAtS_ t+AtB)_%O-)2;B -0

¢ Note that if a zero tangent modulus is prescribed for the
bounding surface, £, = 0, the bounding surface does not
translate. In this case, the effective stress remains smaller than or

: _ 3
equal to the bounding stress, "G =, /— HAS. TS <
2 »
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o Ifa thermal loading is applied to the structure, thermal strains
are taken into account, but the material characteristics are taken to
be temperature independent.

e Rupture conditions can be modeled: When a positive value e

is input for the maximum allowable effective plastic strain, the

program compares the accumulated effective plastic strain, "“&”

with e for each material point used in the analysis and over the

whole history of deformation. It is considered that the rupture of a

. . At—p - —
material point occurs when AeP s greater than e Ap . When

rupture is reached at a material point, the corresponding element is
removed from the model (see Section 11.5). The user-supplied
rupture option is also available (see Section 3.4.1).

3.4.3 Plastic-orthotropic material model

e The plastic-orthotropic model is based on:

» The Hill yield condition
» An associated flow rule
» A proportional hardening rule

The elastic constants can be either isotropic or orthotropic.

e This model can be used with the 2-D solid, 3-D solid and shell
elements.

e The plastic-orthotropic model can be used with the small
displacement/small strain, large displacement/small strain and
large displacement/large strain formulations. Shell elements
used in conjunction with the large displacement/large strain
formulation must be 3-node, 4-node, 6-node, 9-node or 16-node
single layer elements described entirely by midsurface nodes.

When used with the small displacement/small strain
formulation, a materially-nonlinear-only formulation is employed;
when used with the large displacement/small strain formulation, the
TL formulation is employed; and when used with the large
displacement/large strain formulation, the ULJ formulation is
employed.
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o If geometrically nonlinear effects are to be included, the large
displacements/large strain kinematics are preferred to the large
displacement/small strain kinematics, even when the strains are
numerically small. The large displacement/small strain kinematics
should be used only when the large displacement/large strain
kinematics are not supported by the element. By default large strain
kinematics are used for 2-D solid and 3-D solid elements when
large displacement kinematics are selected.

e The mixed formulation can be used (and is the default) for 2-D
axisymmetric, 2-D plane strain and 3-D solid elements. But when
the mixed formulation is used, the elastic constants must be
isotropic.

o The following is a quick summary of the basic concepts used in
the plastic-orthotropic material model. For further information, see
the following reference:

ref. M. Koji¢ and K.J. Bathe, Inelastic Analysis of Solids and
Structures, Springer-Verlag, 2003.

ref. R, Hill, The Mathematical Theory of Plasticity, Oxford
University Press, 1998.

The Hill yield condition is given by:

aa )2 +H(O-aa _O-bb )2

+2Lo’, +2M o’ +2No,, —1=0

F(o, -0, )2 +G(o,. -0

where (a, b, ¢) are the material principal axes, and F, G, H, L, M, N
are material constants. These constants are given by

11 1 1
F=—| —+—-——
2(1/2 A ij
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—
[
—

L= ; M=——; N=
2Y 27 2Y,,

where X, Y, Z, are the yield stresses in the material directions a, b,
¢, and Yyp, Yye, Yo are the yield stresses for pure shear in the
planes (a,b), (a,c), and (b,c) (see Figure 3.4-7).

Vield surface A Initial yield surface
u

at time t T -

— ~ —

\ h Z

‘

}f///
- /
A

—
-
AN
N

P .
\\"'IIHII" ====E==

~
~
~
-

a, b, c material axes X, Y, Z initial yield stresses
Figure 3.4-7: Orthotropic yield surface
The Hill yield condition can also be written as

f(o-bb _O-cc )2 +g(o-cc _O-aa )2 + h(aaa _Ubb )2

2 2 2 2
+2lo,, +2mo,, +2no,, —o, =0
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where
fZO'jF, g:GyZG, h:ofH, Kzaf,L, m:G}Z,M, n:ofN

and

o’ =1(1(X2 +Y 2 )+ 4T +Y,fCJ
' 23

The Hill effective stress is defined as

55 :f(abb ~ O )2 + g(acc ~ O )2 + h(a‘w O )2

+2(c’, +2mo, +2no;,

so that the yield condition can be written & — o, =0. Notice that

under uniaxial tension, the Hill effective stress is not equal to the
uniaxial stress, in general.
The accumulated effective plastic strain € is defined using the

principle of the equivalence of plastic work dW" =& de’ . The

formula for the increment of effective plastic strain is different than
the corresponding formula used for isotropic plasticity. Again,
under uniaxial tension, the accumulated effective plastic strain is
not equal to the uniaxial plastic strain, in general.

