
UTOMATIC

YNAMIC

NCREMENTAL

ONLINEAR

NALYSIS

ADINA Handbook

ADINA 9.6 April 2020

ADINA R & D, Inc.

AD I N A S Y S T EM 9 . 6

T HE AD I N A HANDBOOK

AD I N A R&D , I N C .

Copyright © 2020 ADINA R&D, Inc.
71 Elton Avenue
Watertown, MA 02472 USA
tel. (617) 926-5199
fax (617) 926-0238
http://www.adina.com/

ADINA R&D, Inc. owns both this software program system and its documentation. Both
the program system and the documentation are copyrighted with all rights reserved by
ADINA R&D, Inc.

The information contained in this document is subject to change without notice. ADINA
R&D, Inc. makes no warranty whatsoever, expressed or implied that the Program and its
documentation including any modifications and updates are free from errors and defects.
In no event shall ADINA R&D, Inc. become liable to the User or any party for any loss,
including but not limited to, loss of time, money or goodwill, which may arise from the use
of the Program and its documentation including any modifications and updates.

ADINA is a registered trademark of K.J. Bathe / ADINA R&D, Inc. All other product
names are trademarks or registered trademarks of their respective owners.

March 2020

http://www.adina.com/

Table of Contents

Introduction

1 Geometry Definition and Manipulation
1.1 AUI Native Geometry . 11
1.2 Bodies . 13

1.2.1 Face-linking . 14
1.2.2 De-featuring and body cleanup . 17

1.3 STL Bodies . 19
1.3.1 Creating an STL body from an STL file .19
1.3.2 Converting a Parasolid body into an STL body . 20
1.3.3 Eliminating edges from STL bodies . 20
1.3.4 Boundary cells . 21

2 Meshing
2.1 Mesh Size Control . 22

2.1.1 Subdivision . 22
2.1.2 Point size . 24
2.1.3 Automatic grading . 25
2.1.4 Curvature-based sizing . 28
2.1.5 Size functions .30

2.2 Mapped Meshing . 32
2.2.1 Surface meshing . 33
2.2.2 Volume meshing . 36

3

2.2.3 Body face meshing . 39
2.2.4 Sweep and revolved meshing . 42
2.2.5 Lofted meshing . 45

2.3 Body Face Free-Form Meshing. .49
2.3.1 Triangular meshing . 49
2.3.2 Quadrilateral meshing . 54
2.3.3 Boundary layer meshing . 55
2.3.4 Mid-side node placement . 57

2.4 Body Free-Form Meshing . 58
2.4.1 Tetrahedral meshing . 58
2.4.2 Mixed meshing . 64
2.4.3 Boundary layer meshing . 68
2.4.4 Skin of elements on 3D-solid mesh . 71

2.5 STL Body Free-Form Meshing . 71
2.5.1 Tetrahedral meshing . 71
2.5.2 All-hexahedral meshing. .73

2.6 Nodal Coincidence . 77
2.6.1 Nodal coincidence checking during meshing . 77
2.6.2 Joining and detaching meshes . 79
2.6.3 Splitting meshes . 81
2.6.4 Checking for coincidence . 82

2.7 Copying and Converting Meshes . 84
2.7.1 Copying meshes . 84
2.7.2 Copying triangulations . 86
2.7.3 Converting meshes . 87

2.8 Mesh Checking. .89
2.8.1 Fluid mesh compatibility .89
2.8.2 Duplicate elements . 89
2.8.3 Unique element labels . 90
2.8.4 Mesh quality checks and re-meshing . 90

3 Moving Mesh in ADINA CFD/FSI
3.1 Overview . 95
3.2 Basic Procedures . 96
3.3 Defining ALE Domain Geometry . 96

4

3.4 Solving the Moving Mesh . 97
3.4.1 Mesh Solver . 98
3.4.2 Background Mesh . 99
3.4.3 The Solving Domain . 100
3.4.4 Choice of Background Mesh and Subdomains . 101

3.5 ALE Conditions .103
3.5.1 Leader-Follower Constraints . 103
3.5.2 Types of Leader-Followers . 105
3.5.3 Slipping Boundary . 105
3.5.4 Extended Wall . 107

4 Fast Graphics Mode
4.1 Hardware Requirements . 108
4.2 Activating FGM. .109
4.3 General FGM Settings . 109

4.3.1 Projections . 109
4.3.2 Coordinate axes . 110
4.3.3 Scene bounding box . 110
4.3.4 Background . 110

4.4 Scene Rendering . 111
4.4.1 Original and deformed meshes . 111
4.4.2 Geometry and original meshes . 111
4.4.3 Pattern lines . 111
4.4.4 Labels . 113

4.5 Navigation Tools . 115
4.5.1 FGM navigation interface . 115
4.5.2 Hot navigation tool . 115
4.5.3 Orbit view tool . 115
4.5.4 Camera spin mode . 117
4.5.5 Pan view tool . 117
4.5.6 Zoom view tool . 117
4.5.7 Zoom region tool . 118
4.5.8 Unzoom all oneshot . 119
4.5.9 Zoom selection oneshot . 119
4.5.10 Double click and go . 119
4.5.11 Navigation pivot point . 119

5

4.6 Visualization Tools . 120
4.6.1 Hide selection . 120
4.6.2 Unhide all . 120
4.6.3 Hide invert . 120
4.6.4 Hide unselected . 120

4.7 Visualization Objects . 121
4.7.1 Cutting plane . 121
4.7.2 Cutting volume . 122
4.7.3 Cap sections . 122
4.7.4 Known issues . 123

4.8 Selection Tools . 123
4.8.1 Locator action . 123
4.8.2 Region selection . 123
4.8.3 Deep selection . 125

4.9 Selection Representation . 125
4.9.1 Selection silhouette. .126
4.9.2 Selection box . 126

4.10 Manipulators . 126
4.10.1 Move manipulator . 126
4.10.2 Rotate manipulator . 127

4.11 Snap Mode . 127
4.11.1 Angle snap mode . 127
4.11.2 Scaling snap mode . 127

4.12 Transform Tools . 128
4.12.1 Navigation pivot point tool .128
4.12.2 2D transform . 128

4.13 Visual Appearance and Effects . 130
4.13.1 Surface smooth . 130
4.13.2 Shading . 130
4.13.3 Translucency . 133

4.14 Advanced Configuration . 133
4.15 Animation . 135
4.15.1 Visualization . 135
4.15.2 Save & Load . 136

6

5 Differences in default solver settings for ADINA and SOL
601/701
5.1 Implicit Time Integration Method . 137
5.2 Incompatible Modes Formulation . 137
5.3 Mixed (u/p) Formulation . 138
5.4 Through-Thickness Integration Order for Shell Elements 138
5.5 Strain Increments in Viscoelastic Materials . 139

Topic Index

Command Index

7

Introduction

T  is written as a desktop reference for both
newcomers and experienced ADINA users. Topics are
organized by typical work flows, and special attention is
given to common pitfalls and solutions as they would be
encountered.
Currently, this handbook covers:
• Importing, creating, and manipulating geometry using
the ADINA User Interface (AUI)

• A detailed chapter demonstrating ADINA’s powerful
meshing features

• A description of ADINA’s Fast Graphics Mode
• A chapter describing the differences between solver
settings for ADINA and SOL 601/701

The reader will find many simple examples demonstrating
how to effectively use ADINA’s commands and command
options. In most cases, examples include detailed figures
and illustrations. These examples can be copied and pasted
directly into the AUI Command Window’s input line,
located just beneath the ADINA-IN(1)> prompt, or adapted
for use into the reader’s own model.
It is worth noting that this handbook is not intended to be
a replacement for the ADINA system’s detailed Command
Reference Manuals, Theory and Modeling Guides, and
Primer Problems. Rather, its aim is to more effectively
bring to bear upon the reader’s specific problem all of
ADINA’s features and documentation.

9

1 Geometry Definition and Manipula-
tion

Defining the geometry is the starting point for an engi-
neering analysis. The ADINA User Interface (AUI) offers
geometric primitives in its own native geometry engine
or via ADINA-M’s Parasolid or OpenCascade geometry
engines.

1.1 AUI Native Geometry

Points, lines, surfaces, and volumes are the AUI’s native
geometry primitives. Each of these entities is relatively
simple1 and may be meshed individually. More complex 1 In fact, the native AUI geom-

etry is sometimes referred to as
‘simple’ geometry

geometries can be created by combining simpler geometries
that share common boundaries.
Points can be created with command COORDINATES POINT.
The POINT command may also be used to create points in
relation to other geometry. For example, POINT BETWEEN
creates a geometry point between two other points or
nodes, and POINT CENTER creates a point that lies at the
center of the circle passing through three other points or
nodes. POINT NODE simply creates geometry points at nodes.
Meshing a geometry point with command GPOINT creates a
node at the point’s location and associates2 the node with 2 Associating nodes with geome-

try assigns fixities, constraints,
loads, skew system, etc. defined
on the geometry to those nodes.

the point. The command NODE-SNAP moves (snaps) the
closest node to a geometry point and associates that node
with the point.
Lines can be created with the LINE family of commands
and meshed with command GLINE. Meshing a line gen-
erates nodes corresponding to the subdivisions of the
line (created by command SUBDIVIDE LINE) and one-

11

   

dimensional elements (e.g., trusses, beams, etc.) connecting
them.
Surfaces can be created with the SURFACE family of com-
mands in several ways:
• Connecting three or four points possibly already con-
nected by existing lines (command SURFACE VERTEX).

• Patching 3 or 4 lines (command SURFACE PATCH).
• Extruding a line along a vector (command SURFACE
EXTRUDE).

• Revolving a line about an axis (command SURFACE
REVOLVED).

• Using a grid of geometry points (command SURFACE
GRID).

• Transforming or copying an existing surface (command
SURFACE TRANSFORMED).

• Converting a body face into a surface (command SURFACE
FACE).

Volumes can be created with the VOLUME family of com-
mands and meshed with command GVOLUME. Volumes can
be formed by:
• Connecting up to eight points possibly already connected
by existing lines and surfaces (command VOLUME VERTEX).

• Extruding a surface along a vector (command VOLUME EXTRUDE).

• Sweeping a surface along a line/curve (command VOLUME SWEEP).

• Revolving a surface about an axis (command VOLUME REVOLVED).

• Transforming or copying an existing body (command
VOLUME TRANSFORMED).

• Converting a body into a volume (command VOLUME BODY).

12   



1.2 Bodies

The AUI optionally includes ADINA-M (the ADINA
Modeler). ADINA-M uses either a Parasolid (PS) or
OpenCascade (OCC) kernel to provide solid modeling
capabilities.
Bodies are composed of points, edges, and faces. Bodies
do not share entities with other bodies or volumes, except
points (body faces and edges are never shared). For exam-
ple, if a body connects to another body at a face, each body
has its own face even though the two body faces are geomet-
rically identical. Sheet bodies and body faces are allowed
to share both edges and points. Bodies (of any dimension)
and points, lines, surfaces, and/or volumes can coexist in
the AUI.

F1 F2

F1

Figure 1.1: Example of manifold
(top) and non-manifold (bottom)
geometries. Each geometry
point on the manifold face has
exactly two edges associated with
each face. The top-center point
on the non-manifold face has
three edges associated with the
face.

A manifold is a mathematical term for an object that lo-
cally resembles a line, a plane, or a space.3 A manifold

3 A mathematically rigorous defi-
nition of a manifold is beyond
the scope of this handbook, but
physically, manifold essentially
means manufacturable. That is,
it is possible to machine a mani-
fold shape from a single block of
material, whereas it is not possi-
ble to do so for a non-manifold
shape.

body is one for which each edge is associated with exactly
two faces. A manifold face is one for which each point is
associated with exactly two edges. Figure 1.1 helps illus-
trate the differences between manifold and non-manifold
geometries.4

4 Non-manifold bodies are
permitted in the AUI, but
meshing non-manifold bodies is
not recommended.

Bodies can be imported into ADINA-M in either Parasolid
or OpenCascade formats. Imported bodies may also be
modified. IGES files can be imported as ADINA-M
bodies (command LOADIGES). STEP files can be imported
(using command IMPORTIGES) if ADINA-M is coupled
with OpenCascade.
The family of BODY commands invokes ADINA-M and
defines a body. Three-dimensional bodies can be:
• Created using primitive bodies (for example, commands
BODY BLOCK, BODY CYLINDER, etc.).

• Created by sweeping a face along a line (command
BODY SWEEP), revolving a face about an axis (command
BODY REVOLVED), or lofting through a set of surfaces or
faces (command BODY LOFTED).

• Created using Boolean operations on bodies (commands
BODY MERGE, BODY SUBTRACT, and BODY INTERSECT).

• Modified (e.g., commands BODY PARTITION or BODY SECTION,
etc.).

 , . 13

   

When using Boolean operations, users may keep or discard
the original bodies and/or preserve imprinted or original
edges, as desired. For example, if several adjacent bodies
are to be merged, but the user wishes to preserve their
original internally-shared edges (e.g., for manual Subdivi-
sion – see page 22), then the user can invoke the Boolean
operation via BODY MERGE MERGE-IMPRINT = NO, as shown
in command input 1.1. Figure 1.2 shows the effect of
MERGE-IMPRINT = NO (panel b) and MERGE-IMPRINT = YES
(panel c).

E9

E10

E9

E12

E11

B1

B2

B3

E8

E9

E17

B1

B1

B1

E4

E5

E7

E12B1

a)

b)

c)

MERGE-IMPRINT
= NO

MERGE-IMPRINT
= YES

Figure 1.2: Illustration of the
effects of MERGE-IMPRINT. Three
bodies (panel a) are to be joined
– note the overlapping internal
edges. By merging the bodies
using MERGE-IMPRINT = NO
(panel b), the internal edges
are preserved but are no longer
overlapping. This is useful when
internal subdivisions are desired.
If the bodies are merged with
MERGE-IMPRINT = YES (panel c),
the internal edges vanish.

Command Input 1.1: Boolean merge of three separate bodies (as
shown in Figure 1.2, panel a) into one. The option BODY MERGE
MERGE-IMPRINT = NO (Figure 1.2, panel b) preserves the internal edges
rather than merges them.
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=0.5 cx2=0.25 cx3=0.0 dx1=1.0 dx2=0.5 dx3=1.0
body block name=2 option=centered position=vector,

cx1=0.5 cx2=1.0 cx3=0.0 dx1=1.0 dx2=1.0 dx3=1.0
body block name=3 option=centered position=vector,

cx1=1.25 cx2=0.75 cx3=0.0 dx1=0.5 dx2=1.5 dx3=1.0
*
body merge name=1 merge-imprint=no
2
3

It is possible to create two-dimensional bodies in ADINA-
M by combining lines using the command BODY SHEET.
Although this is a two-dimensional entity, it is still consid-
ered a body by ADINA-M.

1.2.1 Face-linking

Although two adjoining bodies might interface at two geo-
metrically identical faces (or a body’s face exactly matches
an adjoining geometry volume’s surface), the meshes for
those two adjacent entities may not be congruent5, espe-

5 A congruent mesh is contin-
uous from one region to the
other.

cially when the free-form mesher is used. In other words,
at the interface, nodes from one mesh might not coincide
with the nodes from the other mesh. For more informa-
tion about nodal coincidence and equivalence, see Nodal
Coincidence on page 77.
For example, command input 1.2 instructs ADINA to

14   



construct two adjacent bodies and to mesh body 1 with
mapped meshing and body 2 with free-form meshing.

Command Input 1.2: Creating two adjacent bodies and meshing one
using free-form meshing and the other using mapped meshing.
feprogram program=adina
body block 1 dx1=1 dx2=1 dx3=1
body block 2 dx1=1 dx2=1 dx3=1 cx1=1
*
subdivide body 1 mode=length size=.2
subdivide body 2 mode=length size=.2
*
egroup threedsolid 1
egroup threedsolid 2
*
gbody 1 nodes=4 group=1 meshing=mapped
gbody 2 nodes=4 group=2 meshing=free-form

B1

B2

Figure 1.3: Two adjacent,
meshed bodies. The body on
the left was free meshed and
the body of the right was map
meshed. The nodes at the adjoin-
ing edges appear coincident.

Figure 1.3 shows the resulting meshes. A quick inspection
might lead to the conclusion that the nodes at the con-
necting interface are coincident and that the two meshes
are congruent. However, a more detailed visual inspection
with front faces culled (see Figure 1.4) reveals that, in fact,
the nodes on the planar interface are not coincident. For
additional ways of checking for nodal coincidence, see
Checking for coincidence on page 82.

Figure 1.4: Culled rendering
revealing incongruent meshes.
The visible interface indicates
that the nodes at the planar
interface are not coincident.

This is only an issue when there are two distinct 2-dimensional
entities at the interface (one corresponding to each ‘side’ of
the interface) as when:
• Two bodies share a 2-dimensional interface (at least one
body face for each body)

• A body and a geometry volume share a 2-dimensional
interface (at least one body face and at least one geometry
surface)

Two adjacent geometry volumes sharing a single geometry
surface do not require linking.
The solution here is to link the faces using the command
FACELINK prior to meshing (see command input 1.3). This
command ensures nodal coincidence by instructing the
mesher to use the same triangulation on the interface
for both meshes. Note that face linking will work only
if the adjacent faces to be linked are geometrically and
topologically identical.6

6 Topologically identical faces are
of the same shape and share the
same points and edges.

 , . 15

   

Command Input 1.3: Continuation of command input 1.2, deleting the
mesh for body 2 and remeshing after using FACELINK.
eldelete body 2
*
facelink option=all
*
gbody 2 nodes=4 meshing=free-form group=2

Figure 1.5: The effects of face-
linking. After linking the faces
between adjacent bodies, the
meshes are congruent.

Figure 1.5 illustrates the effects of FACELINK. The culled
rendering reveals no visible interface, indicating that the
connecting nodes are now coincident and equivalent. The
two meshes are congruently joined.
Command input 1.4 and Figure 1.6 show what can occur
when attempting to link non topologically equivalent faces.
The culled rendering in Figure 1.6 (bottom) reveals that
not all nodes on the interfaces are coincident and that the
resulting mesh is not congruent.

Command Input 1.4: Attempting to face link non topologically
equivalent faces. Figure 1.6 shows that FACELINK fails to link the faces
between body 1 (large face) and bodies 2 and 3 (geometrically smaller
faces).
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=-0.25 cx2=0.0 cx3=0.0 dx1=0.5 dx2=1.0 dx3=1.0
body block name=2 option=centered position=vector,

cx1=0.25 cx2=0.0 cx3=-0.25 dx1=0.5 dx2=1.0 dx3=0.5
body block name=3 option=centered position=vector,

cx1=0.25 cx2=0.0 cx3=0.25 dx1=0.5 dx2=1.0 dx3=0.5
*
subdivide body name=1 mode=length size=0.1
subdivide body name=2 mode=length size=0.1
subdivide body name=3 mode=length size=0.1
*
egroup threedsolid
*
facelink option=all
*
gbody 1 nodes=4 meshing=free-form
gbody 2 nodes=4 meshing=free-form
gbody 3 nodes=4 meshing=free-form

B1

B2

B3

Figure 1.6: The result of attempt-
ing to link non topologically
equivalent faces. FACELINK can-
not link the larger face to either
of the smaller faces. The culled
rendering shows the resulting
incongruent mesh.

Using command BODY PROJECT, the large face on body 1
can be split into two faces, which are topologically identical
to the corresponding faces on bodies 2 and 3. Command in-

16   



put 1.5 demonstrates how to use BODY PROJECT. Figure 1.7
illustrates the steps taken in command input 1.5. After face
linking, the three bodies can be congruently meshed.