The hardening rule is defined in terms of the relationship
between the yield stress and the accumulated effective plastic

do
strain. The universal plastic modulus is defined as E” =—=

u dgap ’
and can be either constant or varying, as discussed in more detail
below. During hardening, the shape coefficients f, g, &, [, m, n are
considered constant.

Note that orthotropic proportional hardening reduces to
isotropic hardening for the appropriate values of the elastic and
tangent moduli.

The effective-stress-function algorithm is used to calculate
stresses and plastic strains when plasticity occurs.

e There are two options for the input of the universal plastic
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modulus and the initial yield stress:

Bilinear universal plastic modulus E” . In this case the plastic
moduli for directions a, b, ¢ and planes (a,b), (a,c), (b,c) are
EP
givenby EY =Ef =E” =E” and E}, =E' = E =—.
NE)
Either enter £/ directly, or enter the independent moduli

EaT,E ,,T ,EL,T for the a, b, ¢ directions and for the (a,b), (a,c),

(b,c) planes. Then E” is equal to

1 1 2 2 2 2 2 2
\/—(—(E;’ +E[ +E )+ El + EL +E,§;j
23

where
EE’
Eip = ﬁ i= a,b,c
and
EUEUT
; = ij = ab,ac,bc
El.j — El.j

The initial yield stress o, is entered by direct specification of

the yield stresses X, Y, Z,Y,, Y, ., ¥, ,then by the formula

ac?

o’ =1(1(X2 +Y 2 )Y+ Y +Y,§J.
23

Vv

Analytical uniaxial plastic stress-strain curve: The plastic
stress-strain curve is assumed to have the following analytical
form:

—p\"
ayzC(e,,+ea )

in which e, is the initial yield strain, » is the strain hardening
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coefficient and C is a constant. The initial yield stress o, is

computed using o, = Ce, , and the universal plastic modulus

n-1
E” is computed using E” = nC(eO +Eap) :

u

e There are three ways to specify material constants ', g ,h, /,

m, n:

» Enter the yield stresses X, Y, Z,Y,, Y , Y, then

ADINA calculates the material constants using the equations
given above. When this option is used in conjunction with an
analytical plastic stress-strain curve, the initial yield stress

(1
computed from o ZE(E(XZ +Y7 + Zz)+ Yo +Y + Yaij must

equal the initial yield stress computed from o, = Ce, .

» Directly specify f, g, h, {, m, n. Notethat f, g, &,
£, m, n must all be positive. When this option is used in
conjunction with a bilinear universal plastic modulus, all of the
yield stresses X, Y, Z, Y,, Y, Y, mustbe entered, but only

ac

the initial yield stress computed from

y

1(1 .
o’ =5[§(X2 LY+ 2 )+ Y Y sz“j is used.
» Enter the Lankford coefficients 7, 7, #,, then
7 1 7

f= 8=
”90(”0"‘1)

s - s
7y +1 r,+1

YU C/Tl) SR

Too (ro + 1)

in which #, is the Lankford coefficient for the rolling direction,
r,s is the Lankford coefficient for the direction 45°to the rolling
direction and r,, is the Lankford coefficient for the direction 90°
to the rolling direction (the transverse direction). When this
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option is used in conjunction with a bilinear universal plastic
modulus, all of the yield stresses X, Y, Z,Y,, Y , Y, must

ac

be entered, but only the initial yield stress computed from

ol = %G(XZ Y+ 2+ Y Y Y,j) is used.
¢ A typical combination of input options is the analytical
universal plastic stress-strain curve option together with Lankford
coefficients. When this combination of options is used, the
material a-direction is the rolling direction, and, under uniaxial
tension in the rolling direction, the Hill effective stress is equal to
the uniaxial stress and the effective plastic strain is equal to the
uniaxial plastic strain. Therefore the analytical plastic stress-strain
constants are taken from the plastic stress-strain curve in the rolling

direction. In particular, o, = Ce, gives the initial yield stress in

the rolling direction.

e When the 2-D solid element or shell element is used, material
axes a and b must lie in the plane of the element.

e Ifathermal load is applied to the structure, the thermal strains
are taken into account but the material characteristics are
considered to be temperature independent.