Command Input 1.5: Continuation of command input 1.4 demonstrat-
ing the use of BODY PROJECT for projecting a line onto Face 6 of Body 1
to create topologically identical faces for linking to corresponding faces
on bodies 2 and 3. The resulting mesh is congruent across all shared
interfaces (see Figure 1.7).
eldelete body 1
eldelete body 2
eldelete body 3
*
line straight p1=13 p2=14
*
body project 1 6
1
*
subdivide body name=1 mode=length size=0.1
*
facelink option=all
*
gbody 1 nodes=4 meshing=free-form
gbody 2 nodes=4 meshing=free-form
gbody 3 nodes=4 meshing=free-form

F6

F1

F7

P13

P14

a)

b)

c)

Figure 1.7: Illustration of steps
taken in command input 1.5.
The large shaded face is to be
split into two faces along the red
line (panel a). After defining a
line connecting points 13 and
14, this large face (face 6 of
body 1 - panel b) is split into
two faces using the command
BODY PROJECT. The result is
shown in panel c.

1.2.2 De-featuring and body cleanup

Unnecessary detail can be removed using the command
BODY DEFEATURE. The related command BODY-CLEANUP7

7 BODY-CLEANUP requires that
features to be removed be small.

de-features a body by changing its topology but without
altering the actual geometry. BODY-CLEANUP relies on two
removal operators:
1. Remove body edge (command REM-EDGE). Because the

geometry of the body is unchanged, the body edge should
be small in length.

2. Remove body face (command REM-FACE). A body face
can be removed only if it has exactly two body edges, or
in other words, if it is a degenerate face which became
degenerate due to bounding body edges being removed
by command REM-EDGE in the previous step.

The command BODY-CLEANUP removes any body edge with
length below the size threshold (parameter SIZE) and any

 , . 17

   

degenerate body face with width below the size threshold.
The body’s topology can be restored to its original state
using BODY-RESTORE.
Command input 1.6 creates a body with a small chamfer,
subdivides it, and free-form meshes it using tetrahedral
elements.

Figure 1.8: A thin chamfer
results in small, thin sliver
element faces (see inset: shown
in alternating black and white),
necessary to capture the small
geometric detail.

Command Input 1.6: Commands for generating geometry and mesh
shown in Figure 1.8.
feprogram program=adina
body block 1 dx1=1.0 dx2=1.0 dx3=1.0
body chamfer name=1 r1=0.01 r2=0.01 option=edge
10 0
*
subdivide body 1 mode=length size=0.2
egroup threedsolid
*
gbody 1 nodes=4

Figure 1.8 illustrates the chamfered body and the result-
ing mesh.8 The chamfer leads to the creation of thin ele- 8 Thin body faces like this cham-

fer are often created as artifacts
resulting from a Boolean opera-
tion on complex models.

ments. If the chamfer is not important for the analysis, it
is best to remove the detail. Command input 1.7 invokes
BODY-CLEANUP to remove the chamfer from the body and
free-form meshes the body. Figure 1.9 shows the result.

Figure 1.9: The effects of
BODY-CLEANUP. Note the lack
of small sliver element faces
near the chamfer as were present
in Figure 1.8. The inset shows
the much larger element faces
(shown in alternating black and
white) along the edge.

Command Input 1.7: Commands for generating geometry and mesh
shown in Figure 1.9.
feprogram program=adina
body block 1 dx1=1.0 dx2=1.0 dx3=1.0
body chamfer name=1 r1=0.01 r2=0.01 option=edge
10 0
*
body-cleanup 1 size=.05
*
subdivide body 1 mode=length size=0.2
egroup threedsolid
*
gbody 1 nodes=4

The BODY MERGE command can be used to clean up repeated
edges between two sheet bodies. For more information, see
command input 1.1 and Figure 1.2 on page 14.

18   

 

1.3 STL Bodies

The STL (STereoLithography) file format describes an
object’s surface geometry with triangular facets; there is
no topological information of the object being represented.
That is, the entities which one would find in a general body,
namely body edges or body faces, are not present.
The advantage of having an STL representation supple-
mented with a topological representation (STL body) lies
in the ease in which mesh densities can be set and loads
and fixities applied. In essence, whatever can be done to
a general body can be done to an STL body, though STL
bodies can only be meshed with tetrahedral (command
GBODY) or hexahedral elements (command BHEXA). See STL
Body Free-Form Meshing on page 71.

1.3.1 Creating an STL body from an STL file

The AUI command LOAD-STL loads STL files in either
ASCII or binary formats and augments the purely graphical
representation with a topological representation by creating
a corresponding body for the object and grouping facets
into body faces, segments into body edges, and having some
key vertices (where body edges meet) be points. When the
angle between adjacent facets is greater than a threshold
(parameter RIDGEANG), ADINA assumes that common
segments belong to a body edge. From there, one can create
body edges, body faces, and points.9

9 Clearly, topology that is built
in this manner is not ideal, espe-
cially if the STL file originates
from a CAD model which
previously had topology.

Figure 1.10: Underlying geom-
etry of an imported STL file,
visible after using command
BODY-DISCREP.

The object described in the STL file should be a single
‘watertight’ 3D object that is manifold, meaning that any
segment must be connected to exactly two facets. In some
cases (typically when the STL file is of poor quality), the
tolerance NCTOLERANCE can be adjusted if there are under-
connected or over-connected segments in the STL file and
if larger than expected variations in vertex coordinates need
to be taken into account. Figure 1.10 shows the underlying
geometry that defines an STL body.

 , . 19

   

1.3.2 Converting a Parasolid body into an STL body

It can be useful to obtain an STL body from a Parasolid
body:
• A Parasolid body must be converted into an STL body if
an all-hexahedral mesh is to be created using command
BHEXA.

• Converting to an STL body may also be convenient for
generating tetrahedral elements using command GBODY
after adapting the discrete representation on the surface
with command BODY-DSCADAP.

• Body edges can easily be eliminated from STL bodies.
This is useful in cases when the de-feature tools cannot
be used.

The conversion process (command CONVERT-STL) is straight-
forward since the tessellation that is used to display the
body defines the set of triangular facets that make up the
surface of the object. The fineness of this tessellation is
controlled by parameter PCCANG. The lower the parameter,
the finer the tessellation. The topology of the current Para-
solid body is unchanged, which means that no topological
information is lost during the conversion process. Since the
topology does not change, the STL body will look the same
as the original Parasolid body.

1.3.3 Eliminating edges from STL bodies

Figure 1.11: Two distinct faces
on the top of an STL body.

Figure 1.12: The two faces
visible in Figure 1.11 have
been merged following
the use of command STL
ELIM-EDGES-ANGLE.

Because STL bodies are composed of triangular facets, it is
easy to eliminate edges from the body and merge adjacent
faces. Note that when the body is regenerated from the
surface mesh, the numbering of the body faces, edges, and
points will change.
There are two ways to eliminate edges from an STL body:
• Eliminating specific edges with command STL ELIM-EDGE.
• Specifying an angular threshold via command STL
ELIM-EDGES-ANGLE to eliminate any edge for which the
two connected faces have normals that differ by less than
the threshold parameter ANGLE.

Figure 1.11 shows an STL body with two connected, nearly
coplanar body faces, and Figure 1.12 shows the same STL

20   

 

body after using STL ELIM-EDGES-ANGLE. The body edge
connecting the two nearly coplanar body faces has been
removed and the faces merged.

1.3.4 Boundary cells

A volume’s geometry and topology can be defined by
boundary cells; these cells must all be either triangular
facets (defined by three existing nodes) or quadrilateral
facets (four existing nodes) with normals oriented toward
the interior of the volume. The BCELL command creates a
set of boundary cells which can then be meshed with either
tetrahedral elements (if the boundary cells are triangular)
or mixed elements (if the boundary cells are quadrilateral)
using command GBCELL. Upon meshing, a node set and
element face set (of the same name or label) will be created
to facilitate application of fixities and/or loads.
When a Nastran file is loaded using command NASTRAN-ADINA,
it is possible to create boundary cells sets from shell ele-
ments according to the Property Identification Number
or PID (parameter BCELL in command NASTRAN-ADINA).
Shell elements with the same PID are put into the same
boundary cell set.

 , . 21

2 Meshing

ADINA offers powerful meshing tools to help users gener-
ate high quality meshes of various element types.
Note that much of this chapter is equally applicable to both
structural and fluid meshes, but special attention is given
to Boundary layer meshing on page 55 (2D) and page 68
(3D).

2.1 Mesh Size Control

Users can control local mesh density in a variety of ways.
Depending on which is most convenient, the user may
choose to manually subdivide geometry, specify subdivision
sizes at arbitrary points, and/or make use of ADINA’s
more automated features. With practice, a user can effec-
tively use the AUI to control the local mesh density over
complex geometries.

2.1.1 Subdivision

Mesh densities can be set by subdividing lines (command
SUBDIVIDE LINE), surfaces (SUBDIVIDE SURFACE), volumes
(SUBDIVIDE VOLUME), body edges (SUBDIVIDE EDGE), body
faces (SUBDIVIDE FACE), and/or bodies (SUBDIVIDE BODY)
prior to meshing.
Lines can be subdivided using either number of divisions
(MODE = DIVISIONS) or length (MODE = LENGTH). When
using length, subdivisions are always created uniformly.
When using number of divisions, subdivisions can be
created non-uniformly (graded/biased subdivisions using
RATIO and/or CBIAS).

22

  

Command Input 2.1: Commands for generating lines and subdivisions
shown in Figure 2.1. Note the use of parameters MODE, RATIO, PROGRESS,
and CBIAS.
feprogram program=adina
coordinates point
1 0.0 0.0 0.0 0
2 0.0 1.0 0.0 0
3 0.0 0.0 -0.2 0
4 0.0 1.0 -0.2 0
5 0.0 0.0 -0.4 0
6 0.0 1.0 -0.4 0
*
line straight name=1 p1=1 p2=2
line straight name=2 p1=3 p2=4
line straight name=3 p1=5 p2=6
*
subdivide line name=1 mode=divisions ndiv=20 ratio=1.0,

progress=geometric cbias=no
*
subdivide line name=2 mode=divisions ndiv=20 ratio=10.0,

progress=geometric cbias=no
*
subdivide line name=3 mode=divisions ndiv=20 ratio=10.0,

progress=geometric cbias=yes

Figure 2.1: Line subdivisions
using number of divisions. Top:
length ratio (last/first) = 1;
Middle: (last/first) = 10; Bottom:
(last/first) = 10 with central
biasing.

Figure 2.1 shows the various types of ratio that can be
applied to line subdivisions using number of divisions as the
mode of subdivisions.
Surfaces, volumes, body edges, body faces, and bodies can
be subdivided in a similar fashion, with the exception that
body edges, faces, and bodies cannot be subdivided with a
central bias.

By default, the element size on the interior of a body face
cannot exceed the greatest element size on the bounding
body edges. This behavior can be changed by assigning a
maximum size to the body face (with parameter MAX-SIZE
in command SUBDIVIDE FACE). Note that this only applies
to triangular free-form meshes generated using the De-
launay method. Command input 2.2 demonstrates using
MAX-SIZE to obtain a fine mesh along the boundaries of a
domain and a coarser mesh internally. A maximum size can
also be applied to a three-dimensional body, with similar
results (tetrahedral free-form meshing only).

 , . 23



Command Input 2.2: Commands for generating geometry and mesh
shown in Figure 2.2.
feprogram program=adina
body block 1 dx1=1 dx2=1 dx3=1
*
subdivide face 1 max-size=0.1
*
subdivide edge 9 mode=length size=0.01
subdivide edge 10 mode=length size=0.01
subdivide edge 11 mode=length size=0.01
subdivide edge 12 mode=length size=0.01
*
egroup shell
*
gface 1 nodes=4 meshing=free-form,

method=delaunay refine=along-edge density-factor=1.2

Figure 2.2: Body face with a fine
mesh along the bounding edges
and a coarser interior mesh.

Figure 2.2 shows the result of free-form meshing a body
face when a maximum size has been imposed on the body
face.

2.1.2 Point size

When the subdivision mode is set to point size, subdivi-
sions along lines or body edges are computed from the
‘sizes’ stored at the two end points such that the subdivi-
sions vary smoothly. The POINT-SIZE command guarantees
that the subdivisions on all lines or body edges that connect
to a point are always smooth. This is in contrast with sub-
dividing a line or a body edge using number of divisions
where the smoothness of subdivisions (assuming the ratio
of lengths in not set to 1.0) is limited only to those lines or
body edges specified.
The following shows the typical work flow for using the
POINT-SIZE command (see command input 2.3):
1. Change the subdivision mode for the complete model to

“Use End-Point Sizes” (command SUBDIVIDE MODEL with
MODE = POINTWISE).

2. Set the point size for the body to 0.2 (command POINT-SIZE
with OPTION = DIRECT and INPUT = BODY). This creates a
uniform subdivision for the body.

3. Set the point size for the top body face to 0.05 (com-

24   

  

mand POINT-SIZE with OPTION = DIRECT and INPUT = FACE).
This creates a uniform subdivision for the body face and
automatically smooths out the subdivisions on the body
edges that connect to the points bounding the body face.

Command Input 2.3: Commands for generating geometry and mesh
shown in Figure 2.3.
feprogram program=adina
body block 1 dx1=1 dx2=1 dx3=1
*
subdivide model mode=pointwise ndiv=1,

progress=geometric mincur=1
*
point-size option=direct input=body
1 0.2
*
point-size option=direct input=face body=1
1 0.05

Figure 2.3: Mesh density set at
vertices of the body and then
at the vertices of a face using
command POINT-SIZE.Figure 2.3 shows the result of using point sizes.

2.1.3 Automatic grading

Automatic grading automatically adjusts the subdivisions
for entities (e.g., body edges and/or faces) without as-
signed mesh densities. Automatic grading is only avail-
able for bodies or body faces. It is enabled by setting
AUTO-GRADING = YES. 1

1 GBODY AUTO-GRADING is not
used if PYRAMIDS = ONLY or
if boundary layers are used.
For more information about
Boundary layer meshing, see
page 68.

The automatic adjustment is performed using a fixed size
variation between adjacent segments on the body edges.
A segment is either as long as the adjacent segment or
twice/half as long.

 , . 25



Command Input 2.4: Commands for generating geometry and
subdivisions shown in Figure 2.4.
feprogram program=adina
body block name=1 dx1=1.0 dx2=1.0 dx3=1.0
body sphere name=2 position=vector dimension=radius,

cx1=0.5 cx2=0.5 cx3=0.5 radius=0.1
*
body subtract name=1 keep-too=no keep-imp=no
2
*
subdivide face 7 body=1 mode=length size=0.02

Figure 2.4: Subdivisions on
a feature prior to applying
automatic grading.

Command Input 2.5: Continuation of command input 2.4 generating
subdivisions using AUTO-GRADING = YES. The result is shown in Fig-
ure 2.5. Note that because SIMULATE = YES, the body was not meshed –
it was only subdivided.
egroup threedsolid
*
gbody 1 nodes=4,

simulate=yes auto-grading=yes min-size=0.00001
Figure 2.5: Newly subdivided
edges after applying automatic
grading. In this example, the
parameter SIMULATE = YES
suppressed mesh generation.

In Figure 2.4, subdivisions have been applied to one body
face (the spherical face). Figure 2.5 shows the result of
automatic grading. Note that because SIMULATE = YES, the
body was not meshed – it was only subdivided.

In some cases, using automatic grading to update mesh
subdivisions on body edges is not sufficient to guarantee
a smoothly graded mesh. It may be necessary to actually
mesh the body (free-form with tetrahedral elements) or
the body face (free-form with triangular elements) using
parameter AUTO-GRADING = YES to obtain smooth mesh
densities everywhere. In this case, there is no need to grade
the subdivisions prior to meshing since this will be done
automatically during meshing.

26   

  

Command Input 2.6: Commands for generating geometry and
subdivisions shown in Figure 2.6. Note the finely subdivided cubic
cavity.
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 dx1=1.0 dx2=1.0 dx3=1.0
body block name=2 option=centered position=vector,

cx1=0.2 cx2=0.4 cx3=0.2 dx1=0.1 dx2=0.1 dx3=0.1
*
body subtract name=1 keep-too=no keep-imp=no
2
*
subdivide face 7 body=1 mode=length size=0.02
8 to 12
*
meshrendering hidden=dashed
*
egroup threedsolid
*
gbody 1 nodes=4,

simulate=yes auto-grading=yes min-size=0.00001

Figure 2.6: Block with in-
ternal cubic cavity. Subdi-
visions show the effects of
AUTO-GRADING = YES. In this
case, no mesh was generated
(SIMULATE = YES).

Figure 2.6 shows a body with a subdivided internal cu-
bic cavity. This internal cavity is just beneath a body face.
AUTO-GRADING allows for the presence of that finely sub-
divided internal cavity to influence the edge subdivisions.
However, the full effect of AUTO-GRADING on mesh den-
sity can not be seen when parameter AUTO-GRADING = YES.
Rather, one must use SIMULATE = NO to capture the proper
mesh densities on the nearby body face.

Command Input 2.7: Continuation of command input 2.6 for generat-
ing the mesh shown in Figure 2.7. Note the use of SIMULATE = NO.
subdivide body 1 mode=length size=1
subdivide face 7 body=1 mode=length size=0.02
8 to 12
*
gbody 1 nodes=4,

simulate=no auto-grading=yes min-size=0.00001

Figure 2.7: Tetrahedral mesh
obtained using autograding with
SIMULATE = NO. The inset shows
the surface mesh with the inner
cavity hidden.

Figure 2.7 shows the result of automatic grading with free-
form meshing (tetrahedral elements) with SIMULATE = NO.
The mesh on the body face nearest the cavity has clearly
been influenced by both the cavity and the bounding edges.

 , . 27



2.1.4 Curvature-based sizing

Mesh densities can be assigned according to the curvature
of body edges and body faces by specifying a maximum
allowable geometric discretization error. These mesh den-
sities are automatically graded for a smooth mesh density
distribution.
Curvature-based sizing is only available for free-form tetra-
hedral meshing on bodies or body faces using the Delaunay
method. For bodies, curvature-based sizing is enabled
with the command GBODY using parameter SIMULATE = YES,
GEO-ERROR, SAMPLING, and MIN-SIZE. Curvature-based siz-
ing on body faces is performed using GFACE and the same
parameters.

The parameter GEO-ERROR 2 controls the maximum permit- 2 GBODY GEO-ERROR is not used if
PYRAMIDS = ONLY or if boundary
layers are used. For more infor-
mation about Boundary layer
meshing, see page 68.

ted geometric discretization error. The lower the value, the
finer the subdivisions and the more closely the mesh will
match the geometry. Figure 2.8 illustrates the geometric
interpretation of GEO-ERROR and its effects.

d

L

geometric error = d
L

Figure 2.8: Schema illustrating
the effect of reducing the maxi-
mum allowable geometric error
(smaller value shown on right as
compared to left). Decreasing
the maximum permitted geomet-
ric discretization error results in
finer subdivisions and a mesh
with greater geometric fidelity.

The parameter SAMPLING controls the number of curvature
samples taken along a body edge. The higher the sampling,
the more accurate the mesh densities will be.
In areas of very strong curvature, mesh densities can be-
come excessive unless controlled by parameter MIN-SIZE.
The size variation between adjacent segments on body edges
is fixed. A segment is either as long as the adjacent segment
or twice/half as long.