¢ Rupture conditions can also be modeled: a maximum allowable
effective plastic strain Eap can be specified for the rupture

condition. When rupture is reached at a given element integration
point, the corresponding element is removed from the model (see
Section 11.5).

The user-supplied rupture option can also be used (see Section
3.4.1).

3.4.4 Gurson material model

e The Gurson model is intended for use in fracture/damage
analysis. The purpose of the Gurson plastic model is to predict
ductile crack growth by void growth and coalescence. This is a
micromechanical model based approach.
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e The Gurson model is available for the 2-D solid and 3-D solid
elements.

e The Gurson model can be used with the small
displacement/small strain, large displacement/small strain and
large displacement/large strain formulations.

When used with the small displacement/small strain
formulation, a materially-nonlinear-only formulation is employed,
when used with the large displacement/small strain formulation, the
TL formulation is employed and when used with the large
displacement/large strain formulation, the ULH formulation is
employed.

¢ In the Gurson model, the yield function has the form

(a) . 3 4P 2\ _
¢_(—j +2q.f cosh(—z—]—(l+q3f )—O

Oy Oy

in which ¢ is the yield function, g is the von Mises stress, o, is
the equivalent tensile flow stress, p is the pressure (positive in
compression), f " is based on the void volume fraction and ¢,,¢,
g5 are the Tvergaard constants. Note that this reduces to the von
Mises yield function when f~ equals zero. f~ is defined as

f for f<f.
S = fc+%(f—fc) for £ > f.

in which f'is the void volume fraction, f, is the critical void

volume fraction, f,. is the void volume fraction at final failure and

fu*zl/ql.

o Initially, the void volume fraction is f;, which must be input.
The increase of void volume fraction is controlled by
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df =(1- f)del, + Adz"

in which de&/, is the sum of the normal plastic strain components,

£” is the equivalent plastic strain and 4 is the void nucleation
intensity. A is defined as

_P_ 2
NN U s Bl
SyN2m 20§,

in which £, is the volume fraction of void nucleating particles,

&y is the mean void nucleation burst strain and S, is the
corresponding standard deviation.

e The uniaxial stress-strain curve is

N
o o, 3G _
~0 _ _0+_(c;p

Gy O'y O'y

where o is the tensile yield stress of the matrix, G is the shear

modulus and N is a material constant (typically on the order of 0.1).

e For more information, see the following reference:

ref. N. Aravas, “On the numerical integration of a class of

pressure-dependent plasticity models”, Int. J. Num.
Meth. in Engng., Vol. 24, 1395-1416 (1987).

3.4.5 Plastic-cyclic material model
o This material model is based on
» The von Mises yield condition (see p. 597, ref. KIB)
» A flow rule using the von Mises yield function

» An isotropic and/or kinematic hardening rule. The isotropic
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3.4.5.1

and kinematic hardening rules used in the plastic-cyclic model
are suitable for use in modeling cyclic plasticity.

o The plastic-cyclic material model differs from the plastic-
bilinear and plastic-multilinear material models because the
isotropic and kinematic hardening rules are different. However, the
plastic-cyclic material model can reproduce the plastic-bilinear and
plastic-multilinear models when suitable material constants are
chosen.

e This material model can be used with the truss, 2-D solid, 3-D
solid, Hermitian beam, shell and 3-D shell elements. The shell
elements must be MITC3, MITC4, MITC6, MITC9 or MITC16
single-layer shell elements.

e This material model can be used with the small
displacement/small strain, large displacement/small strain and
large displacement/large strain formulations. Large
displacement/large strain kinematics can only be used with the 2-D
solid, 3-D solid, shell and 3D-shell elements.

o If geometrically nonlinear effects are to be included, the large
displacements/large strain kinematics are preferred to the large
displacement/small strain kinematics, even when the strains are
numerically small. The large displacement/small strain kinematics
should be used only when the large displacement/large strain
kinematics are not supported by the element. By default large
strain kinematics are used for 2-D solid and 3-D solid elements
when large displacement kinematics are selected.