28   

  

Command Input 2.8: Commands for generating bodies and subdivi-
sions shown in Figure 2.9. Note the use of the GEO-ERROR option in the
GBODY command.
feprogram program=adina
body block name=1 dx1=1.0 dx2=2.0 dx3=1.0
body cylinder name=2 option=centered position=vector,

cx1=0.0 cx2=1.0 cx3=0.0 axis=zl radius=0.5 length=1.0
*
body merge name=1 keep-too=no merge-im=yes
2
*
egroup threedsolid
*
gbody 1 nodes=4,

simulate=yes geo-error=0.01 sampling=20 min-size=0.00001

Figure 2.9: Body edge sub-
divisions after application of
curvature-based sizing.

Figure 2.9 shows subdivisions after having applied curvature-
based sizing. There were no subdivisions prior to using the
command.
As with automatic grading, it may be necessary to mesh
the body or the body face using parameter SIMULATE = NO,
GEO-ERROR, SAMPLING, and MIN-SIZE to obtain smooth
mesh densities everywhere.

 , . 29



2.1.5 Size functions

Size functions can be used to control mesh density in
regions of interest. These regions can be defined by:
• A point (command SIZE-FUNCTION POINT).
• An axis (command SIZE-FUNCTION AXIS).
• A plane (command SIZE-FUNCTION PLANE).
• A bounding box (command SIZE-FUNCTION BOUNDS).
• A hexahedron (command SIZE-FUNCTION HEX).
• A combination of the above (command SIZE-FUNCTION
COMBINE).

For a point, the size function is uniform (value given by
parameter SIZE) for any location within the radial distance
given by parameter DISTANCE of the point. The size func-
tion gradually increases as one moves away from the point.
The behavior is the same for an axis and a plane.
For a hexahedron (defined by eight corners), the size func-
tion inside the hexahedron is defined by interpolating the
sizes given at the corners). The size function outside the
hexahedron increases gradually with distance. The behavior
for the bounding box is the same.
These size functions can be used to:
• Locally refine regions of interest (e.g. near a stress con-
centration).

• Update sizes at points (command POINT-SIZE with
OPTION = FUNCTION). The size at points can in turn
be used to update the subdivisions on the connected
lines and/or body edges if the subdivision mode for the
complete model has been set to “Use End-Point Sizes.”

• Update body edge subdivisions directly (without going
through the points as described above). This can be
performed for a body, using GBODY with parameters
SIMULATE = YES and SIZE-FUNCTION, 3 or for a body face,

3 GBODY SIZE-FUNCTION is not
used if PYRAMIDS = ONLY or
if boundary layers are used.
For more information about
Boundary layer meshing, see
page 68.

using GFACE with the same parameters.
• Update body edge subdivisions directly and serve as
additional mesh density constraints when free-form
meshing is performed. This can be performed for a body,
using GBODY with parameter SIZE-FUNCTION, or for a body

30   

  

face, using GFACE with the same parameter.

Command Input 2.9: Example showing how to use SIZE-FUNCTION to
refine mesh near a point. Figure 2.10 shows the resulting mesh.
feprogram program=adina
body block 1 dx1=1 dx2=1 dx3=1
*
coordinates point
100 0.2 0.3 0.5
*
size-function point 1,

mode=point point=100 size=0.01 distance=0.04
*
egroup threedsolid
*
gbody 1 nodes=4,

size-function=1 boundary=delaunay brefine=edge-middle

Figure 2.10: Free-form tetrahe-
dral mesh obtained by using a
size function at a point, located
on the top of the body. The
point’s location is clearly visible
by the high mesh density.

Command Input 2.10: Example showing how to use SIZE-FUNCTION to
refine mesh near a line (AXIS) connecting 2 points. Figure 2.11 shows
the resulting mesh.
feprogram program=adina
body block 1 dx1=1 dx2=1 dx3=1
*
coordinates point
100 0.5 0.2 0.5
101 -0.5 -0.2 0.5
*
size-function axis 1,

mode=point p1=100 p2=101 size=0.01 distance=0.04
*
egroup threedsolid
*
gbody 1 nodes=4,

size-function=1 boundary=delaunay brefine=edge-middle

Figure 2.11: Free-form tetra-
hedral mesh obtained by using
a size function along an axis.
The axis is defined by a line
connecting two points.Figure 2.10 shows an example of using a size function at a

point with free-form meshing (tetrahedral elements), and
Figure 2.11 shows an example of using a size function along
an axis.

 , . 31



2.2 Mapped Meshing

Mapped meshing, or rule-based meshing, gives the user
more control over the meshing process than free-formed
meshing and allows for geometrically-structured meshes.
The term comes from the mapping operation which
transforms simple shapes onto more general, though
topologically-equivalent geometries (e.g., squares into
quadrilaterals). Mapped meshing can require more user in-
tervention but often yields superior meshes over free-form
meshing. See command input 2.11 and Figure 2.12 for an
example in which mapped meshing may be preferred.

Command Input 2.11: Commands demonstrating an instance in which
mapped meshing (MESHING = MAPPED) may be preferred over free-form
meshing (MESHING = FREE-FORM). Figure 2.12 shows the resulting
meshes.
feprogram program=adina
coordinates point
1 0.0 0.0 0.0 0
2 0.0 0.0 10.0 0
3 0.0 1.0 10.0 0
4 0.0 1.0 0.0 0
5 0.0 3.0 0.0 0
6 0.0 3.0 10.0 0
7 0.0 4.0 10.0 0
8 0.0 4.0 0.0 0
*
surface vertex name=1 p1=1 p2=2 p3=3 p4=4
surface vertex name=2 p1=5 p2=6 p3=7 p4=8
*
subdivide surface name=1 mode=divisions ndiv1=10 ndiv2=5
subdivide surface name=2 mode=divisions ndiv1=10 ndiv2=5
*
egroup shell name=1
*
gsurface 1 nodes=4 meshing=mapped
gsurface 2 nodes=4 meshing=free-form Figure 2.12: Comparison of

mapped (left) vs free-form mesh-
ing (right). Clearly, mapped
meshing allows the user to more
effectively control the mesh.

Situations similar to that illustrated by Figure 2.12 arise
in two-dimensional CFD or FSI problems wherein it is
important to use quadrilateral elements. A high-quality
mesh is difficult to generate with free-form meshing when
the aspects ratios are large.

32   

 

2.2.1 Surface meshing

Mapped meshes can be generated on geometry surfaces
using the command GSURFACE. The type of element created
(quadrilaterals or triangles) depends upon:
• Whether the surface is quadrilateral or triangular.
• Whether the subdivisions are regular or irregular. A
surface is said to be regularly subdivided if the number of
subdivisions on opposite lines is the same.

• The number of nodes for the desired element.

Command Input 2.12: Commands for generating a mapped mesh
using MESHING = MAPPED and 4-node shell elements. Figure 2.13 shows
the resulting mesh.
feprogram program=adina
coordinates point
1 0.0 0.0 0.0 0
2 0.0 1.0 0.0 0
3 0.0 1.0 1.0 0
4 0.0 0.0 1.0 0
*
surface vertex name=1 p1=1 p2=2 p3=3 p4=4
*
subdivide surface name=1 mode=divisions ndiv1=10 ndiv2=20
*
egroup shell name=1
*
gsurface 1 nodes=4 meshing=mapped

Figure 2.13: Mapped mesh-
ing on a quadrilateral surface
with regular subdivisions and
NODES = 4.

The surface in Figure 2.13 was created using four points
and regularly subdivided. It was then meshed with SHELL
elements (NODES = 4). The resulting mapped mesh is com-
posed exclusively of quadrilateral elements.

Command Input 2.13: Continuation of command input 2.12 for gener-
ating the mapped mesh shown in Figure 2.14 using MESHING = MAPPED
and 3-node 2D-solid elements.
eldelete surface 1
*
egroup twosolid name=2
*
gsurface 1 nodes=3 meshing=mapped pattern=automatic

Figure 2.14: Mapped mesh-
ing on a quadrilateral surface
with regular subdivisions and
NODES = 3. , . 33



Figure 2.14 demonstrates the effect of selecting NODES = 3.
The resulting mapped mesh is composed exclusively of
triangular elements. ADINA first creates a mapped mesh
composed of quadrilaterals which are then split into trian-
gles depending on the pattern desired (parameter PATTERN).

Command Input 2.14: Continuation of command input 2.12 for
the irregularly-subdivided geometry and the mapped mesh shown in
Figure 2.15 using MESHING = MAPPED and 4-node shell elements.
eldelete surface 1
*
subdivide line name=1 mode=divisions ndiv=20
subdivide line name=2 mode=divisions ndiv=10
*
gsurface 1 nodes=4 meshing=mapped pattern=automatic

Figure 2.15: Mapped mesh-
ing on a quadrilateral surface
with irregular subdivisions and
NODES = 4. Note the presence
of triangular and quadrilateral
elements.

The geometry in Figure 2.15 was irregularly subdivided.
It was then meshed with SHELL elements (NODES = 4).
The resulting mapped mesh is composed primarily of
quadrilaterals but with some triangles. The triangles are
necessary to transition from a number of subdivisions on
one side and a different number of subdivisions on the
opposite side.

When a surface is triangular (vertex point 4 is point 1), the
user may choose to treat the triangular surface as either
degenerate or not degenerate. This choice affects the mapped
meshing of the triangular surface.
If the triangular surface is not to be treated as degenerate
(using DEGENERATE = NO), ADINA splits the surface into
three quadrilateral sub-surfaces which are then mapped
meshed. To obtain an all-quadrilateral mesh, the three sides
of the triangular surface must have the same number of
subdivisions.

34   

 

Command Input 2.15: Commands for generating a mapped mesh on a
triangular surface using DEGENERATE = NO and 4-node shell elements.
Figure 2.16 shows the resulting mesh.
feprogram program=adina
coordinates point
1 0.0 0.0 0.0 0
2 0.0 1.0 0.0 0
3 0.0 0.5 1.0 0
*
surface vertex name=1 p1=3 p2=1 p3=2 p4=3
*
subdivide surface name=1 mode=divisions ndiv1=10 ndiv2=10
*
egroup shell name=1
*
gsurface 1 nodes=4,

pattern=automatic meshing=mapped degenerate=no

Figure 2.16: Mapped mesh-
ing on a triangular surface not
treated as degenerate with regu-
lar subdivisions and NODES = 4.

The surface shown in Figure 2.16 was created from three
points and not treated as degenerate. It was regularly
subdivided and meshes using SHELL elements (NODES = 4).
The resulting mapped mesh is composed exclusively of
quadrilaterals.

Command Input 2.16: Continuation of command input 2.15 for
generating the mapped mesh on the irregularly-subdivided triangular
surface shown in Figure 2.17 using DEGENERATE = NO and 4-node shell
elements.
eldelete surface 1
*
subdivide line name=2 mode=divisions ndiv=20
*
gsurface 1 nodes=4,

pattern=automatic meshing=mapped degenerate=no Figure 2.17: Mapped mesh-
ing on a triangular surface not
treated as degenerate with irregu-
lar subdivisions and NODES = 4).The surface shown in Figure 2.17 was irregularly subdivided

and not treated as degenerate. The resulting mapped mesh
is composed primarily of quadrilaterals but with some
triangles.
If a triangular surface is treated as degenerate by specifying
DEGENERATE = YES, it is meshed as if it were a quadrilateral
surface. In this case, the subdivisions are said to be regular
if the two lines connected to the degenerate point have an
equal number of subdivisions.

 , . 35



Command Input 2.17: Continuation of command input 2.15 for
generating a mapped mesh on the regularly-subdivided triangular
surface shown in Figure 2.18 using DEGENERATE = YES and 4-node shell
elements.
eldelete surface 1
*
gsurface 1 nodes=4,

pattern=automatic meshing=mapped degenerate=yes

Figure 2.18: Mapped meshing
on a triangular surface treated as
degenerate.

The triangular surface in Figure 2.18 was treated as degen-
erate and regularly subdivided. It was then meshed using
SHELL elements (NODES = 4). The resulting mapped mesh is
composed exclusively of quadrilaterals except near the top
point, where the elements are all triangular.

Command Input 2.18: Continuation of command input 2.15 for
generating a mapped mesh on the irregularly-subdivided triangular
surface shown in Figure 2.19 using DEGENERATE = YES and 4-node shell
elements.
eldelete surface 1
*
subdivide line name=3 mode=divisions ndiv=20
*
gsurface 1 nodes=4,

pattern=automatic meshing=mapped degenerate=yes

Figure 2.19: Mapped meshing
on an irregularly-subdivided
triangular surface treated as
degenerate.

The surface in Figure 2.19 was irregularly subdivided and
treated as degenerate. The resulting mapped mesh is com-
posed primarily of quadrilaterals, except near the top point
and the vertical central region.
A body face may also be map meshed, provided the face is
topologically identical to a surface. For instance, a quadri-
lateral (4-edges, not necessarily straight) body can be map
meshed because it is topologically identical to a quadrilat-
eral surface.

2.2.2 Volume meshing

Mapped meshing can be performed on volumes using the
command GVOLUME. The type of element created (hexahe-
dral, prismatic, pyramid, or tetrahedral) depends upon:
• whether the volume is an hexahedron, a prism, a pyramid,

36   

 

or a tetrahedron.
• whether the subdivisions are regular or irregular. A cube,
for example, is regularly subdivided if all parallel lines
have the same number of subdivisions.

• the number of nodes for the element.

Command Input 2.19: Commands for generating a mapped mesh on
an regularly-subdivided hexahedral volume using 8-node 3D elements.
Figure 2.20 shows the resulting mesh.
feprogram program=adina
coordinates point
1 0.0 0.0 1.0 0
2 1.0 0.0 1.0 0
3 1.0 1.0 1.0 0
4 0.0 1.0 1.0 0
5 0.0 0.0 0.0 0
6 1.0 0.0 0.0 0
7 1.0 1.0 0.0 0
8 0.0 1.0 0.0 0
*
volume vertex name=1 shape=hex,

vertex1=1 vertex2=2 vertex3=3 vertex4=4,
vertex5=5 vertex6=6 vertex7=7 vertex8=8

*
subdivide volume name=1,

mode=divisions ndiv1=5 ndiv2=10 ndiv3=20
*
egroup threedsolid name=1
*
gvolume 1 nodes=8 meshing=mapped

Figure 2.20: Mapped mesh-
ing of a regularly-subdivided
hexahedral volume.

The hexahedral volume shown in Figure 2.20 has regular
subdivisions and is meshed using THREEDSOLID elements
(with NODES = 8). The resulting mapped mesh is composed
exclusively of hexahedral (brick) elements.

 , . 37



Command Input 2.20: Continuation of command list 2.19 for regener-
ating a mapped mesh on an irregularly-subdivided hexahedral volume
using 8-node 3D elements. Figure 2.21 shows the resulting mesh.
eldelete volume 1
*
subdivide line name=3 mode=divisions ndiv=10
subdivide line name=4 mode=divisions ndiv= 5
subdivide line name=11 mode=divisions ndiv=10
subdivide line name=12 mode=divisions ndiv= 5
*
gvolume 1 nodes=8 meshing=mapped

Figure 2.21: Mapped meshing
of an irregularly-subdivided
hexahedral volume.

The irregularly subdivided volume in Figure 2.21 is mapped
meshed primarily with hexahedral elements and some
prismatic elements.

When the volume is not a hexahedron, it may be treated as
either degenerate or not degenerate. This choice affects the
mapped meshing of the volume.
If the volume is to be treated as degenerate (DEGENERATE = YES),
the volume is meshed as if it were a hexahedron.

Command Input 2.21: Commands for generating a mapped mesh on a
regularly-subdivided prismatic volume using 8-node 3D elements and
DEGENERATE = YES. Figure 2.22 shows the resulting mesh.
feprogram program=adina
coordinates point
1 0.5 1.0 1.0 0
2 0.0 0.0 1.0 0
3 1.0 0.0 1.0 0
4 0.5 1.0 0.0 0
5 0.0 0.0 0.0 0
6 1.0 0.0 0.0 0
*
volume vertex name=1 shape=prism,

vertex1=3 vertex2=2 vertex3=5,
vertex4=6 vertex5=1 vertex6=4

*
subdivide volume name=1,

mode=divisions ndiv1=5 ndiv2=10 ndiv3=20
*
egroup threedsolid name=1
*
gvolume 1 nodes=8 meshing=mapped degenerate=yes

Figure 2.22: Mapped meshing of
a regularly-subdivided prismatic
volume with DEGENERATE = YES.

38   

 

The regularly divided prismatic volume shown in Fig-
ure 2.22 is treated as degenerate. It is then meshed using
THREEDSOLID elements (NODES = 8). The resulting mapped
mesh is composed of hexahedral elements, except along
the degenerate line defined by points 5 through 6, in the
canonical ordering of a prismatic volume.

Command Input 2.22: Continuation of command input 2.21 for gen-
erating a mapped mesh on the regularly-subdivided prismatic volume
shown in Figure 2.23 using 8-node 3D elements and DEGENERATE = NO.
eldelete volume 1
*
gvolume 1 nodes=8 meshing=mapped degenerate=no

Figure 2.23: Mapped meshing
of an irregularly-subdivided
prismatic volume with
DEGENERATE = NO.

The irregularly subdivided volume shown in Figure 2.23 is
treated as non degenerate and meshes using THREEDSOLID
elements (NODES = 8). The resulting mapped mesh is com-
posed primarily of hexahedral elements, with some pris-
matic elements. For the subdivisions to be regular in this
context (prismatic volume not treated as degenerate), the
lines making up the top triangular surface should have the
same number of subdivisions (and the bottom triangular
surface would need to match that as well).
Pyramids and tetrahedons can similarly be map meshed.
Mapped meshing can also be applied to a body, provided
the body is topologically identical to a volume. For instance,
a body that has the shape of a hexahedron can be mapped
meshed because it is topologically identical to a hexahedral
volume.

2.2.3 Body face meshing

When generating second-order meshes, GFACE MIDNODES
allows the user to select from four mid-side node placement
options.
• MIDNODES = STRAIGHT: The element’s mid-side nodes are
placed midway on the straight line connecting the vertex
nodes rather than on the curved boundary. Clearly, this
option results in less geometric fidelity. See Figure 2.24,
panel a.

• MIDNODES = PROJECT: The mid-side node is first placed
on the straight line connecting the vertex nodes and then

 , . 39



projected onto the curved boundary. See Figure 2.24,
panel b.

• MIDNODES = CURVED: The mid-side node’s location on the
curved boundary is determined by a mapping operation
using the body’s parametric space. See Figure 2.24, panel
c.

• MIDNODES = DEFAULT: The default behavior is that for
mapped meshing (MESHING = MAPPED), the CURVED op-
tion is used, and for free-form and mixed meshing
(MESHING = FREE-FORM or = MIXED), the = PROJECT
option is used.

Command inputs 2.23, 2.24, and 2.25 demonstrate all
three mid-side node placement cases with mapped meshes.
When using mapped body face meshing, it is preferrable
to use the MIDNODES = CURVED because the mid-side nodes
will follow the parametric space of the body.
Note, however, that when generating free-form second-
order meshes, the MIDNODES = PROJECT option will typically
generate better quality elements. See the section on Mid-
side node placement for free-form body face meshing (on
page 57 – see also Figure 2.44).
When connecting mapped meshes to free-form meshes
(e.g., when using GFACE MESHING = MIXED), the MIDNODES
= PROJECT must be used to ensure that the midside nodes
are compatible at the interface between the mapped and the
free-form mesh.

40   

 

a)

MIDNODES
= STRAIGHT

b)

MIDNODES
= PROJECT

c)

MIDNODES
= CURVED

Figure 2.24: The effect of
MIDNODES when creating mapped
second-order meshes. When
MIDNODES = STRAIGHT, mid-side
nodes are always placed midway
on straight lines connecting
corner nodes (panel a). When
MIDNODES = PROJECT, mid-side
nodes are projected onto curved
edges/faces from straight lines
connecting corner nodes (panel
b). When MIDNODES = CURVED,
mid-side nodes are placed on
curves defined by the body’s
parametric space (panel c).

Command Input 2.23: Commands for generating the geom-
etry and mapped mesh shown in Figure 2.24, panel a with
MIDNODES = STRAIGHT.
feprogram program=adina
body block name=1 cx1=1.5 cx3=-0.5 dx1=1.0 dx2=1.0 dx3=1.0
*
body revolved name=2 mode=axis angle=-90.0 axis=yl
1 1
*
delete body first=1 last=1
*
subdivide face name=1 body=2 mode=divisions ndiv=3
1 2
*
egroup shell name=1
*
gface nodes=9 meshing=mapped midnodes=straight
1 2
*
view name=1 type=parallel xview=0 yview=-1 zview=0
nodedepiction name=1 symbolplot=yes
meshplot view=1 nodedepiction=1

Command Input 2.24: Continuation of command input 2.23 for
generating the mapped mesh shown in Figure 2.24, panel b with
MIDNODES = PROJECT.
eldelete face name=1 body=2
gface nodes=9 meshing=mapped midnodes=project
1 2
*
frame
meshplot view=1 nodedepiction=1

Command Input 2.25: Continuation of command input 2.24 for
generating the mapped mesh shown in Figure 2.24, panel c with
MIDNODES = CURVED.
eldelete face name=1 body=2
gface nodes=9 meshing=mapped midnodes=curved
1 2
*
frame
meshplot view=1 nodedepiction=1

 , . 41



2.2.4 Sweep and revolved meshing

Three-dimensional meshes can be created by sweeping or re-
volving meshed two dimensional body faces. Such meshes
are created simultaneously with the three-dimensional body
during the sweep or revolve operation. For example, if a
body face has been meshed with 4-node shell elements,
a BODY SWEEP or BODY REVOLVED operation will produce
hexahedral elements.

Command Input 2.26: Commands for generating the geometry and
mesh shown in Figure 2.25.
feprogram program=adina
coordinates point
1 0.0 1.00 1.0 0
2 0.0 0.00 1.0 0
3 0.0 0.00 0.0 0
4 0.0 1.00 0.0 0
5 0.0 0.50 0.5 0
6 0.0 0.75 0.5 0
*
line straight name=1 p1=1 p2=2
line straight name=2 p1=2 p2=3
line straight name=3 p1=3 p2=4
line straight name=4 p1=4 p2=1
line circle name=5 mode=1 p1=6 p3=1 center=5
line combined name=6 coupled=yes restrict=yes
1
2
3
4
*
body sheet name=1 line=6 delete-line=yes option=line
5
*
subdivide body name=1 mode=length size=0.1
*
egroup shell name=1
*
gface 1 nodes=4,

meshing=free-form prefshap=quad-direct density=1.2

Figure 2.25: Two-dimensional
mesh to be swept.

42   

 

Command Input 2.27: Continuation of command input 2.26 for
sweeping the two-dimensional mesh. Figure 2.26 shows the resulting
swept body and three-dimensional mesh.
egroup threedsolid name=2
*
body sweep name=2 face=1 option=vector dx=2.0 dy=0.0 dz=0.0,

body=1 mesh=yes 2d-egroup=1 3d-egroup=2 ndiv=10

Figure 2.26: Resulting geometry
and three-dimensional mesh
following BODY SWEEP operation.

Command Input 2.28: Continuation of command input 2.26 for
revolving the two-dimensional mesh. Figure 2.27 shows the resulting
swept body and three-dimensional mesh.
egroup threedsolid name=2
*
body revolved name=2 mode=vectors face=1 angle=60.0 za=1.0,

body=1 mesh=yes 2d-egroup=1 3d-egroup=2 ndiv=10

Figure 2.27: Resulting geom-
etry and three-dimensional
mesh following BODY REVOLVED
operation.

Figure 2.25 shows two-dimensional mesh on a body face.
Figure 2.26 shows the result of a sweep of the body face
along a vector (command BODY SWEEP). Figure 2.27 shows
the result of a revolution of the body face about an axis
(command BODY REVOLVED).

When using BODY REVOLVED, the user should note that
when revolving a quadrilateral mesh with only one node on
the axis of revolution, the resulting mesh will contain col-
lapsed elements (see Command input 2.29 and Figure 2.28,
panel a).
To prevent BODY REVOLVED from generating collapsed
elements in this situation, the user can make make the
any of the following modifications in the 2D mesh before
revolving:
• Create a boundary layer mesh of single element thickness
on the axis of revolution.

• Adjust the subdivisions so that there are no quadrilateral
elements with only one node on the axis of revolution

• Create a triangular mesh rather than a quadrilateral mesh,
as shown in Command input 2.30 and Figure 2.28 (panel
b).

 , . 43



Command Input 2.29: Commands for generating the mesh shown in
Figure 2.28 (panel a). Note that by using GFACE NODES = 4, a single
quadrilateral element is generated on the face. By using BODY REVOLVED
about a single node, a single collapsed 7-node element is generated.
feprogram program=adina
coordinates point
1 0.0 0.0
2 -1.0 1.0
3 -2.0 0.0
4 -1.0 -1.0
*
line straight name=1 p1=1 p2=2
line straight name=2 p1=2 p2=3
line straight name=3 p1=3 p2=4
line straight name=4 p1=4 p2=1
line combined name=5 coupled=yes restrict=yes
1
2
3
4
*
body sheet name=1 line=5 delete-line=yes option=line
*
egroup twodsolid name=1 subtype=stress3
gface name=1 body=1 nodes=4
egroup threedsolid name=2
body revolved name=2 mode=axis face=1 body=1 mesh=yes,

3d-egroup=2 axis=yl angle=-30.0 ndiv=1, delete-f=element
*
nodedepiction name=1 symbolplot=yes
meshrendering hidden=dashed
meshplot view=isoview2 nodedepiction=1

a)

b)

Figure 2.28: Illustration of
possible outcomes when using
BODY REVOLVED about a single
node. The orginal meshed face
is shown in grey and is being re-
volved about the Y -axis (shown
by the vertical red line). In panel
a, the face is meshed with a sin-
gle 4-node quadrilateral element,
and BODY REVOLVED generates a
single collapsed 7-node element.
Panel b shows that by meshing
the face using two 3-node ele-
ments, the resulting revolved
mesh contains of a prismatic
element and a pyramid element.

Command Input 2.30: Continuation of command input 2.29 for
generating the mapped mesh shown in Figure 2.28 (panel b). Note
that by using GFACE NODES = 3, two triangular elements are generated
on the face. This prevents BODY REVOLVED from generating a collapsed
element.
eldelete body name=2
*
gface name=1 body=1 group=1 nodes=3
body revolved name=3 mode=axis face=1 body=1 mesh=yes,

3d-egroup=2 axis=yl angle=-30.0 ndiv=1
*
frame
meshplot view=isoview2 nodedepiction=1

44   

 

2.2.5 Lofted meshing

The command GLOFTED creates a lofted mesh (with either
prismatic or hexahedral elements) on any geometry body
that can be seen to result from either a sweep, extrude,
revolve, or loft of a source (body) face. Some examples of
candidate bodies include

Figure 2.29: Parasolid model of
a manifold adapter. The central
feature is a lofted body, which
is a good candidate for being
meshed with GLOFTED. The
bottom feature is a swept body,
which may also be meshed using
GLOFTED.

• a body that is topologically equivalent to a cube or
prism and that would typically be meshed using GBODY
MESHING = MAPPED,

• a body that results from a BODY SWEEP command,
• a body that results from a BODY REVOLVED command, or
• a body that results from a BODY LOFTED.
The GLOFTED command requires that the body to be meshed
satisfies several topological requirements.

• There must exist topologically-equivalent4 source and

4 Topologically-equivalent faces
share a one-to-one correspon-
dence of points and edges.

target faces. The source and target faces can have interal
closed loop edges (e.g., a face with holes).

• Corresponding points on the source and target faces must
be connected by a linking edge (either straight or curved).

• Corresponding edges on the source and target faces must
be connected by a four-sided linking face.

In addition, there must be an equal number of subdivisions
(see the Subdivision section on page 22) on corresponding
edges of source and target faces, and linking edges must
all have the same number of subdivisions. Figure 2.30
illustrates source/target faces, corresponding edges, linking
faces, and linking edges on a lofted body. That body is used
in the following examples.

E1

E2
E3

E4

E5

E6

F1

F2

F3

F4

Figure 2.30: Detail of lofted
body (referred to as body 1 in
the following examples) from
Figure 2.29 with important
features labeled. Faces 1 and 4
(top and bottom, respectively)
comprise a source and target face
pair. Edges 1 & 4 and 2 & 6 are
two pairs of corresponding edges.
Faces 2 and 3 are linking faces.
Edges 3 and 5 are linking edges.

When GLOFTED is executed, the subdivisions on the target
face are automatically updated to be consistent with the
subdivisions on the source face. Thus, it is only necessary to
subdivide the source face. In addition, the subdivisions on
the linking edges are automatically applied by the GLOFTED
NDIV and RATIO parameters.
GLOFTED meshes the source face using either triangles (using
parameter PREFSHAPE = PRISMATIC) or quadrilaterals (using
PREFSHAPE = HEXAHEDRAL) and lofts the source surface
mesh along the linked edges/face, thereby creating either

 , . 45



prismatic or hexahedral elements. If the source face is to be
meshed using quadrilaterals, then the sum of subdivisions
of the source face bounding edges must be even.
Command input 2.31 demonstrate how to generate a
lofted mesh using GLOFTED PREFSHAPE = HEXAHEDRAL. The
resulting mesh is shown in Figure 2.31.

Command Input 2.31: Generating a lofted mesh for the body shown in
Figure 2.30 by specifying face 1 as the source face. The resulting mesh is
shown in Figure 2.31.
subdivide face name=1 body=1 mode=divisions ndiv=20
*
egroup threedsolid name=1
*
glofted nodes=8 group=1 prefshap=hexahedral ndiv=10
1 1
dataend
*
meshplot

Figure 2.31: Mesh generated by
GLOFTED for the body shown in
Figure 2.30.

If a specific type of surface mesh is required on the source
face, it should be meshed using GFACE. For example, it may
be desireable to use boundary layers along the walls of the
lofted manifold. For more information about Boundary
layer meshing using GFACE and BLTABLE-2D, see page 55.
Command input 2.32 demonstrate how to generate a sur-
face mesh with boundary layers and apply it to a lofted
body. Figure 2.33 shows the internal structure of the result-
ing lofted mesh.

46   

 

Command Input 2.32: Lofting a boundary layer mesh for the body
shown in Figure 2.30. Face 4 is meshed using a boundary layer table
and GFACE (Figure 2.32, panel a). GLOFTED is then used to create the
final lofted mesh (Figure 2.32, panel b). The internal structure of this
mesh is shown in Figure 2.33.
subdivide face name=4 body=1 mode=divisions ndiv=20
*
egroup shell name=1
*
bltable-2d name=1 progress=geometric apply-default=all,

n-layer=6 thick-first=0.3 thick-total=5.0
*
gface name=4 body=1 nodes=4 group=1 2dbltable=1,

prefshape=quad-direct
*
egroup threedsolid name=2
*
glofted group=2 ndiv=10
4 1
dataend
*
meshplot

a)

b)

Figure 2.32: Lofting of a bound-
ary layer mesh. The bottom face
of the lofted body is meshed
using BLTABLE-2D and GFACE
(panel a). The triangulation
from the resulting meshed face
is then lofted to the target face,
resulting in a high-quality mesh
with a boundary layer along the
manifold’s wall (panel b).

Figure 2.33: Internal structure
of lofted mesh with boundary
layers.

In many cases (as in the example shown in command in-
put 2.32), the 2D mesh used by GLOFTED is needed only
temporarily. The parameter GLOFTED DELETE-FACE-ELEMENT
allows the user to specify if the 2D mesh is to be deleted.
For example, setting DELETE-FACE-ELEMENT = ELEMENT will
delete the elements on the source face but will not delete
the associated element group. DELETE-FACE-ELEMENT = ALL
will delete the elements on the source face and the as-
sociated element group if it does not contain any other
elements.

 , . 47



Note that in command input 2.32, it was not necessary
to specify GLOFTED NODES. This parameter is only used
when there is no 2D mesh or face-linked triangulation
on the source face. In this case, source face 4 already has
a triangulation from the boundary layer mesh shown in
Figure 2.32 (panel a).
When the source face already has a triangulation, GLOFTED
automatically assigns the number of nodes per element in
the lofted mesh based on the 2D mesh or triangulation as
detailed in Table 2.1.

2DMesh Lofted 3DMesh
3-node triangular 6-node prismatic
6-node triangular 15-node prismatic
7-node triangular 20-node prismatic
4-node quadrilateral 8-node hexahedral
8-node quadrilateral 20-node hexahedral
9-node quadrilateral 27-node hexahedral

Table 2.1: 3D element types cre-
ated when lofting the following
2D meshes.

If a source face is face-linked (using the FACELINK command
– see the Face-linking section on page 14) with a body that
has a three-dimensional mesh, the triangulation from the
three-dimensional mesh is used as the surface mesh for the
source face. In this case, any existing subdivisions on the
source face are updated.
Similarly, if a linking face is face-linked with a body that
has a three-dimensional mesh, the triangulation from the
three-dimensional mesh is used as the surface mesh for the
linking face. In this case, it is required that
• the number of subdivisions on the shared edge between
the source face and the linking face is the same as the
number of subdivisions used in three-dimensional mesh
of the face-linked body.

• the number of subdivisions along the linking edges (as
specified by the GLOFTED NDIV parameter) is the same as
the number of subdivisions used in the three-dimensional
mesh of the face-linked body.

48   

  - 

2.3 Body Face Free-Form Meshing

The command GFACE generates triangular, quadrilateral, and
boundary layer meshes on body faces. Parameter PREFSHAPE
controls the shape of the elements to be generated (trian-
gular or quadrilateral), and parameter 2DBLTABLE enables
boundary layer meshing.
Note that free-form meshing produces slightly different
meshes on different platforms, and meshes generated on
your computer may not exactly match those shown in the
figures.

2.3.1 Triangular meshing

Triangular meshing is selected with PREFSHAPE = TRIANGULAR.5 5 PREFSHAPE is used only for free-
form meshing when NODES = 4,
8, 9, or 16.

There are two methodologies available to mesh a body face:
advancing front and Delaunay. In either case, the starting
point is the subdivisions that are present on the bounding
body edges.

The advancing front method (parameter METHOD = ADVFRONT)6 6 The advancing front method
produces well-shaped elements
near the boundary of the body
face but may encounter diffi-
culties closing the front. This
limitation becomes more evident
in three dimensions.

“advances” the front (initially composed of the segments
joining the subdivision marks on the bounding body edges)
toward the interior by creating triangular elements until the
front is filled. Each time a triangular element is created, the
front is modified, shrinking the domain remaining to be
meshed.

 , . 49



Command Input 2.33: Commands for generating the free-formed
mesh using the advancing front method shown in Figure 2.34.
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 dx1=2.0 dx2=2.0 dx3=2.0
body cylinder name=2 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 axis=zl radius=0.1 length=4.0
*
body subtract name=1 keep-too=no keep-imp=no
2
*
subdivide face 1 mode=length size=0.2
*
subdivide edge 15 mode=length size=0.01
subdivide edge 17 mode=length size=0.01
*
egroup shell
*
gface 1 nodes=4 prefshape=triangular method=advfront

Figure 2.34: Free-form
mesh generated using
METHOD = ADVFRONT.

Figure 2.34 shows a free-form triangular mesh obtained
using the advancing front method when the subdivisions
on the bounding body edges are non-uniform, which is
the general case. As can be seen, the mesh gradation is
quite steep, which may be desirable only if the number of
elements generated must be kept at a minimum.7

7 The growth rate (mesh density
gradient) cannot be modified us-
ing the advancing front method.

Command Input 2.34: Continuation of command input 2.33 for regen-
erating the mesh using uniform subdivisions shown in Figure 2.35.
eldelete face 1 body=1
*
subdivide face 1 mode=length size=0.05
*
subdivide edge 15 mode=length size=0.05
subdivide edge 17 mode=length size=0.05
*
gface 1 nodes=4 prefshape=triangular method=advfront

Figure 2.35: Free-form trian-
gular mesh obtained using the
advancing front method. Uni-
form subdivisions were used in
this case.

The advancing front method generates good meshes when
the subdivisions are uniform or nearly uniform. Figure 2.35
shows a free-form triangular mesh obtained using the
advancing front method with uniform subdivisions on the
bounding body edges.

The Delaunay method (invoked by setting METHOD = DELAUNAY)

50   

  - 

proceeds as follows:
1. Create an initial mesh (typically composed of two trian-

gles) that fully contains the body face.
2. Insert the boundary vertices into the mesh.
3. Recover the boundary segments if they are not present

in the mesh. Note that, in two dimensions, the initial
boundary segments are likely to be in the mesh.

4. Refine the mesh until it satisfies the mesh density require-
ments.

5. Optimize the mesh quality.
When generating non-uniform meshes, the growth rate,
or mesh density gradient, is controlled by parameter
DENSITY-FACTOR. The greater the parameter, the greater
the mesh density gradient. This growth rate parameter may
be from 1.0 to 3.0.
During free-form meshing, the mesh densities specified
along edges are always satisfied. Between edges, however,
it is computationally more difficult to satisfy the requested
growth rate. Parameter REFINE affects how closely the
requested growth rate is satisfied within the domain:
• Meshing Speed: If REFINE = EDGE-MIDDLE, a mesh edge
that is too long is split at the middle. This procedure
is used to optimize for meshing speed at the expense
of growth rate accuracy. Typically, fewer elements are
generated and the mesh density gradients will be less
smooth.

• Subdivision Accuracy: If REFINE = ALONG-EDGE, a mesh
edge that is too long is split along its length so that the
resulting sub-edges satisfy the mesh density requirements
along the edge. This procedure is used to optimize for
subdivision accuracy, at the expense of computational
time. Resulting meshes will more closely and smoothly
match the requested growth rate (DENSITY-FACTOR).

Command inputs 2.35 and 2.36 generate meshes using the
Delaunay method and both options for parameter REFINE.
Both examples use DENSITY-FACTOR = 1.2.

 , . 51



Command Input 2.35: Free-form triangular mesh obtained using the
Delaunay method and REFINE = EDGE-MIDDLE. Figure 2.36 shows the
resulting mesh.
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 dx1=2.0 dx2=2.0 dx3=2.0
body cylinder name=2 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 axis=zl radius=0.1 length=4.0
*
body subtract name=1 keep-too=no keep-imp=no
2
*
subdivide face 1 mode=length size=0.2
*
subdivide edge 15 mode=length size=0.01
subdivide edge 17 mode=length size=0.01
*
egroup shell
*
gface 1 nodes=4 preshape=triangular method=delaunay,

refine=edge-middle density-factor=1.2

Figure 2.36: Delaunay mesh
using REFINE = EDGE-MIDDLE.

Command Input 2.36: Continuation of command input 2.35 to remesh
using REFINE = ALONG-EDGE. See Figure 2.37.
eldelete face 1 body=1
*
gface 1 nodes=4 preshape=triangular method=delaunay,

refine=along-edge density-factor=1.2

Figure 2.37: Delaunay mesh
using REFINE = ALONG-EDGE.
Note the smoother, more even
growth rate (mesh density
graduation) as compared to
Figure 2.36.