Fundamental concepts

e Many of the ideas used in the plastic-cyclic material model are
given in the following reference:

ref  J. Lemaitre and J.-L. Chaboche, Mechanics of Solid
Materials, Cambridge University Press, 1990.

We abbreviate this reference as ref LC in the discussion below. As
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an aid to understanding the model, whenever our notation differs
from the notation used in ref LC, we give the equivalent Lemaitre
and Chaboche notation.

¢ The motivation for the plastic-cyclic material model is
illustrated in Figs. 3.4-8 and 3.4-9. Fig. 3.4-8 shows a bar subjected
to uniaxial cycling, with the strain prescribed. Fig. 3.4-9 shows
response predictions from the plastic-bilinear and plastic-
multilinear material models of Section 3.4.1. On repeated cyclic
loading, perfect plasticity and multilinear hardening plasticity
produce stabilized plastic cycles with no additional hardening.
Bilinear isotropic hardening does not produce a stable plastic cycle
and bilinear kinematic hardening produces a very rough
approximation to a stable plastic cycle.

¢ Response predictions from the plastic-cyclic material model are
illustrated in Fig. 3.4-10. When nonlinear kinematic hardening is
used without isotropic hardening, a stable plastic cycle is reached
after one cycle. In this stable plastic cycle, the transition from
elastic to plastic conditions occurs more gradually than the
corresponding transition from bilinear kinematic hardening. Cyclic
hardening and cyclic softening are obtained by combining the
nonlinear kinematic hardening with isotropic hardening or
softening.
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g
w \/ \/ \/ \/ \/Time
a) Uniaxial cycling of a bar b) Prescribed strain time history

Figure 3.4-8: Uniaxial cycling example

e The plastic-cyclic material model can optionally contain a strain
memory surface. The motivation for using the strain memory
surface is shown in Fig. 3.4-11. Considering an increase in the
prescribed strain amplitude, if no strain memory surface is used,
then no additional cyclic hardening takes place, whereas if a strain
memory surface is used, additional cyclic hardening takes place.
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Stress

Stress —

/ / S/

7 S
717

a) Perfect plasticity b) Bilinear isotropic hardening

Stress Stress

~7 /) ]

¢) Bilinear kinematic hardening d) Multilinear isotropic hardening

Stress

7

/ /

/ / Strain

¢) Multilinear kinematic hardening

Figure 3.4-9: Response predictions using the plastic-bilinear and plastic-multilinear models
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Stress Stress

7/
S e

a) Nonlinear kinematic hardening, b) Nonlinear kinematic hardening,
no isotropic hardening or softening isotropic hardening
Stress
Strain
————— —

¢) Nonlinear kinematic hardening,
isotropic softening

Figure 3.4-10: Response predictions using the plastic-cyclic material model
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Strain

Time

a) Prescribed strain time history

Additional
t Stress cyclic )
Stress ?4 hardening
Strain Strain

b) Stress-strain curve without ¢) Stress-strain curve with
strain memory surface strain memory surface

Figure 3.4-11: Response predictions with and without
strain memory surface

¢ Ratchetting occurs when prescribed stresses with non-zero mean
stress are applied to the bar, as shown in Fig. 3.4-12.
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Stress

AN

Stress

POV = =

a) Prescribed stress time history b) Stress-strain curve

Figure 3.4-12: Ratchetting using the plastic-cyclic material model

Stresses, strains, stress-strain law:

Al A A
t+ tT=t+ ts+l‘+ l‘z_mI

t+At

where "'t is the stress tensor (6 in ref LC), s is the deviatoric

t+At
T

stress tensor (6" in ref LC) and ., 1s the mean stress

(hydrostatic stress ¢, inref LC).

t+Ate — t+Atel + t+AtemI

t+At t+At 1
(3

where " e is the strain tensor (€ in ref LC), is the

t+At
e

deviatoric strain tensor (&' in ref LC) and . 18 the mean strain

(hydrostatic strain ¢, inref LC).