Figures 2.36 and 2.37 show the effect of parameter REFINE
with constant DENSITY-FACTOR = 1.2, which results in a
gentle growth rate, or mesh density gradient.
If fewer elements are required, but the mesh densities at
the outer edges and around the hole must be preserved, the
mesh density gradient can be made steeper by increasing
DENSITY-FACTOR. Command input 2.37 demonstrates its
use.

52   

  - 

Command Input 2.37: Free-form triangular mesh obtained using
the Delaunay method and REFINE = ALONG-EDGE. Now, the mesh
density gradient has been steepened by setting DENSITY-FACTOR = 1.8.
Figure 2.38 shows the resulting mesh.
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 dx1=2.0 dx2=2.0 dx3=2.0
body cylinder name=2 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 axis=zl radius=0.1 length=4.0
*
body subtract name=1 keep-too=no keep-imp=no
2
*
subdivide face 1 mode=length size=0.2
*
subdivide edge 15 mode=length size=0.01
subdivide edge 17 mode=length size=0.01
*
egroup shell
*
gface 1 nodes=4 preshape=triangular method=delaunay,

refine=along-edge density-factor=1.8

Figure 2.38: Free-form tri-
angular mesh using the De-
launay method, parameters
REFINE = ALONG-EDGE, and
DENSITY-FACTOR = 1.8. Com-
pare to Figure 2.37.

Figure 2.38 also illustrates the impact of increasing pa-
rameter DENSITY-FACTOR. The mesh densities near the
circular hole and the outside edges are preserved, but fewer
elements have been generated, as compared to Figure 2.37.

Curvature-based sizing meshing (parameters GEO-ERROR,
SAMPLING, and MIN-SIZE), automatic grading (AUTO-GRADING),
and size functions (SIZE-FUNCTION) are available when us-
ing the Delaunay method to general triangular meshes.8

8 Note that the parameter REFINE
is ignored when using curvature-
based sizing and/or automatic
grading.For more information, see Mesh Size Control on page 22.

These options will alter the subdivisions on the bounding
body edges and influence the resulting face mesh.9 9 Setting SIMULATE = YES will

suppress the creation of the
mesh, thus only the subdivisions
on the bounding body edges will
be affected.

Command input 2.38 demonstrates the use of curvature-
based meshing with the Delaunay method. Figure 2.39
shows the resulting geometry and mesh.

 , . 53



Command Input 2.38: Curvature based meshing with the Delaunay
method and triangular elements. Figure 2.39 shows the resulting mesh.
Note that no subdivisions are set.
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 dx1=2.0 dx2=2.0 dx3=2.0
body cylinder name=2 option=centered position=vector,

cx1=0.9 cx2=0.0 cx3=0.0 axis=zl radius=0.05 length=4.0
*
body subtract name=1 keep-too=no keep-imp=no
2
*
egroup shell
*
gface 1 nodes=4,

prefshape=triangular method=delaunay,
geo-error=0.02 sampling=20 min-size=0.00001

Figure 2.39: Free-form trian-
gular mesh using the Delaunay
method and curvature-based
sizing.

2.3.2 Quadrilateral meshing

To obtain an all-quadrilateral mesh, parameter PREFSHAPE
must be set to QUAD-DIRECT.
Generating an all-quadrilateral mesh requires that the total
number of subdivisions on the bounding body edges be
even. When parameter EVEN = SUM, the sum of all subdi-
visions on the bounding body edges is made even prior to
meshing. When EVEN = ALL, the number of subdivisions
on all bounding body edges is made even prior to mesh-
ing. When parameter SIMULATE = YES, the subdivision
adjustment is made (if necessary) without meshing.

54   

  - 

Command Input 2.39: Generating an all-quadrilateral mesh using
PREFSHAPE = QUAD-DIRECT. Figure 2.40 shows the resulting mesh.
feprogram program=adina
body block name=1 dx1=2.0 dx2=2.0 dx3=2.0
body cylinder name=2 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 axis=zl radius=0.1 length=4.0
*
body subtract name=1 keep-too=no keep-imp=no
2
*
subdivide face 1 mode=length size=0.2
subdivide edge 15 mode=length size=0.01
subdivide edge 17 mode=length size=0.01
*
egroup shell
*
gface 1 nodes=4,

prefshape=quad-direct density-factor=1.2 even=sum

Figure 2.40: Free-form quadri-
lateral mesh generated using
PREFSHAPE = QUAD-DIRECT.

Command Input 2.40: Continuation of command input 2.40 to remesh
using DENSITY-FACTOR = 1.8. Figure 2.41 shows the resulting mesh.
eldelete face 1 body=1
*
gface 1 nodes=4,

prefshape=quad-direct density-factor=1.8 even=sum

Figure 2.41: All-quadrilateral
mesh generated using
DENSITY-FACTOR = 1.8.

Figure 2.40 shows an example of free-form all-quadrilateral
meshing with DENSITY-FACTOR = 1.2. Figure 2.41 shows
the same body face and subdivisions but meshed with
DENSITY-FACTOR = 1.8.10

10 For all-quadrilateral mesh-
ing, DENSITY-FACTOR = 1.2 is
recommended.

It is also possible to generated mixed meshes using parame-
ters METHOD = ADVFRONT and PREFSHAPE = QUADRILATERAL.
However, mixed meshes are not recommended, because
all-quadrilateral meshes can be obtained as readily.

2.3.3 Boundary layer meshing

Boundary layers (sometimes called inflation layers) can
be created by specifying a boundary layer table with the
BLTABLE-2D command and using GFACE 2DBLTABLE. The
command BLTABLE-2D has options for specifying de-
faults for the number of layers (N-LAYER), and layer thick-
nesses (THICK-FIRST and THICK-TOTAL). Row entries for

 , . 55



BLTABLE-2D are used to specify edges for which the defaults
do not apply. 11

11 This feature simplifies user
input when there are many edges
which should have boundary
layers applied.The boundary layer elements are quadrilateral. Elements

in the remaining domain may be either triangular (param-
eter PREFSHAPE = TRIANGULAR) or quadrilateral (PREFSHAPE
= QUAD-DIRECT). PREFSHAPE = QUADRILATERAL generates
both triangular and quadrilaterial elements, but quadri-
lateral elements are preferred. PREFSHAPE is only used in
free-form meshes with NODES is 4, 8, 9, or 16.12

12 The NODES parameter specifies
the maximum number of nodes
per element outside of the
boundary layer.

Command inputs 2.41 and 2.42 demonstrate how to use
BLTABLE-2D in two dimensions.

Command Input 2.41: Generating a boundary layer mesh using
2DBLTABLE and PREFSHAPE = TRIANGULAR. Figure 2.42 shows the
resulting mesh. Note the single row with edge number 12 specified as
having zero boundary layer thickness. All other edges have the default
boundary layer parameters applied.
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 dx1=2.0 dx2=2.0 dx3=2.0
body cylinder name=2 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 axis=zl radius=0.6 length=4.0
*
body subtract name=1 keep-too=no keep-imp=no
2
*
subdivide face 1 body=1 mode=length size=0.1
*
bltable-2d name=1 progress=geometric apply-default=all,

n-layer=6 thick-first=0.01 thick-total=0.16
12 1 0.0 0.0
*
egroup shell
*
gface 1 nodes=4 2dbltable=1 prefshape=triangular

E9

E10

E11

E12

E15

E17

Figure 2.42: Boundary layer
meshing with triangular
elements between layers.
(PREFSHAPE = TRIANGULAR).
Note that the defaults in
BLTABLE-2D are applied to all
edges except for edge 12, which
is specified to have zero bound-
ary layer thickness.

Command Input 2.42: Continuation of command input 2.41 to remesh
using PREFSHAPE = QUAD-DIRECT. Figure 2.43 shows the resulting
mesh.
eldelete face 1 body=1
*
gface 1 nodes=4 2dbltable=1 prefshape=quad-direct

E9

E10

E11

E12

E15

E17

Figure 2.43: Boundary layer
meshing with quadrilat-
eral elements between layers
(PREFSHAPE = QUAD-DIRECT).

56   

  - 

2.3.4 Mid-side node placement

Users interested in mapped Body face meshing with higher
order elements should use the MIDNODES = CURVED option
to map mid-side nodes to curves following the parametric
space of the body face (see Figure 2.24). However, when
free-form meshing is desired, the MIDNODES = CURVED op-
tion may yield distorted second-order elements near regions
where the parametric space becomes singular (e.g., the
pole of a sphere). Thus, it is preferred to generate the free-
form second-order meshes using MIDNODES = PROJECT (see
Figure 2.44).
For complex geometries, both the MIDNODES = CURVED and
MIDNODES = PROJECT options can yield distorted elements.
In this case, it may be necessary to use MIDNODES = STRAIGHT
to ensure that mid-side nodes are placed midway on the
straight line between vertex nodes.
Command inputs 2.43 and 2.44 illustrate the effects of
free-form body face meshing with MIDNODES = CURVED and
MIDNODES = PROJECT on a the faces of spherical body.

a) MIDNODES = CURVED

b) MIDNODES = PROJECT

Figure 2.44: The effect of
MIDNODES when creating free-
form second-order meshes. A
spherical body’s faces are meshed
and viewed from above a pole.
When MIDNODES = CURVED, mid-
side nodes are always mapped
onto curves defined by the body’s
parametric space, which in this
case leads to distorted elements
near the pole (center, panel a).
Because MIDNODES = PROJECT
does not map mid-side nodes
onto the body’s parametric space,
the elements near the pole are of
higher quality (center, panel b)

Command Input 2.43: Commands for generating the geome-
try and free-form mesh shown in Figure 2.44, panel a with
MIDNODES = CURVED.
feprogram program=adina
body sphere radius=1.0
*
subdivide body name=1 mode=length size=0.3
*
egroup shell
*
gface nodes=8 prefshape=triangular midnodes=curved
1 1
2 1
*
view name=1 type=parallel xview=0 yview=0 zview=-1
nodedepiction name=1 symbolplot=yes
meshplot view=1 nodedepiction=1

 , . 57



Command Input 2.44: Continuation of command input 2.43 for
generating the free-form mesh shown in Figure 2.44, panel b with
MIDNODES = PROJECT.
eldelete face name=1 body=1
eldelete face name=2 body=1
*
gface nodes=8 prefshape=triangular midnodes=project
1 1
2 1
*
frame
meshplot view=1 nodedepiction=1

2.4 Body Free-Form Meshing

Bodies are free-form meshed using the command GBODY
MESHING = FREE-FORM. If the number of NODES is set to 4,
10, or 11, GBODY will generate tetrahedral elements. If NODES
is set to 8, 20, or 27, GBODY will generate a mixed mesh of
hexahedral, pyramid, and tetrahedral elements. If boundary
layers are desired, either all-prismatic (wedge) elements
or all-hexahedral (brick) elements will be generated in the
layers.
Note that free-form meshing produces slightly different
meshes on different platforms, and meshes generated on
your computer may not exactly match those shown in the
figures.

2.4.1 Tetrahedral meshing

Tetrahedral meshing is enabled when NODES is 4, 10, or 11.
There are three free-form tetrahedral meshing schemes
available: advancing front (METHOD = ADVFRONT), Delaunay
(METHOD = DELAUNAY), and hybrid advancing front/Delau-
nay (METHOD = ADVFDELA).
The advancing front method begins from the triangular
meshes on bounding faces and works its way inward. As the
mesher advances, it attempts to fill the remaining domain
by connecting a triangular mesh face on the advancing
front to a new or existing mesh vertex. This process repeats
incrementally, thereby filling the domain with elements.

58   

 - 

The advancing front method creates well-shaped elements
near boundaries. Unfortunately however, it does not al-
ways succeed in closing the front, except for the simplest
of geometries. Thus, the advancing front method is not
recommended, in general.
The Delaunay free-form tetrahedral mesh generator is more
robust. It performs the following operations:
1. Build an initial mesh for a box bounding the body. When

parameter GRID = YES, this initial mesh is constructed
by uniformly subdividing the box into sub-boxes which
are then meshed with five tetrahedral elements (mesh
regions) each, otherwise, the box is meshed directly with
five mesh regions.

2. Insert the boundary vertices (coming from the meshing
of the body faces) into this initial mesh.

3. Recover the boundary edges and the boundary faces.
After insertion into the mesh of the boundary vertices,
not all boundary edges and faces will actually be present
in the mesh. They therefore need to be recovered by
performing topological operations on the mesh.

4. Refine the mesh until all mesh density requirements
are met. When REFINE = EDGE-MIDDLE, if a mesh edge
is too long, a new mesh vertex is inserted at its middle.
When REFINE = ALONG-EDGE, if a mesh edge is too long,
new mesh vertices are inserted along the edge accord-
ing to the mesh densities along the edge. Parameter
DENSITY-FACTOR controls the growth rate, or the mesh
density gradient when the subdivisions are not uniform.

5. Optimize the quality of the mesh. The number of opti-
mization passes is controlled by parameter NOPTI.

Typically, one would control the mesh refinement pro-
cess using either REFINE = EDGE-MIDDLE (for faster perfor-
mance) or REFINE = ALONG-EDGE (for better subdivision
accuracy).
For large meshes, REFINE = EDGE-MIDDLE will usually
run faster and create fewer elements, though it will less
accurately satisfy internal mesh density requirements.
REFINE = ALONG-EDGE will typically generate more ele-
ments and require more CPU time, but it will more ac-
curately satisfy the mesh density requirements away from
edges.13 If the surface mesh has small triangles resulting 13 The mesh density requirements

on edges are always satisfied.

 , . 59



from the presence of small body edges and/or faces, pa-
rameter DENSITY-FACTOR may need to be increased (and
parameter REFINE set to EDGE-MIDDLE) to prevent over-
refining.
Command input 2.45 demonstrates the use of GBODY using
the Delaunay method to generate a free-form tetrahedral
mesh.

Command Input 2.45: Generating a tetrahedral mesh using GBODY and
METHOD = DELAUNAY. Figure 2.45 shows the resulting mesh. Note the
additional commands for exposing the internal mesh structure.
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 dx1=2.0 dx2=2.0 dx3=2.0
body cylinder name=2 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 axis=xl radius=0.2 length=4.0
*
body subtract name=1 keep-too=no keep-imp=no
2
*
subdivide body 1 mode=length size=0.2
subdivide face 7 body=1 mode=length size=0.02
subdivide face 8 body=1 mode=length size=0.02
*
egroup threedsolid
*
gbody 1 nodes=4 method=delaunay
*
* COMMANDS FOR EXPOSING THE INTERNAL MESH
boxzone b
-10 0 -10 10 -10 10
modeldepic geometry=no
frame/meshplot zone=b

Figure 2.45: Free-form tetra-
hedral mesh generated using
METHOD = DELAUNAY. Internal
mesh structure exposed.

The hybrid advancing front/Delaunay method (selected by
setting METHOD = ADVFDELA – see command input 2.46) is
useful for cases in which the advancing front method fails.
It can mesh relatively complex bodies with an advancing
front type method.

60   

 - 

Command Input 2.46: Continuation of command input 2.45 to
regenerate the mesh shown in Figure 2.46 using METHOD = ADVFDELA.
eldelete body 1
*
egroup threedsolid
*
gbody 1 nodes=4 method=advfdela
*
* COMMANDS FOR EXPOSING THE INTERNAL MESH
boxzone b
-10 0 -10 10 -10 10
modeldepic geometry=no
frame/meshplot zone=b

Figure 2.46: Free-form tetra-
hedral mesh generated using
METHOD = ADVFDELA. Internal
mesh structure exposed.The meshing algorithm used for the bounding body

faces is controlled by parameter BOUNDARY-METHOD. If
BOUNDARY-METHOD = ADVFRONT, the advancing front method
is used. If BOUNDARY-METHOD = DELAUNAY, the Delaunay
method is used. Just as the REFINE controls how the tetra-
hedral mesh is refined when BOUNDARY-METHOD = DELAUNAY,
BREFINE controls how the triangular mesh on the bounding
body faces are refined when BOUNDARY-METHOD = DELAUNAY.14

14 REFINE and BREFINE are not
used if PYRAMIDS = ONLY.

As with body face free-form triangular meshing, size
functions (parameter SIZE-FUNCTION), curvature-based
sizing (parameters GEO-ERROR, SAMPLING, and MIN-SIZE),
and automatic grading (parameter AUTO-GRADING) can be
used to control mesh densities while meshing. These are
available only if options METHOD and BOUNDARY-METHOD are
both set to DELAUNAY.15 The effect of these mesh density

15 In fact, if any of these size
controls is specified with METHOD
and/or BOUNDARY-METHOD set to
ADVFRONT, ADINA will ignore
the erroneous request to use the
advancing front method and
override with DELAUNAY.parameters can be limited to the bounding body edges by

setting SIMULATE = YES, as detailed in Mesh Size Control
on page 22.
Command input 2.47 demonstrates how to generate a
free-form tetrahedral mesh using curvature-based sizing.

 , . 61



Command Input 2.47: Generating a tetrahedral mesh using curvature-
based sizing (GEO-ERROR). Figure 2.47 shows the resulting mesh.
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 dx1=2.0 dx2=2.0 dx3=2.0
body cylinder name=2 option=centered position=vector,

cx1=0.0 cx2=0.7 cx3=0.0 axis=xl radius=0.2 length=4.0
*
body subtract name=1 keep-too=no keep-imp=no
2
*
egroup threedsolid
*
gbody 1 nodes=4 method=delaunay boundary-method=delaunay,

geo-error=0.02 sampling=20 min-size=0.00001
*
boxzone b
-10 0 -10 10 -10 10
modeldepic geometry=no
frame/meshplot zone=b

Figure 2.47: Free-form tetra-
hedral mesh generated us-
ing curvature-based sizing
(GEO-ERROR).

Figure 2.47 shows a free-form tetrahedral mesh with
curvature-based sizing enabled (parameter GEO-ERROR).16

16 Note that automatic grad-
ing is always turned on when
curvature-based sizing is re-
quested.

There were no subdivisions prior to meshing. The effect is
most evident on the triangular mesh on the face nearest the
cylindrical wall.

The parameter NLAYER 17 specifies the minimum number of 17 GBODY NLAYER is not used if
PYRAMIDS = ONLY or if boundary
layers are used. For more infor-
mation about Boundary layer
meshing, see page 68.

element layers through the section. This option is useful for
bodies with thin regions (e.g. locations likely to experience
strong stress gradients). Command inputs 2.48 and 2.49
demonstrate the effects of varying NLAYER.

62   

 - 

Command Input 2.48: Thin-walled geometry being meshed with
NLAYER = 1. Figure 2.48, (panel a) shows the resulting mesh.
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 dx1=2.0 dx2=2.0 dx3=2.0
body cylinder name=2 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 axis=xl radius=0.9 length=4.0
*
body subtract name=1 keep-too=no keep-imp=no
2
*
subdivide body 1 mode=length size=0.2
subdivide face 7 body=1 mode=length size=0.2
subdivide face 8 body=1 mode=length size=0.2
*
egroup threedsolid
*
gbody 1 nodes=4 nlayer=1 method=delaunay

Command Input 2.49: Continuation of command input 2.48 regen-
erating the mesh using NLAYER = 3. Figure 2.48, (panel b) shows the
resulting mesh.
eldelete body 1
*
egroup threedsolid
*
gbody 1 nodes=4 nlayer=3 method=delaunay

NLAYER=1

NLAYER=3

a)

b)

Figure 2.48: Free-form tetra-
hedral mesh generated using
NLAYER = 1 (panel a) and
NLAYER = 3 (panel b).Consider, for example, the body shown in Figure 2.48.