t+At t+At
e

m

T, =3k

t+Ats — 2G(t+At er _ A eP)

where k¥ and G are the bulk modulus and shear modulus, and

Ae” s the plastic strain (€¢” inref LC). Thermal strains are not

included in the above equations, but are included in ADINA when
there are thermal effects.
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Yield condition: The von Mises yield condition is

1

t+At
+ f:v:E

t+At t+At

2 1
S | __t+AtO_2:0

3 y

where “““a is the back stress tensor (X and X' in ref LC, note
that back stress is always deviatoric) and ‘™ o, is the yield stress
(oy + R or k inref LC). The norm of a symmetric tensor a is

defined as ||a|| =+/a:a . The yield condition is always evaluated
at time ¢+ Af .

Figure 3.4-13 shows the yield condition.

Figure 3.4-13: von Mises yield surface in principal
deviatoric stress space
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Flow rule: The flow rule states that the direction of plastic strain
increments is normal to the yield surface.

directions of Ae” = directions of (”ﬁms - ’+'BA’(1)

where Ae" is the increment in plastic strain, and /3 is a constant
used to choose the yield surface configuration ( f =0 corresponds
to the configuration at time ¢, /=1 corresponds to the
configuration at time ¢ + Af , other values of £ correspond to

intermediate configurations). (The concept is similar to that used
in alpha-integration; we would have used « instead of [, except
that ¢ is used for the back stresses.) The directions of a
. S a
symmetric tensor a are defined as directions of a = H .
a

Figure 3.4-14 shows the evolution of the yield surface using the
stress-strain law, yield condition and flow rule.
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Ae” parallel to n

) ~ M -~
. -~

S N * \2 GAe,!’
\‘,ﬁ‘ //// 2GAe”

LA
\ \t tS

Yield surface Yield surface
at time t at time t + At
Yield surface
at time t + At/2

Yield surface Yield surface
at time t at time t + At

¢) B=1/2, Ae” normal to yield

b) B=1, Ae” normal to yield
surface at time t + At/2

surface at time t + At

Figure 3.4-14: Incremental update of yield surface and plastic strains

Strain memory surface: The memory-exponential isotropic
hardening rule uses the concept of a strain memory surface with

additional internal variables "“*'& and "“*'q. The strain memory

surface is now briefly described.
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The strain memory surface is defined in the space of plastic strains
as the surface of a sphere centered at position ”Até with radius

3
\/; t+Atq. (In ref LC, t+At € is written ). This surface can be

written as
2l b gl sar 2
So=3 e =g =g =0

Figure 3.4-15 shows the strain memory surface.

Figure 3.4-15: Strain memory surface in principal
plastic strain space

The differential rules used for the evolution of the strain memory
surface are

dq = ((directions of de"): (directions of (‘e" - '&)))de”
and

directions of d& = directions of (‘e’ — ‘&)

in which the symbol <> means that <u>=0 when u<0, and <u>=u
when ©>0. The incremental versions of these rules are
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Aq = 77<(directi0ns of Ae"): (directions of (""" e’ — t+ﬁAt&))>AEP
and

directions of Ag = directions of ("""e® — V)

Again, the f notation is used to denote a configuration between ¢
and ¢+ At . These concepts are illustrated in Fig. 3.4-16.

w7
N~

'*f*f— +
;b‘t Alep

Ae

1
]

1

1

_ [
s

[

4
4

I ’ AE parallel to n

Figure 3.4-16: Incremental update of strain memory
surface, for f=1

1
n is a material constant that must be between 0 and 5 . Typically

7= 1

5
These rules ensure that the strain memory surface at time ¢ + At
encloses the strain memory surface for all preceding times. The
evolution of the strain memory surface in 1D uniaxial straining is
shown in Figure 3.4-17.
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Shaded area is area
. enclosed by strain
q, &y, f memory surface

Time

Figure 3.4-17: Evolution of strain memory surface in
uniaxial cyclic straining

Isotropic hardening rules: The isotropic hardening rules are
shown in Figure 3.4-18.
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Oy ‘7 Q= —
«
— q7q / R Memory-exponential
Q(cp) hardening
O Q(ap) [

Bilinear hardening

Figure 3.4-18: Dependence of stress radius on accumulated
effective plastic strain

Bilinear hardening:

t+At 0 t+At—P
o,=o0,+E," e

0 . A—=P .
where o, and F, are material constants, and A" is the

accumulated effective plastic strain ( p inref LC). “*e” is

— — — _ 2
calculated using """ = ‘e” + Ae”, where Ae” = \/;Aep :Ae’

EE
For bilinear hardening, £, = L— where E, is the slope of the

T
stress-strain curve during plasticity (this formula assumes no
kinematic hardening).
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3.4: Isothermal plasticity material models

Multilinear hardening:

. —P . . . .