Meshing with NLAYER = 1 will generate a mesh with a
single ‘layer’ of elements in the thin regions. Increasing
NLAYER = 3 ensures that those thin regions are meshed
using at least 3 layers of elements, as shown in Figure 2.48,
(panel b). Clearly, this second mesh can better resolve
strong stress gradients in the thin walls.

 , . 63



2.4.2 Mixed meshing

Mixed meshing is a powerful and versatile technique, and
its versatility is most effectively used with an understanding
of some basic behaviors. More complex meshing situations,
however, require a more detailed understanding of the
associated meshing options and how those options interact
to affect the final mesh.
By default (with GBODY MESHING = MIXED), mixed meshing
can be performed. In the special case that the body to be
meshed is topologically-equivalent to a hexahedron (and
that the subdivisions allow for it), GBODY MESHING = MIXED
will generate a mapped mesh. However, in all other cases,
GBODY MESHING = MIXED will generate a free-form mesh.
Free-form mixed meshing is enabled when NODES is set to 8,
20, or 27 and MESHING = FREE-FORM. The approach is based
on the advancing front method, where the initial front is
the quadrilateral surface mesh on the bounding body faces.
Hexahedral elements are generated from those quadrilateral
facets until it becomes impossible to do so.
Once it becomes impossible to advance the front with
hexahedral elements, the mesher must either transition to
tetrahedrons using pyramids or simply create tetrahedrons
without the transitional pyramids. In free-form meshing,
the user can control this behavior using the parameter
PYRAMIDS.
• If PYRAMIDS = NO, the leading part of the front is meshed
with tetrahedral elements and no pyramid elements. This
option is used only when NODES is set to 8, 20, or 27.

• If PYRAMIDS = YES, pyramid elements are created from
the quadrilateral facets on the front, and the remaining
domain is meshed with tetrahedral elements. This option
is used only when NODES is set to 8, 20, or 27.

• If PYRAMIDS = ONLY, pyramid elements are created off the
quadrilateral facets coming from the quadrilateral surface
mesh and tetrahedral elements are used to fill the rest of
the domain. No hexahedral elements are generated. This
option is useful when some of the bounding body faces
are already meshed with quadrilaterals (possibly because
of facelinks) but tetrahedral elements are preferred.

64   

 - 

Command input 2.50 demonstrates how to generate a
free-form mixed mesh with PYRAMIDS = NO.

Command Input 2.50: Generating a mixed mesh using PYRAMIDS = NO.
Figure 2.49 shows the resulting mesh.
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 dx1=2.0 dx2=2.0 dx3=2.0
body cylinder name=2 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 axis=xl radius=0.2 length=4.0
*
body subtract name=1 keep-too=no keep-imp=no
2
*
subdivide body 1 mode=length size=0.1
subdivide face 7 body=1 mode=length size=0.04
subdivide face 8 body=1 mode=length size=0.04
*
egroup threedsolid
*
gbody 1 nodes=8 pyramids=no
*
boxzone b
-10 0 -10 10 -10 10
modeldepic geometry=no
frame/meshplot zone=b

Figure 2.49: Free-form
mixed mesh generated using
PYRAMIDS = NO.

Setting NODES = 20 forces PYRAMIDS = YES. This is because
it is impossible to have a higher order tetrahedral element
adjacent to a 20-node hexahedral element (the tetrahedral
element brings an extra mid-side node).
Similarly, in ADINA-F, parameter PYRAMIDS is always
forced to be YES, no matter the number of nodes requested.
This is because ADINA-F requires transitional pyramid
elements between hexahedral and tetrahedral elements.

Because the initial front on the bounding body faces for
mixed meshes is composed of all-quadrilateral boundary
cells, the total number of bounding body edges must be
even. The EVEN parameter allows users to control how the
subdivisions should be adjusted to satisfy this requirement.
• Setting EVEN = SUM, the sum of all subdivisions on the
bounding body edges for each body face is made even
prior to meshing.

 , . 65



• Face-linking on a free-formed mixed mesh bound-
ary requires that the face(s) to be linked have an even
number of subdivisions on each bounding edge. When
EVEN = LINK, this condition is satisfied before meshing.
Also, the sum of the subdivisions of the remaining body
edges is made even, if necessary.

• Setting EVEN = ALL, the number of subdivisions on all
bounding body edges is made even prior to meshing.

The quality of the hexahedral elements produced is con-
trolled by parameters DANGMAXB, DANGMAXC, and DANGMAXD:
• DANGMAXB, or Internal Angle Deviation, controls the maxi-
mum allowed deviation from 90 degrees for the internal
angle at the corners of quadrilateral facets.

• DANGMAXC controls the maximum allowed deviation from
180 degrees for the dihedral angle at the diagonals of
quadrilateral facets.

• DANGMAXD controls the maximum allowed deviation from
90 degrees for the dihedral angle at the edges of hexahe-
dral elements.

The higher the quality requested, the fewer hexahedral
elements are generated.
It might not be possible to create an all-hexahedral mesh.
In that case, it may help to decrease parameter DANGMAXC,
which makes quadrilateral facets more planar.

Command input 2.51 demonstrates the use of transitional
pyramids between face-linked mapped hexahedral and
free-form tetrahedral meshes.

66   

 - 

Command Input 2.51: Meshing two face-linked bodies. Body 1 is
map meshed using 8 node bricks, and body 2 is free-form meshed.
Figure 2.50 shows the resulting mesh.
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 dx1=1.0 dx2=1.0 dx3=1.0
body block name=2 option=centered position=vector,

cx1=0.0 cx2=1.0 cx3=0.0 dx1=1.0 dx2=1.0 dx3=1.0
*
facelink option=all
*
subdivide body 1 mode=length size=0.1
subdivide body 2 mode=length size=0.1
*
egroup name=1 type=threedsolid
egroup name=2 type=threedsolid
*
gbody 1 group=1 nodes=8
gbody 2 group=2 nodes=4 meshing=free-form pyramids=only
*
boxzone b
-10 0 -10 10 -10 10
modeldepic geometry=no
frame/meshplot zone=b

Figure 2.50: Free-form mesh
(in red) generated using tetrahe-
dral elements and transitional
pyramids.

Figure 2.50 shows the results of Command input 2.51.
Body 1 has been map meshed with hexahedral elements.
Body 2 is face linked (see page 14) to body 1 and is meshed
using tetrahedral elements and transitional pyramids.
To generate the red mesh containing mostly tetrahedral
elements but transition pyramids on the interface with the
hexahedral mesh, as shown, the user must:
1. Specify NODES = 4 to mesh the body using tetrahedral

elements.
2. Invoke free-form mixed meshing using MESHING = FREE-FORM.
3. Specify PYRAMIDS = ONLY.
The PYRAMIDS = ONLY option generates transitional ele-
ments only on the linked body faces that have quadrilater-
als. Transitional pyramids are required for CFD analysis
to ensure a compatible mesh. In structural analysis, the
PYRAMIDS = ONLY option is not required, and tetrahedral el-
ements can be directly attached to the hexahedral elements
without transitional pyramids.

 , . 67



When generating higher-order mixed meshes, the user
should be aware of two related node-placement options.
GBODY MIDNODES specifies where mid-side nodes are to be
located when at least one edge of the geometry body is
curved. This GBODY18 parameter works in the same way as

18 GBODY MIDNODES works in the
same way for both free-form and
mapped body meshing.

its GFACE equivalent. For more information about mid-side
node placement, see the sections on Body face meshing on
page 39 and Mid-side node placement on page 57. Fig-
ure 2.24 illustrates the different mid-side node placement
options.

GBODY MIDFACENODES determines where the mid-face node
on a quadrilateral facet should be placed.
• MIDFACENODES = TRIA places the mid-face node midway
on the diagonal of the two triangles making up the quad
face (see Figure 2.51, panel a).

• MIDFACENODES = QUAD places the mid-face node on the
quad face’s centroid (see Figure 2.51, panel b).

a) MIDFACENODES
= TRIA

Node midway on
diagonal

b) MIDFACENODES
= QUAD

Node at centroid
of quad face

Figure 2.51: The effect of
MIDFACENODES. The mid-face
node on the quadrilateral face
is denoted by the open circle.
When MIDFACENODES = TRIA,
the mid-face node is placed mid-
way on the diagonal (panel a).
When MIDFACENODES = QUAD,
the mid-face node is placed at
the quadrilateral facet’s centroid
(panel b).

The parameter MIDFACENODES is especially important when
generating a higher-order mixed mesh which is to be face-
linked with a higher-order tetrahedral mesh. In that case,
MIDFACENODES = TRIA must be used; the mid-face node will
coincide with the tetrahedral element’s mid-side node, and
face-linking will be successful. If MIDFACENODES = QUAD,
the mid-face node will not, in general, coincide with the
tetrahedral element’s mid-side node (as shown in Fig-
ure 2.51, panel b), and face-linking will fail.
If face-linking is not required, MIDFACENODES = QUAD is
recommended and will lead to better quality elements.
By default (MIDFACENODES = DEFAULT), if the body has at
least one linked face, the MIDFACENODES = TRIA option is
used. Otherwise, MIDFACENODES = QUAD is used.

2.4.3 Boundary layer meshing

If boundary layers are required, a boundary layer table must
be specified using BLTABLE-3D and parameter 3DBLTABLE
must be passed to GBODY.
The element shapes inside and outside the boundary layers
depend upon both NODES and PREFSHAPE.

68   

 - 

• NODES = 4, 10, or 11: the boundary layer elements are
prismatic and the rest of the mesh is tetrahedral.

• NODES = 8, 20, or 27 and PREFSHAPE = PRISMATIC: the
boundary layer elements are prismatic and the rest of the
mesh is tetrahedral.

• NODES = 8, 20, or 27 and PREFSHAPE = HEXAHEDRAL: the
boundary layer elements are hexahedral and the rest of
the mesh is a mixture of hexahedral, tetrahedral, and
pyramid elements.

Command inputs 2.52 and 2.53 demonstrate how to use
BLTABLE-3D.

Command Input 2.52: Generating a boundary layer mesh using
prismatic elements. Figure 2.52 shows the resulting mesh.
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 dx1=2.0 dx2=2.0 dx3=2.0
body cylinder name=2 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 axis=xl radius=0.6 length=4.0
*
body subtract name=1 keep-too=no keep-imp=no
2
*
subdivide body 1 mode=length size=0.1
*
bltable-3d name=1 progress=geometric n-layer=6
1 1 0.01 0.16
2 1 0.01 0.16
7 1 0.01 0.16
8 1 0.01 0.16
*
egroup threedsolid
*
gbody 1 nodes=8 3dbltable=1 prefshape=prismatic
*
boxzone b
-10 0 -10 10 -10 10
modeldepic geometry=no
frame/meshplot zone=b

Figure 2.52: Boundary layer
meshing using 3DBLTABLE
with prismatic elements
(PREFSHAPE = PRISMATIC).

Figure 2.52 shows an example of boundary layers composed
of prismatic (wedge) elements. In this case, the rest of the
domain is meshed with tetrahedral elements.

 , . 69



Command Input 2.53: Continuation of command input 2.52 for
remeshing a boundary layer mesh using hexahedral elements. Fig-
ure 2.53 shows the resulting mesh.
eldelete body 1
gbody 1 nodes=8 3dbltable=1 prefshape=hexahedral
*
boxzone c
-10 0 -10 10 -10 10
modeldepic geometry=no
frame/meshplot zone=c

Figure 2.53: Boundary layer
meshing using 3DBLTABLE
with hexahedral elements
(PREFSHAPE = HEXAHEDRAL).

Figure 2.53 shows an example of boundary layers composed
of hexahedral elements. In this case, the rest of the do-
main is meshed with a mix of hexahedral, pyramid, and
tetrahedral elements. The creation of pyramid elements is
controlled by parameter PYRAMIDS, as with free-form mixed
meshing.
Command input 2.54 shows how to use those options to
transition from a region with a boundary layer to a region
without.

Command Input 2.54: Face linking two adjacent bodies and generating
a boundary layer mesh on body 1. Body 2 has no boundary layer.
Figure 2.54 shows the resulting mesh.
feprogram program=adina
body block name=1 cx2=0.0 dx1=1.0 dx2=1.0 dx3=1.0
body block name=2 cx2=1.0 dx1=1.0 dx2=1.0 dx3=1.0
*
facelink option=all
*
subdivide body 1 mode=length size=0.1
subdivide body 2 mode=length size=0.1
*
bltable-3d name=1 progress=geometric n-layer=6
1 1 0.01 0.16
*
egroup threedsolid
gbody 1 nodes=8 3dbltable=1
gbody 2 nodes=4 meshing=free-form
*
boxzone b
-10 0 -10 10 -10 10
modeldepic geometry=no
frame/meshplot zone=b

Figure 2.54: Free-form mixed
mesh using 4-node tetrahedral
and pyramid elements. Note the
transition from the boundary
layer mesh from the left body to
the mesh on the right.

70   

  - 

Figure 2.54 illustrates two adjacent, face-linked the bodies.
The body on the left has been meshed with a boundary
layer. Meshing the body on the right with mostly tetra-
hedral elements and transitional pyramids requires that
NODES = 4 and MESHING = FREE-FORM. Because body 2 has
at least one face meshed using triangles, PYRAMIDS = ONLY
is forced, and transitional pyramids are automatically gener-
ated.

2.4.4 Skin of elements on 3D-solid mesh

When a body is meshed with a 3D-solid mesh, the trian-
gulation is fixed on the body faces. Thus, if a shell mesh
or a 3D plane stress (membrane) mesh is generated on the
body faces, the elements will be automatically matched with
the 3D-solid element faces. This can be useful when it is
important to obtain accurate surface stresses19 or to model 19 A skin places integration

points on the surface of the
body, thereby resulting in more
accurate surface stresses. This
is important when modeling
fatigue, for example.

surface treatments, such as carburization.
If the skin of shell or membrane elements is to be created
on a face of a separate body, the COPY-TRIANGULATION com-
mand (see Copying meshes, page 84) can be used to use the
same triangulation as that used for the 3D-solid mesh.

2.5 STL Body Free-Form Meshing

For more information about the STL format and how to
convert Parasolid bodies to STL bodies, see Converting a
Parasolid body into an STL body on page 20.

2.5.1 Tetrahedral meshing

STL bodies are composed of triangular facets. Before mesh-
ing the inside of a STL body with tetrahedral elements,
the surface mesh must be adapted according to the mesh
densities given using the SUBDIVIDE BODY, SUBDIVIDE FACE,
and/or SUBDIVIDE EDGE commands.
The starting point for this adaptation process is the set
of triangular facets associated with the STL body. Since
the geometry associated with the STL body cannot be
changed (it defines the body), it must be copied to a dis-

 , . 71



crete representation using command BODY-DISCREP. This
discrete representation is then “adapted” (via command
BODY-DSCADAP) according to the previously defined mesh
densities.
Once the discrete representation has been adapted, it can
then be meshed with tetrahedral elements using GBODY, as
usual. After meshing, the discrete representation may be
discarded using command DELETE BODY-DISCREP.
To summarize, the steps needed to mesh a STL body with
tetrahedral elements are:
1. Create an STL body (command LOAD-STL or CONVERT-STL).
2. Create a discrete representation for that STL body (com-

mand BODY-DISCREP).
3. Subdivide the body, faces, and/or edges (command

SUBDIVIDE).
4. Adapt the discrete representation (command BODY-DSCADAP).
5. Mesh the discrete representation (command GBODY).
6. Delete the discrete representation (command DELETE

BODY-DISCREP).
In the case of an STL body, tetrahedral meshing is limited
to the creation of tetrahedral elements (NODES = 4, 10, or
11) without access to the options that are available in the
case of a general body (Parasolid or OpenCascade).
Command inputs 2.55, 2.56, and 2.57 detail the above
process.

72   

  - 

Command Input 2.55: Converting an STL body with CONVERT-STL and
generating its discrete representation with BODY-DISCREP. Figure 2.55
shows the resulting discrete representation.
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 dx1=1.0 dx2=1.0 dx3=0.2
body cylinder name=2 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.15 axis=yl radius=0.1 length=1.0
*
body subtract name=1 keep-too=no keep-imp=no
2
*
convert-stl 1
*
body-discrep 1

Figure 2.55: Discrete represen-
tation after BODY-DISCREP but
prior to adaptation.

Command Input 2.56: Continuation of command input 2.55. The STL
body is subdivided and adapted using BODY-DSCADAP. Figure 2.56 shows
the resulting discrete adaptation.
subdivide body 1 mode=length size=.1
subdivide face 8 body=1 mode=length size=.02
subdivide face 9 body=1 mode=length size=.02
*
body-dscadap 1 Figure 2.56: Discrete repre-

sentation after adaptation with
BODY-DSCADAP.

Command Input 2.57: Continuation of command input 2.56. The
STL body is meshed, and the discrete representation is discarded.
Figure 2.57 shows the resulting mesh.
egroup threedsolid
*
gbody 1 nodes=4
*
delete body-discrep 1

Figure 2.57: Tetrahedral mesh
following GBODY.

2.5.2 All-hexahedral meshing

An STL body can be meshed exclusively with hexahedral
elements using command BHEXA. The hexahedral mesh
may be uniform (parameter SIZE set to a non-zero value)
or non-uniform (parameter SIZE set to zero and mesh
densities applied beforehand with the SUBDIVIDE BODY,
FACE, and/or EDGE commands).

 , . 73



The basic steps performed by ADINA during the creation
of an all-hexahedral mesh are briefly summarized:
1. Creation of a root octant surrounding the body.
2. Subdivision of the tree according to prescribed mesh

densities.
3. Creation of mesh regions (hexahedral elements) using the

tree structure.
4. Deletion of mesh regions that are outside or on the

boundary of the body.
5. Classification of mesh vertices on points, mesh edges on

body edges, and mesh faces on body faces.
6. Projection/smoothing of mesh vertices classified on the

body’s boundary.
If the STL body does not initially meet the meshing re-
quirements or there is a need to simplify the body (e.g.,
thin faces, small features, etc.), it is possible to eliminate
edges from the STL body using commands STL ELIM-EDGE
and STL ELIM-EDGES-ANGLE. For more information, see
Eliminating edges from STL bodies on page 20
To summarize, the steps needed to mesh an STL body
using only hexahedral elements are:
1. Create an STL body (command LOAD-STL or CONVERT-STL)

that satisfies the hexahedral meshing requirements.
2. Create a discrete representation for that STL body (com-

mand BODY-DISCREP).
3. Subdivide the body, faces, and/or edges (command

SUBDIVIDE). This step should be omitted if the mesh
density is uniform (specified with parameter SIZE in
command BHEXA).

4. Mesh with hexahedral elements (command BHEXA).
5. Delete the discrete representation (command DELETE

BODY-DISCREP).
Command inputs 2.58 and 2.59 detail the above process.

74   

  - 

Command Input 2.58: Importing a Parasolid file using LOADSOLID and
converting it to an STL body using CONVERT-STL. Figure 2.58 shows
the STL body.
loadsolid 'Hinge Bracket.x_t'
*
convert-stl 1

Figure 2.58: STL body con-
verted from Parasolid file.

Command Input 2.59: Continuation of command input 2.58. The
command STL ELIM-EDGE is used to remove one body edge, and the
discrete representation is generated with BODY-DISCREP. The hexahedral
mesh is then generated using BHEXA. Finally, the discrete representation
is discarded. Figure 2.59 shows the resulting hexahedral mesh.
stl elim-edge 1
14
*
body-discrep 1
*
egroup threedsolid
*
bhexa 1 nodes=8 size=1.0
*
delete body-discrep 1

Figure 2.59: Hexahedral mesh
following BHEXA.