Pairs of (e ,O'y) are given. Itis allowed for o to either increase
—P .

or decrease as e increases.

If the multilinear hardening curve is given in terms of the uniaxial
response (e,0) where o is the tensile stress corresponding to the

unaxial strain e, then
_ (o2 . . .
(e F=e _E’ o, = O'j are the corresponding points for the points

(e,0) . This formula assumes no kinematic hardening.

Exponential hardening:
t+At _ 0 t+At—P
o,=0,+0(-exp(-b""e"))

where Q and b are material constants. () can be positive to
model cyclic hardening, and O can be negative to model cyclic
softening.

Memory-exponential hardening (exponential hardening with strain
memory surface):

t+At

In this model, the yield surface size "o, depends on the strain

t+At

memory size ' g (see above for a description of the strain

memory surface).

The yield surface size is

t+At _ 0 t+At
o,=0,+ R

where "R is the change in the size of the yield surface. "R is
defined using the differential equation

dR =b('O-"'R)de"
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and is calculated using "R = 'R+ AR,
AR =b("™Q—"MR)Ae” . "™Q is the asymptotic change in
yield surface size, and is calculated as

HA[Q = Q(HAIQ) =0, — (0, —O) exp(_zluHAtQ)

A . . .
where "¢ is the size of the strain memory surface.

The material constants for the memory-exponential material model
are OO‘y , Oy, O, b, p and the strain memory surface

parameter7; .

Kinematic hardening rule: The kinematic hardening rule is:
Armstrong-Fredrick nonlinear kinematic hardening:

The back stress is expressed as a sum of partial back stresses
t+Atu — Z t+Ata(m)

where "M a™ is partial back stress number m. All of the partial

back stresses are independent of each other.
Each partial back stress evolves according to the differential rule

2
da(m) — Eh(m)del) _ é/(m) ta(m)dEP

where A and £ are material constants (these material
constants are C, and y, for partial back stress number / in ref LC).

Assuming that the directions of plastic strain increments are
constant during a time step, this can be integrated to obtain

t+Ata(m) — A(m) _ (A(m) _ tu(m))exp(_Ab(m))
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(m)
where A" = \/% f"('") (directions of Ae"), Ab™ =" A"

It is allowed to use one partial back stress, with ¢ =0. Then linear
kinematic hardening is recovered, with £, = h (this formula

assumes no isotropic hardening).
Stress — plastic strain curve for uniaxial cycling

In uniaxial cycling, a typical stress — plastic strain curve is shown
in Figure 3.4-19. Here only one partial back stress is used with
material constants /4 and £ . Since a stable cycle is considered

here, o, is taken from the isotropic hardening rule assuming a
very large value of €” . The hardening modulus is given by
E,=h-¢ (O‘ - O'y) on segment A-B. The size of the plastic

strain cycle can be related to the material constants using the
relation

P
A—Gzﬁtanh {Ae +0,
2 4 2 i

Thus, given several cycles for different cyclic strains, the material
constants can be estimated using the above formula.
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Ao

d

Figure 3.4-19: Stable uniaxial plastic cycle using one
term in Armstrong-Fredrick nonlinear
kinematic hardening rule

Stress — plastic strain curve for initial loading

During initial loading, it can be shown that
o=o0, +£(l—exp(—§ep))
¢

The corresponding stress — plastic strain curve is shown in Fig. 3.4-
20. Here only one partial back stress is used with material constants
h and ¢ . In this formula, it is assumed that there is no isotropic

hardening, and that the yield stress is o, . Hence the hardening

observed during initial loading can be modeled using nonlinear
kinematic hardening, without the use of isotropic hardening.
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h/¢

Figure 3.4-20: Stress - plastic strain curve during initial loading,
using nonlinear kinematic hardening

Combination of isotropic and kinematic hardening rules: By
combining the Armstrong-Fredrick nonlinear kinematic hardening
rule with the isotropic hardening rules, a wide variety of cyclic
phenomena can be simulated, such as cyclic hardening and
softening, shakedown and ratcheting. See ref LC for details.

Stress-strain integration: When plasticity is detected, the
incremental plastic strains are solved for using an iterative solution
procedure. The maximum number of iterations can be specified,
and the tolerance used in assessing convergence can be specified.

Constitutive tensor: The constitutive tensor (stress-strain matrix)
is constructed to be tangent. This gives good convergence in the
equilibrium iterations. However, in general, the tangent
constitutive tensor is non-symmetric. Therefore it is allowed to use
the non-symmetric equation solver when the plastic-cyclic model is
used. It is also allowed to use a symmetric equation solver; in this
case, the constitutive tensor is symmetrized, and this will reduce
the rate of convergence (increase the number of equilibrium
iterations).

Formulations: When used with the small displacement/small strain
formulation, a materially-nonlinear-only formulation is employed,
when used with the large displacement/small strain formulation, a
TL is employed, and when used with the large displacement/large
strain formulation, either a ULH or ULJ formulation is employed.
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3.4.5.2

Mixed displacement-pressure formulation: Plane strain,
axisymmetric and 3-D elements that reference these material
models should also employ the mixed displacement-pressure (u/p)
element formulation. This is because the plastic strains are
incompressible. The u/p formulation is the default for these
elements.

Thermal strains: If a thermal load is applied to the structure, the
thermal strains are taken into account but the material
characteristics are considered to be temperature independent.

Modeling of rupture: Rupture conditions can also be included
with this model.

The maximum accumulated effective plastic strain can be specified
for the rupture condition. When rupture is reached at a given
element integration point, the corresponding element is removed
from the model (see Section 11.5).

The option of user-supplied rupture is not available for the plastic-
cyclic material.

Rate-dependent plasticity: The option of rate-dependent plasticity
is not available for the plastic-cyclic model.

Specification of input

MATERIAL PLASTIC-CYCLIC: The basic command is

MATERIAL PLASTIC-CYCLIC NAME E NU DENSITY,
ALPHA PLCYCL-ISOTROPIC PLCYCL-KINEMATIC,
PLCYCL-RUPTURE BETA MAXITE RTOL

This command references data defined in commands PLCYCL-
ISOTROPIC, PLCYCL-KINEMATIC, PLCYCL-RUPTURE.
These commands provide the input for the isotropic, kinematic and
rupture parts of the plastic-cyclic model. Each of the isotropic,
kinematic and rupture options given above has a corresponding
PLCYCL-ISOTROPIC, PLCYCL-KINEMATIC and PLCYCL-
RUPTURE command, see below for a detailed description of these
commands.
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It is allowed to not specify a value for PLCY CL-KINEMATIC or
PLCYCL-RUPTURE. Then these effects are not included in the
model.

BETA is the integration factor £ described above. When
BETA=AUTOMATIC, ADINA chooses the value of f as
follows: [ =1 for static or implicit time integration; £ =0 for

explicit time integration. MAXITE is the maximum number of
iterations used to solve for the incremental plastic strains. RTOL is
a tolerance used to assess convergence of the iterations. RTOL can
be thought of as a reference incremental plastic strain.

PLCYCL-ISOTROPIC: The commands

PLCYCL-ISOTROPIC BILINEAR NAME YIELD EP

PLCYCL-ISOTROPIC MULTILINEAR NAME
aeps; Stress-radius;

PLCYCL-ISOTROPIC EXPONENTIAL NAME YIELD Q B

PLCYCL-ISOTROPIC MEMORY-EXPONENTIAL NAME,
YIELD Q0 QM MU B ETA

are used to specify the constants for the isotropic part of the plastic-
cyclic model.

PLCYCL-KINEMATIC: The command

PLCYCL-KINEMATIC ARMSTRONG-FREDRICK NAME
h; zeta;

is used to specify the constants for the kinematic part of the plastic-
cyclic model.