There are some limitations on what type of STL body can
be meshed with hexahedral elements:
• Any body edge should have two distinct end points and
should be connected to two distinct body faces.

• Any point should be connected to two, three, or four
distinct body edges. A point connected to four body
edges may pose a problem during meshing depending on
the arrangement of the connected body edges.

All-hexahedral meshing is an inside-out method, which
means that the interior mesh and the boundary mesh
are created at the same time. This is unlike tetrahedral
meshing on a general body where the bounding body faces
are meshed first. Consequently, the all-hexahedral mesher
cannot account for an existing mesh on a bounding body
face (as may occur, for example, with face-linking).
During its classification phase, BHEXA introduces a sub-
stantial number of constraints to determine the locations
of boundary vertices. Thus, there is no guarantee that all
boundary vertices will be located on the body’s boundary.

 , . 75



Also, the all-hexahedral mesher may encounter difficulties
when there are thin body faces in the body. In principle,
requesting a finer mesh density should be able to resolve
thin faces. However, this would likely result in an excessive
number of hexahedral elements. Difficulties may also arise
where there are sharp angles in the body between connected
body faces at a body edge or between connected edges at a
point on a body face.

76   

 

2.6 Nodal Coincidence

Finite element models typically involve intricate domains
(e.g., seperate structures, fluid regions, etc.), each composed
of multiple shapes (e.g., volumes and/or bodies in 3D and
faces and/or surfaces in 2D, etc). It is crucially important
that those individual meshes be properly joined into a single
congruent mesh representing the domain. Further, this
mesh must not erroneously include nodes or elements from
other domains.
A basic requirement for joining two meshes into a single
congruent mesh is that those meshes must, at their in-
terface, have coincident nodes.20 ADINA offers several

20 ‘Nodal coincidence’ is simply
a shorter way of saying ‘multiple
nodes at the same location.’

methods of checking for coincident nodes and equivalencing
them.21 Further, ADINA can attach or detach meshes, as

21 Equivalencing two coincident
nodes simply collapses them
into a single node. This action
effectively joins the meshes
which contained those nodes.desired.

Face-linking is typically used to ensure nodal coincidence at
geometric interfaces. For more information about the com-
mand FACELINK, see page 14. However, it is also possible
to ensure nodal coincidence between meshes by manually
subdividing the interfaces and using Mapped Meshing (see
32).

2.6.1 Nodal coincidence checking during meshing

Coincidence checking is used to determine whether to
place a new node at a geometric location where (within the
nodal coincidence tolerance NCTOLERANCE 22) The parameter

22 If NCTOLERANCE = 0, then
the tolerance distance is set
by the TOLERANCES GEOMETRIC
command. If NCTOLERANCE > 0,
the absolute tolerance distance
in each global direction is specified
by the value of NCTOLERANCE. For
example, if coincidence checking
is used against an existing node
and NCTOLERANCE = 1E-3, then a
new node will not be generated
within the cubic region (with
sides of length 2E-3) centered
about that existing node.

NCOINCIDE can be used to perform coincidence checking
while meshing bodies. Parameter NCOINCIDE is available
for all meshing commands (e.g., GBODY, GFACE, GVOLUME,
GSURFACE, etc.).
The most often-used options for parameter NCOINCIDE are:
• NCOINCIDE = BOUNDARIES: Checks nodes on the bound-
aries of the entity being meshed for coincidence against
all other existing nodes. This is the default option.

• NCOINCIDE = GROUP: Checks nodes in the entity being
meshed for coincidence against all other existing nodes
of the same element group. This is useful when adjacent
shapes modeled within the same element group (but not

 , . 77



any other element group) are intended to be a single,
joined mesh.

• NCOINCIDE = NO: Performs no coincidence checking
while meshing. This is used when the entity being
meshed is to remain separate from all other meshed
entities (though it may be in close contact with other
meshed parts).

Command input 2.60 demonstrates NCOINCIDE = GROUP to
join two meshes of the same element group, but not meshes
of different element groups.

Command Input 2.60: Example demonstrating coincidence checking
by element group (NCOINCIDE = GROUP). Three seperate bodies are
created and meshed using two element groups. The two meshes of
element group 1 (shown in green) are joined, but the mesh for element
group 2 (red) is not joined, as shown in Figure 2.60.
feprogram program=adina
body block name=1,

cx1=0.0 cx2=0.0 cx3=0.0 dx1=1.0 dx2=1.0 dx3=1.0
body block name=2,

cx1=0.0 cx2=0.0 cx3=-1.0 dx1=1.0 dx2=1.0 dx3=1.0
body block name=3,

cx1=0.0 cx2=0.0 cx3=-2.0 dx1=1.0 dx2=1.0 dx3=1.0
*
subdivide body name=1 mode=length size=0.1
subdivide body name=2 mode=length size=0.1
subdivide body name=3 mode=length size=0.1
*
egroup threedsolid name=1
egroup threedsolid name=2
*
gbody 1 nodes=8 group=1 ncoincide=group
gbody 2 nodes=8 group=1 ncoincide=group
gbody 3 nodes=8 group=2 ncoincide=group

B1

B2

B3

Figure 2.60: Illustration of the
effects of NCOINCIDE = GROUP.
Only meshes of the same el-
ement group are joined, as
revealed by the culled rendering
on the right.

78   

 

2.6.2 Joining and detaching meshes

Command MESH-JOIN joins parts of the model by equiv-
alencing coincident nodes. This is useful when a mesh
imported via NASTRAN-ADINA or IMPORT-EXTERNAL is to be
joined with another mesh. It can also be used if an error
was made with NCOINCIDE during meshing, and parts that
should form a congruent mesh remained separate.
The parameter SEARCH controls which nodes are included
in the coincidence search. ADINA can either search
over all nodes of the parts specified (SEARCH = ALL) or
on the boundaries (SEARCH = BOUNDARY). The parame-
ter ACTION controls whether the parts with coincident
nodes are found and/or joined. ACTION = JOIN equiva-
lences coincident nodes, and ACTION = FIND creates a node
set of all the coincident nodes without joining the parts.
ACTION = JOIN-SAVE equivalences coincident nodes and
creates a node set of all the coincident nodes.

Command input 2.61 creates two adjacent bodies, subdi-
vides them, and then meshes them with the setting GBODY
NCOINCIDE = NO. The meshes remain separate (Figure 2.61,
panel a).
Command input 2.62 demonstrates how to use MESH-JOIN
to join separate meshes. The culled rendering in Figure 2.61
(panel b) shows the results.

 , . 79



Command Input 2.61: Creating and meshing two bodies. The setting
NCOINCIDE = NO keeps the two meshes separate. Figure 2.61 (panel a)
shows the two adjacent, but unjoined meshes.
feprogram program=adina
body block 1 dx1=1.0 dx2=1.0 dx3=1.0
body block 2 cx1=-1.0 dx1=1.0 dx2=1.0 dx3=1.0
*
subdivide body 1 mode=length size=0.1
subdivide body 2 mode=length size=0.1
*
egroup threedsolid 1
egroup threedsolid 2
*
gbody 1 nodes=8 group=1 ncoincide=no
gbody 2 nodes=8 group=2 ncoincide=no

Command Input 2.62: Continuation of command input 2.61 joining
two meshed bodies. The culled rendering in Figure 2.61 (panel b) shows
that the two meshes are now joined.
mesh-join gtype=body search=boundary
1
2

a)

b)

c)

Figure 2.61: Illustration of
the effects of MESH-JOIN and
MESH-DETACH. Panel a shows
two adjacent, meshed bodies.
Each mesh belongs to a different
element group (shown in green
and red, for clarity). The two
meshes are not joined. The com-
mand MESH-JOIN is then used
to join the meshes (visible in
the culled rendering in panel b).
Finally (panel c), the command
MESH-DETACH can be used to
separate the two meshes again.

MESH-DETACH detaches parts of the model by splitting nodes
shared by those parts satisfying parameter SEARCH. This is
useful if an error was made with NCOINCIDE during meshing,
and parts that should have remained separate were erro-
neously joined. Command input 2.63 detaches the joined
meshes. The culled rendering in Figure 2.61 (panel c) shows
the two meshed bodies, no longer joined.

Command Input 2.63: Continuation of command input 2.62 detaching
two meshed bodies. Setting SEARCH = ALL searches over all nodes.
Figure 2.61 (panel c) shows the resulting separated meshes.
mesh-detach gtype=body search=all
1
2

80   

 

2.6.3 Splitting meshes

It may also be necessary to split a mesh at an interface after
coincident nodes have been equivalenced. In these cases
(as with, for example, fracture problems), the command
MESH-SPLIT is useful.
Parameter BOUNDARY-SPLIT specifies how the split is treated
at its boundaries (i.e., the precise nodal location of the ini-
tial crack tip/front). The three options for BOUNDARY-SPLIT
are illustrated, in two dimensions, in Figure 2.62.
Command inputs 2.64 and 2.65, respectively, illustrate two-
and three-dimensional cases using MESH-SPLIT.

Command Input 2.64: Example showing MESH-SPLIT GTYPE = TWOD
in use. Three separate surfaces are created and meshed while checking
for nodal coincidence. Finally, the mesh is split along the internal
horizontal line, as shown in Figure 2.63.
feprogram program=adina
coordinates point
1 0.0 0.0 0.0 0
2 0.0 1.0 0.0 0
3 0.0 1.0 1.0 0
4 0.0 0.0 1.0 0
5 0.0 0.5 0.5 0
6 0.0 1.0 0.5 0
7 0.0 0.5 1.0 0
8 0.0 0.5 0.0 0
*
surface vertex name=1 p1=1 p2=8 p3=7 p4=4
surface vertex name=2 p1=2 p2=6 p3=5 p4=8
surface vertex name=3 p1=6 p2=3 p3=7 p4=5
*
subdivide surface name=1 mode=length size=0.125
subdivide surface name=2 mode=length size=0.125
subdivide surface name=3 mode=length size=0.125
*
egroup twodsolid subtype=stress2
*
gsurface 1 nodes=4 ncoincide=boundary
gsurface 2 nodes=4 ncoincide=boundary
gsurface 3 nodes=4 ncoincide=boundary
*
mesh-split gtype=twod boundary-split=external
6

BOUNDARY-SPLIT = ALL

BOUNDARY-SPLIT = EXTERNAL

BOUNDARY-SPLIT = NONE

Figure 2.62: Effects of
BOUNDARY-SPLIT for indicated
values. The dashed red line in-
dicates the position of the split
interface. Split nodes are shown
in red; gap shown for clarity.

Figure 2.63: Model out-
line with hidden lines/edges
following two dimensional
MESH-SPLIT operation. Because
BOUNDARY-SPLIT = EXTERNAL,
the central, internal node was
not split. , . 81



Command Input 2.65: An example showing MESH-SPLIT
GTYPE = THREED in use. Four separate bodies are created and free-
form meshed while checking for nodal coincidence. Finally, the mesh is
split along the face separating bodies 3 and 4, as shown in Figure 2.64.
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=-0.25 cx2=0.0 cx3=-0.25 dx1=0.5 dx2=1.0 dx3=0.5
body block name=2 option=centered position=vector,

cx1=-0.25 cx2=0.0 cx3=0.25 dx1=0.5 dx2=1.0 dx3=0.5
body block name=3 option=centered position=vector,

cx1=0.25 cx2=0.0 cx3=-0.25 dx1=0.5 dx2=1.0 dx3=0.5
body block name=4 option=centered position=vector,

cx1=0.25 cx2=0.0 cx3=0.25 dx1=0.5 dx2=1.0 dx3=0.5
*
subdivide body name=1 mode=length size=0.1
subdivide body name=2 mode=length size=0.1
subdivide body name=3 mode=length size=0.1
subdivide body name=4 mode=length size=0.1
*
egroup threedsolid
*
facelink option=all
*
gbody 1 nodes=4 meshing=free-form ncoincid=boundary
gbody 2 nodes=4 meshing=free-form ncoincid=boundary
gbody 3 nodes=4 meshing=free-form ncoincid=boundary
gbody 4 nodes=4 meshing=free-form ncoincid=boundary
*
mesh-split gtype=threed boundary-split=external
1 3

B1

B2

B3

B4

Figure 2.64: The four bod-
ies shown (top) were subdi-
vided and meshed using GBODY
NCOINCIDE = ALL. This mesh
was then split along the face
separating bodies 3 and 4. The
culled rendering on the bot-
tom shows the result of the
MESH-SPLIT operation.

2.6.4 Checking for coincidence

A simple way of visually inspecting a mesh to check for
equivalence is to render the shaded mesh with front cases
culled. See Face-linking on page 14 for a simple example.
ELEMENTSET OPTION = ATTACHED can be used to verify that
parts of the model have not been inadvertently joined.
Command input 2.66 demonstrates how to use this com-
mand to determine which parts of a mesh are joined. The
command places all attached elements into a single element
set, which can then be inspected.

82   

 

Command Input 2.66: Meshing two bodies sharing a point and
generating a set of elements attached to an element from one body
(ELEMENTSET OPTION = ATTACHED). Figure 2.65 shows the element set,
shaded in green.
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 dx1=1.0 dx2=1.0 dx3=1.0
body block name=2 option=centered position=vector,

cx1=1.0 cx2=1.0 cx3=1.0 dx1=1.0 dx2=1.0 dx3=1.0
*
subdivide body name=1 mode=length size=0.1
subdivide body name=2 mode=length size=0.1
*
egroup threedsolid
*
gbody 1 nodes=8
gbody 2 nodes=8
*
elementset name=1 option=attached
1 1

Figure 2.65: Shaded render-
ing of the set of all elements
attached to element 1 of group
1 (in the body on the lower left).
Since elements from both bodies
are shown in green, it is clear
that the two meshes are joined.
In this case, the two meshes are
connected by single equivalent
node at the touching corners.

Figure 2.65 shows the set of all elements attached to ele-
ment 1 of group 1 (in the body on the lower left). In this
case, if the two meshed bodies were not intended to be
joined, the command MESH-DETACH can be used to detach
them.

Figure 2.66: Set of elements
(in green) adjacent to the ele-
ments (in white) just above the
desired split interface (thick,
internal horizontal line – see
Figure 2.64), visible after using
ELEMENTSET OPTION = ADJACENT.
The elements on the other side
of the interface are not detected
as adjacent, which indicates that
the mesh has been properly split.

Figure 2.66 illustrates how to use command ELEMENTSET
OPTION = ADJACENT to determine if the mesh has been
properly split. By creating a set of elements immediately
adjacent to an element on the split interface, the user can
check that only those elements on the same side of the
selected element are included in that element set.

 , . 83



2.7 Copying and Converting Meshes

It is often necessary or expedient to copy meshes in models
involving repeating parts or domains. It may also be neces-
sary to copy the triangulation from one surface to another
(similar) surface, as when a cyclically symmetric part must
be free-meshed and the nodes on the cylic boundaries must
be coincident.
Or perhaps the user has decided that 8-node shells will not
suffice and is faced with regenerating a 9-node shell meshes
over several complex geometries. It would be far simpler
and more efficient to convert the existing mesh, in place,
rather than generating new meshes.
In all of the above cases, ADINA offers meshing tools to
help the user achieve the desired result.

2.7.1 Copying meshes

The COPY-MESH-BODY command can be used to copy a
mesh from one body to another (similar) body via a de-
fined affine transformation. This transformation must
be defined by a command of the TRANSFORMATION family,
such as TRANSFORMATION TRANSLATION or TRANSFORMATION
ROTATION.
Command input 2.67 demonstrates how COPY-MESH-BODY
can be used to copy a mesh from one body to another. In
this case, the bodies are adjacent and comprise a domain
with repeating geometry. However, meshes may also be
copied to bodies defined by more general transformations.

84   

   

Command Input 2.67: COPY-MESH-BODY being used to copy a complex
mesh from one body to another. The first body is meshed using GBODY
options (see Figure 2.67, left panel). The mesh is then copied from
the first to the second body (Figure 2.67, right panel). Note that
GBODY is only used once and that COPY-MESH-BODY TRANSFORMATION = 1
references the appropriate transformation.
feprogram program=adina
body block dx1=1.0 dx2=1.0 dx3=0.075
body cylinder cx1=-0.15 cx2=-0.25 axis=zl,

radius=0.125 length=.075
body cylinder cx1=0.10 cx2=0.125 axis=zl,

radius=0.2 length=.075
*
body subtract name=1 keep-too=no keep-imp=no
2
3
*
subdivide body name=1 mode=length size=0.05
*
egroup shell name=1
egroup threedsolid name=2
*
gface name=1 nodes=9 prefshap=quad-direct body=1 group=1
*
body sweep name=3 face=1 dx=0.0 dy=0.0 dz=-.075,

mesh=yes 3d-egroup=2 body=1
*
transformation translation name=1 dx=0.0 dy=-1.0 dz=0.0
*
body transformed name=2 parent=3 transformation=1
copy-mesh-body body1=3 body2=2 transformation=1

Figure 2.67: Using
COPY-MESH-BODY to mesh two
similar bodies using the same
mesh. The same transformation
is used to create the second body
(left) and copy the mesh (right).

The command BODY TRANSFORMED can be used to copy a
body and its mesh multiple times. This is particularly useful
when a model contains multiple bodies which must be
meshed and/or when a model consists of multiple repeating
sections.23

23 Of course, COPY-MESH-BODY
may also be used multiple times
to achieve the same effect.

For example, command input 2.68 illustrates the steps
needed to copy a bolt’s mesh multiple times. Figure 2.68 il-
lustrates the results after defining an appropriate TRANSFORMATION
and using BODY TRANSFORMED. Rather than using 8 rela-
tively expensive GBODY operations, the original mesh is
merely copied 7 times.

 , . 85



Command Input 2.68: BODY TRANSFORMED being used to copy a meshed
bolt multiple times. The first body is meshed using GBODY; its mesh is
shown in magenta. A transformation describing a 45◦ rotation about
the x-axis is then defined. The body and its mesh are then copied
7 times using that transformation, resulting in the copied meshes
(blue). Note that GBODY is only used once and that BODY TRANSFORMED
TRANSFORMATION = 1 references the appropriate transformation.
feprogram program=adina
body cylinder cx1=0.0 cx2=0.0 cx3=2.0 radius=0.25 length=1.5
body cylinder cx1=0.75 cx2=0.0 cx3=2.0 radius=0.5 length=0.2
body cylinder cx1=-0.75 cx2=0.0 cx3=2.0 radius=0.5 length=0.2
*
body merge name=1 keep-too=no merge-im=yes
2
3
*
egroup threedsolid
*
subdivide body name=1 mode=length size=0.1
*
gbody name=1 nodes=27
*
transformation rotation name=1 mode=axis axis=xl angle=45.0
*
body transformed name=2 option=copy parent=1,

transformation=1 ncopy=7 mesh=yes egroup=1

Figure 2.68: Illustration of
BODY TRANSFORMED copying a
bolt’s mesh multiple times. In
this case, the bolts are being ar-
ranged in a circular pattern (e.g.,
a flanged joint). The original
mesh is shown in magenta, and
the copied meshes are shown in
blue. The NCOPY = 7 option is
used to specify that the body and
its mesh are to be copied seven
times.

The tradeoff when using BODY TRANSFORMED instead of
COPY-MESH-BODY to copy meshes is that only transforma-
tions consisting of a single translation, a sequence of trans-
lations, or a single rotation may be used. COPY-MESH-BODY
does not have this limitation; it can make use of all types of
transformations and combinations.

2.7.2 Copying triangulations

The COPY-TRIANGULATION command copies face triangu-
lations which can later be used by meshing commands
like GFACE or GBODY. The enables the creation of identical
free-form meshes on similar faces. This is very useful for
substructuring or cyclic symmetry. Command input 2.69
demonstrates the use of COPY-TRIANGULATION.