PLCYCL-RUPTURE': The command

PLCYCL-RUPTURE AEPS NAME VALUE

is used to specify the constants for the rupture part of the plastic-
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cyclic model. Rupture is based on the accumulated effective
plastic strain.

Input examples:

1) The simplest material that can be defined using this command
is given by a command sequence such as

PLCYCL-ISOTROPIC BILINEAR 1 YIELD=2ES8
MATERIAL PLASTIC-CYCLIC 1 E=2.07E11l NU=0.3,
DENSITY=7800 PLCYCL-ISOTROPIC=1

This material is perfectly plastic. This material description
is equivalent to

MATERIAL PLASTIC-BILINEAR 1 E=2.07E11l NU=0.3,
DENSITY=7800 YIELD=2ES

2) The PLASTIC-CYCLIC material can be used to model bilinear
isotropic hardening using a command sequence such as

PLCYCL-ISOTROPIC BILINEAR 1 YIELD=2ES,
EP=2.090909E09

MATERIAL PLASTIC-CYCLIC 1 E=2.07E1l1l NU=0.3,
DENSITY=7800 PLCYCL-ISOTROPIC=1

and this material description is equivalent to

MATERIAL PLASTIC-BILINEAR 1 E=2.07E11l NU=0.3,
DENSITY=7800 YIELD=2E8 ET=2.07E09

3) The plastic-cyclic material can be used to model multilinear
isotropic hardening using a command sequence such as

PLCYCL-ISOTROPIC MULTILINEAR 1

0 2.0E8

1E-3 2.5E8

2E-3 2.7E8

MATERIAL PLASTIC-CYCLIC 1 E=2.07E1l1l NU=0.3,
DENSITY=7800 PLCYCL-ISOTROPIC=1

and this material description is equivalent to
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MATERIAL PLASTIC-MULTILINEAR 1 E=2.07El1l,
NU=0.3

9.6618E-4 2.0ES8

2.2077E-3 2.5E8

3.3043E-3 2.7E8

4) The plastic-cyclic material can be used to model bilinear
kinematic hardening using a command sequence such as

PLCYCL-ISOTROPIC BILINEAR 1 YIELD=2ES8

PLCYCL-KINEMATIC ARMSTRONG-FREDRICK 1

2.090909E9

MATERIAL PLASTIC-CYCLIC 1 E=2.07E11l NU=0.3,
DENSITY=7800 PLCYCL-ISOTROPIC=1,
PLCYCL-KINEMATIC=1

and this material description is equivalent to

MATERIAL PLASTIC-BILINEAR 1 E=2.07E11l NU=0.3,
DENSITY=7800 YIELD=2E8 ET=2.07E09,
HARDENING=KINEMATIC

Conversion formulas
Plastic-bilinear to plastic-cyclic:

In general, given a plastic-bilinear material of the form

MATERIAL PLASTIC-BILINEAR ...,
HARDENING=ISOTROPIC,
E=E YIELD=YIELD ET=ET

this material can be converted into an equivalent plastic-cyclic
material as follows:

PLCYCL-ISOTROPIC BILINEAR 1 YIELD=YIELD EP=EP
MATERIAL PLASTIC-CYCLIC... E=E... ,
PLCYCL-ISOTROPIC=1

EE

T

using the formula EP =

T
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3.4.5.3

Plastic-multilinear to plastic-cyclic:

In general, given a plastic-multilinear material of the form

MATERIAL PLASTIC-MULTILINEAR ...,
HARDENING=ISOTROPIC,
E=E

strain; stress;
strain, stress,

strain; stress;

this material can be converted into an equivalent plastic-cyclic
material as follows:

PLCYCL-ISOTROPIC MULTILINEAR 1
aeps:; Stress-radius;
aeps, Stress-radius,

aeps; Stress-radius;
MATERIAL PLASTIC-CYCLIC ... E=E ...,
PLCYCL-ISOTROPIC=1

using the formulas

aeps; = strain; — (stress; /E)

stress-radius; = stress,

Note that aeps; will always be zero using these formulas.

Output variables

The material model outputs stresses, strains, plastic strains,

. . . At—P . Al
accumulated effective plastic strain “**'e" , yield stress " o,

V

t+At t+At
S — a

3
stress radius (defined as \/; |) and dissipated plastic

t+At

work (defined as w, = J. t:de”).

0
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