86   

   

Command Input 2.69: Copying a mesh triangulation from one
cyclic boundary to another (as shown in Figure 2.69. The option
TRANSFORMATION = 1 references the transformation necessary to map
the triangulation using a 36◦ rotation (corresponding to the period of
cyclic symmetry for this body) about the vertical axis.
subdivide body name=1 size=0.07
*
egroup shell
*
gface nodes=4 prefshape=quad-direct
12 1
*
transformation rotation axis=zl angle=36.0
*
copy-triangulation body1=1 face1=12 body2=1 face2=11,

transformation=1
*
egroup threedsolid
*
gbody 1 nodes=8

a) b)

c) d)

Figure 2.69: Using
COPY-TRIANGULATION to copy
a triangulation from one face
to another. Panel a shows a
cyclically-symmetric body which
we would like to mesh; nodes
on the cyclic boundaries must
coincide. Once the first face is
meshed (shown in green, panel
b), COPY-TRIANGULATION is used
to copy the triangulation to the
appropriate face (shown in red,
panel c). GBODY will use those
triangulations as it generates the
3D solid mesh. Panel d shows
the resulting 3D solid mesh.

Note that COPY-TRIANGULATION is not needed for Mapped
Meshing; matching meshes will be generated on the cyclic
boundaries, provided that identical subdivisions are used
along those boundaries.
COPY-TRIANGULATION can also be used to generate a ‘skin’ of
shell of 3D plane stress (membrane) elements from a 3D
solid mesh – see Skin of elements on 3D-solid mesh.
In 3D analyses, if the faces (or surfaces) are touching,
Face-linking can be used to ensure Nodal Coincidence.

2.7.3 Converting meshes

The MESH-CONVERT command can be used to add the cen-
ter node(s) to higher-order serendipity meshes without
the need to regenerate the mesh. Table 2.2 details which
element types can be converted.
Note that if pyramid elements are present in a 3D solid
mesh (see Mixed meshing), MESH-CONVERT converts 13-node
pyramids to 14-node pyramids to match the 27-node brick
elements.
Specific element groups and/or element types can be con-

 , . 87



Element Type Original Element Converted Element
2D Solid 8-node quadrilateral 9-node quadrilateral

6-node triangular 7-node triangular
Shell 8-node quadrilateral 9-node quadrilateral
3D Solid 20-node brick 27-node brick

10-node tetrahedral 11-node tetrahedral

Table 2.2: Supported element
conversions.

verted using the ELEMENT-TYPE and GROUP parameters.
Command input 2.70 demonstrates how an existing mixed
mesh of 20- and 10-node elements can readily be converted
to 27- and 11-node elements.

Command Input 2.70: Converting a higher-order mesh using
MESH-CONVERT. Figure 2.70 shows the original and resulting meshes.
feprogram program=adina
body block name=1 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 dx1=2.0 dx2=2.0 dx3=2.0
body cylinder name=2 option=centered position=vector,

cx1=0.0 cx2=0.0 cx3=0.0 axis=xl radius=0.2 length=4.0
*
body subtract name=1 keep-too=no keep-imp=no
2
*
subdivide body 1 mode=length size=0.1
subdivide face 7 body=1 mode=length size=0.04
subdivide face 8 body=1 mode=length size=0.04
*
egroup threedsolid
*
gbody 1 nodes=20 meshing=free-form
*
boxzone b
-10 0 -10 10 -10 10
modeldepic geometry=no
frame/meshplot zone=b
*
mesh-convert element-type=threedsolid

a)

b)

Figure 2.70: Converting a
higher-order mesh using
MESH-CONVERT. Panel a shows
the mesh resulting from GBODY in
command input 2.70. By using
MESH-CONVERT, it is possible to
add center nodes to the exist-
ing higher-order mesh without
remeshing the body (panel b).

88   

 

2.8 Mesh Checking

It is very useful to verify, before the start of an analysis, that
a mesh is properly generated and that the elements within
the mesh meet appropriate criteria for quality. ADINA
helps users check meshes in a number of ways. This section
describes tools for identifying meshing problems and for
re-meshing problematic portions of a mesh.

2.8.1 Fluid mesh compatibility

Fluid meshes must be compatible – that is, the shared face
between adjacent fluid elements must be geometrically
and topologically identical. Furthermore, the nodes of the
elements at the adjoining face must be coincident. Finally,
fluid elements are only connected at a face; fluid elements
cannot be connected only at an edge. For more information,
see Face-linking on page 14, and Nodal Coincidence on
page 77.
The command CONTROL COMPATIBLE-MESH = YES will check
if a fluid mesh is compatible. If the fluid mesh is not com-
patible, a data (.dat) file is not generated, and an error
message is output giving the element and element group
labels which are not compatible.
A compatibility check will, of course, require additional
time to generate a data file. To prevent long data file gen-
eration times, a threshold number can be input so that a
compatible mesh check is run only if the number of el-
ements in the model does not exceed this number. For
example, setting CONTROL COMPATIBLE-MESH = 1000000 (the
default) will check for mesh compatibility if the model
contains one million elements or fewer.

2.8.2 Duplicate elements

ADINA can also check for duplicate elements during data
file generation. Duplicate elements are defined as elements
of the same type sharing the same corner nodes. 24

24 In ADINA Structures, el-
ements are only considered
duplicates if they 1) have the
same material definition, 2)
cross-section definition (if ap-
plicable), and 3) have the same
birth and death times.

It is possible to have elements from different elements
groups meet the criteria as duplicates. The command
CONTROL DUPLICATE = MODEL will check for duplicates

 , . 89



across different element groups within the model. How-
ever, the user may wish to check for duplicate elements
within the same element group only by using CONTROL
DUPLICATE = EGROUP. For example, by using CONTROL
DUPLICATE = EGROUP, elements from different element
groups (of the same element type) which share the same
corner nodes will not be considered duplicates.

2.8.3 Unique element labels

When saving results in OP2 format, it is necessary to create
unique element labels using the CONTROL ELEMENT-LABEL

= UNIQUE command.25 Note that CONTROL ELEMENT-LABEL 25 OP2 format does not support
element group labels.cannot be changed from REPEAT to UNIQUE after the model

has already been meshed; if results are to be saved in OP2
format, CONTROL ELEMENT-LABEL should be set to UNIQUE
before the model is meshed.

2.8.4 Mesh quality checks and re-meshing

ADINA supports mesh quality checks via the MESH-QUALITY
command. This command can be used to identify poor
quality elements and generate mesh quality reports display-
ing element quality distribution plots. Mesh quality checks
can be performed to identify elements which fail to meet
mesh quality criteria, or metrics.
By default, MESH-QUALITY will automatically use appro-
priate metrics for the current model type.26 For example,

26 By default, the mesh quality
criteria will identify elements
that will fail in the solver. How-
ever, even if a mesh passes the
default quality criteria, it is not a
guarantee that all elements are
of good quality. Sliver elements,
for example, may become over-
distorted in large deformation
anaylsis as the solution advances.

if FEPROGRAM PROGRAM = ADINA, the program will search
for elements with negative Jacobian ratios. If FEPROGRAM
PROGRAM = ADINA-F, the program will search for elements
with minimum face angles of less than thirty degrees.27 27 However, the user may select

any combination of element
quality criteria by using the
MESH-QUALITY METRIC = MANUAL.

By default, MESH-QUALITY will check the quality of all el-
ements attached to the entity specified by MESH-QUALITY
TYPE. Some possibilities are
• TYPE = BODY: mesh quality is checked for elements
attached to the specified bodies.

• TYPE = EGROUP: mesh quality is checked for elements in
the specified element groups.

• TYPE = ELSET: mesh quality is checked for elements in

90   

 

the specified element sets.
• TYPE = MODEL: mesh quality is checked for all elements
in the model.

Users may specify their own mesh quality criteria, which
should depend upon the specific model – that is, the el-
ement type and the analysis type. For example, a rubber
model expected to undergo large deformations may need to
satisfy stricter criteria than a model which undergoes only
small deformations.
The Jacobian ratio for constant strain 3-node triangular
and 4-node tetrahedral elements is always equal to 1. This
is because the derivatives of strain (the terms in the Jaco-
bian matrix) are constant, regardless of how distorted the
element becomes. As a result, the Jacobian ratio criterion
is not useful for tri-3 and tet-4 elements. The minimum
and maximum corner angle are better mesh quality criteria
for tri-3 and tet-4 elements. The minimum and maximum
corner angle criteria is also useful for identifying sliver
elements.
As an example of how the maximum and minimum corner
angle criteria can be more useful in practical problems than
the Jacobian ratio criterion, we can consider Primer Prob-
lem 61: Analysis of a gasketed assemblage. After importing
the .nas file containing the mesh shown in Figure 2.71, we
can run the mesh quality check with its default criterion for
structural problems, as shown in command input 2.71.

Figure 2.71: Original mesh from
Primer Problem 61: Analysis of a
gasketed assemblage.

Command Input 2.71: MESH-QUALITY being used, with default
structures settings, to check the mesh from Primer Problem 61.
feprogram adina
*
nastran-adin filename='prob61.nas'
*
mesh-quality

All the elements pass the Jacobian ratio criterion. Now, we
check the mesh using CANGMAX = YES and CANGMIN = YES.
Command input 2.72 demonstrates how to use the maxi-
mum and minimum corner angle criteria to search for poor
elements.

 , . 91



Command Input 2.72: Continuation of command input 2.71 using
manually defined criteria CANGMAX = YES and CANGMIN = YES. The
output can be seen in Figure 2.72.
mesh-quality metric=manual,

cangmax=yes cangmax-thld=179.9,
cangmin=yes cangmin-thld=1

Figure 2.72: Poor elements de-
tected when using the maximum
and minimum corner angle crite-
ria. Note the flattened pyramid
elements and sliver tetrahedral
elements.

Figure 2.72 shows that the program detects several poor
pyramid elements and sliver tegrahedral elements. These
elements were not detected using the default Jacobian ratio
criterion and would likely cause the program convergence
difficulties in large strain analysis.

92   

 

The MESH-QUALITY SAVETO parameter can be used to save all
elements which fail the mesh quality metrics into a zone
or an element set. The user may then easily view the failed
elements and then proceed to re-mesh the elements using
the GELEM command.
Command input 2.73 demonstrates how to use MESH-QUALITY
to identify and display poor quality elements within a mesh.

Command Input 2.73: Checking the mesh quality of a free-formed
mixed solid mesh using MESH-QUALITY. Figure 2.73 shows the elements
which fail the quality check, which are stored in the “failed-elems”
zone.
feprogram program=adina
*
body block name=1 dx1=2.0 dx2=2.0 dx3=0.7
body sphere name=2 radius=1.0
*
body merge name=2 keep-too=no merge-im=yes
1
*
egroup threedsolid
*
subdivide body name=2 mode=length size=0.2
*
gbody nodes=27
2 0
*
mesh-quality saveto=zone zone=failed-elems
*
nodedepiction name=1 symbolplot=yes
frame/meshplot zone=failed-elems nodedepiction=1

Figure 2.73: Elements which
have failed a mesh quality check.
In this case, two elements have
failed the Jacobian metric check.

The GELEM command can be used to re-mesh elements of
poor quality, as identified by MESH-QUALITY. GELEM can also
be used to locally refine or coarsen an existing mesh. The
original 3D elements are removed and replaced with tetra-
hedral and transitional pyramids, if GELEM PYRAMIDS = YES.
The GELEM TYPE parameter is used to define the entity to be
re-meshed.
• TYPE = BODY: re-mesh all elements attached to the speci-
fied bodies.

• TYPE = ELEM: re-mesh the specified elements.
• TYPE = EGROUP: re-mesh all elements in the specified
element groups.

 , . 93



• TYPE = ELSET: re-mesh all elements in the specified
element sets.

• TYPE = ZONE: re-mesh all elements in the specified
zones.

Command input 2.74 demonstrates how to use GELEM
to remesh the poor elements identified by MESH-QUALITY
which reside in the “failed-elem” zone.

Command Input 2.74: Continuation of command input 2.73 using
GELEM to re-mesh the poor elements shown in Figure 2.73 and stored in
the “failed-elem” zone. A subsequent mesh quality check confirms that
all elements in the new mesh pass the criterion.
gelem type=zone zone=failed-elems
*
mesh-quality saveto=zone zone=failed-elems

94   

3 Moving Mesh in ADINA CFD/FSI

ADINA offers state-of-the-art moving mesh capabilities
for a range of CFD and Fluid-Structure Interaction (FSI)
simulations. This chapter offers a best-practice approach
and guide to setting up a class of simulations requiring a
moving mesh.

3.1 Overview

In ADINA CFD and FSI applications, the fluid domain
may deform at moving boundaries, including moving
walls with prescribed displacements or fluid-structure
interfaces. Maintaining a valid moving mesh with good
quality elements is important for convergence and solution
accuracy.
For models that have a moving mesh, the fluid govern-
ing equations are solved using the Arbitrary Lagrangian-
Eulerian (ALE) formulation, which includes the mesh
velocity. The moving mesh equations are solved by a Lapla-
cian procedure in which the location of element vertices
are determined by their original position and displacement.
The displacement of these element nodes are decided by
the physical condition at the fluid boundary and is solved
for using the Laplace equation. This chapter will discuss
all aspects pertinent to simulations that require a moving
mesh, including background mesh options, solver selec-
tion, domain subdivisions, and ALE mesh constraints and
conditions.

95

    /

3.2 Basic Procedures

In ADINA-CFD, the moving mesh equations are solved in
the order of point, to line, to surface, to volume. The steps
for solving the moving mesh using the Laplace equation are
as follows:
1. Determine the nodal displacements on the moving mesh

boundary from physical conditions (i.e., a prescribed
moving wall or a fluid-structure interface). Nodes on
these boundaries may also be constrained by Leader-
Follower Constraints (see page 103), in which the nodes
can slide along but cannot leave the specified boundary,
thus maintaining the boundary shape.

2. Determine the local displacement of corner nodal points
of the moving mesh domains. These corner points are
those that are intercepts of two lines or edges, or joint
points of three surfaces or faces. These points are often
constrained by Leader-Follower conditions.

3. Solve the Laplace equation on all lines of the moving
mesh domain to determine the nodal displacements on
these lines. The end points on these lines are the corner
points which are solved for in the previous step and are
used as the prescribed boundary condition in this step.
These lines can be the boundaries of the moving mesh
domain, or, if the fluid domain is divided into several
sub-domains, these lines can also be the boundaries of
the sub-domains, which comprise the internal lines of the
computational domain.

4. Lastly, for three-dimensional cases, solve the Laplace
equation on all volumes. With the displacements solved
for on all boundaries in the previous step, this step is to
determine the displacements for all internal nodes.

3.3 Defining ALE Domain Geometry

The moving mesh domain is sometimes referred to as the
ALE domain. The ALE domain will be automatically
created in the AUI, and, depending on the source of model
geometry, can be defined in the AUI in the following two
ways:

96   

   

1. The model geometry is defined using AUI Native Geom-
etry, namely points, lines, surfaces, and volumes, or can
be imported as a parasolid body using ADINA-M. In
this case, the points, lines (or edges), surfaces (or faces),
and volumes (bodies) will be used as the ALE domain
geometry automatically.

2. There is no model geometry defined in the AUI, and
the model consists only of element data, imported into
the AUI. In this case, the AUI will use the element
data to create the ALE domain. In two-dimensional
cases, surfaces are defined by element groups, lines are
defined by element-edge sets, and points are defined by
the intersection of two edge sets. In three-dimensional
cases, volumes are defined by element groups, surfaces
are defined by element-face sets, lines are defined by the
intersection of two face sets, and points are defined by
the intersection of three face sets, see Figure 3.1.

Surface is defined
by element-face set

Corner is
defined by
element-
face set
inter-
section

Edge is defined by
intersection of 2
element-face sets

Figure 3.1: ALE domain defined
by element-face sets.

EF set 1

EF set 2

Edge not preserved

Figure 3.2: Defined element-
face sets do not preserve edge.
Because a corner is defined as
the intersection between three
face sets, the highlighted edge is
not preserved. Nodes can move
anywhere along element-face set
2.

Please note the following:
• It is not permissible to define overlapping element-face
sets when the ALE moving mesh formulation is used.
The AUI will issue an error message during data file
generation when this occurs.

• Edges and corners are only preserved as the mesh moves
when the ALE edges and corners have been previously
defined. See Figure 3.2.

• The AUI automatically creates an element-face set during
data file generation containing all remaining element
faces not previously defined in other element-face sets.

• Shell element groups can be defined in the NASTRAN
database, and when imported into the AUI, element-face
sets can be created based on these shell element groups
using the ELFACESET parameter in the NASTRAN-ADINA
command.

3.4 Solving the Moving Mesh

To solve the Laplace equation for the moving mesh, there a
number of options that can be chosen in ADINA.

 , . 97

    /

3.4.1 Mesh Solver

The fluid mesh solver obtains the displacements of each
element node by solving the Laplace equation. For FCBI
elements, the moving mesh solver is the sparse solver.
For FCBI-C elements, there are two solver options,
which are selected using the MS-SOLVER parameter of the
OUTER-ITERATION command:
• MS-SOLVER = SPARSE: Use the sparse solver. This is the
default option.

• MS-SOLVER = FD-SOLVER: Use the same solver as the
one selected for the fluid flow solution (AMG Type 1
iterative solver).

When the sparse solver is used, the mesh displacements are
directly computed at the nodes. When the iterative solver
(MS-SOLVER = FD-SOLVER) is used, the mesh displacements
are considered as an additional degree of freedom at the ele-
ment center, and these displacements are then interpolated
to the corner nodes.
Convergence of the moving mesh equations is difficult
when the iterative solver is used because the iterative solu-
tion of the (diffusive) Laplace equation is highly sensitive to
any errors in the displacement solution, such as those that
occur when the displacements are interpolated to the corner
nodes.1 1 For most moving mesh appli-

cations, it is recommended to
use the sparse solver, provided
sufficient memory is available.

The drawback of using the spare solver is that it requires
much more memory than the iterative solver, because
the direct solver needs to store the moving mesh matrix
equations. Hence, for very large problems, the AMG
iterative solver with the current mesh must be used.
To prevent errors in the fluid mesh displacement solution
from accumulating when the iterative solver is used, care
must be taken to ensure that the mesh displacement solu-
tion has tightly converged. If this solution fails to converge
when the iterative solver is used, the inner iteration equa-
tion and variable residual relaxation factors for displacement
should be tightened. See command input 3.1.

98   

   

Command Input 3.1: Inner iteration equation and variable residual
relaxation factors for displacement in moving mesh problems with the
iterative solver. Note the tolerances are tightened from the default
1.0E-1.
ivar-control red-eqn displacement=1.0e-2
iver control red-var displacement=1.0e-2

Also, the maximum number of outer iterations in the fluid
variable loop should be increased to between 2 and 10
iterations, as shown in command input 3.2.

Command Input 3.2: Maximum number of iterations in fluid variable
loop for moving mesh problems using the iterative solver. Note the
number of iterations are increased from the default single iteration.
outer-teration fluid-maxit=5

3.4.2 Background Mesh

When solving the Laplace equation, the calculations must
be based on a background mesh. The MESHUPDATE parame-
ter of the MASTER command specifies the background mesh
to be used. There are two options:
• MESHUPDATE = CURRENT: The current mesh, i.e., the mesh
obtained in the last converged solution step is used
as the background mesh for solving the increment in
displacements.

• MESHUPDATE = ORIGINAL: The original mesh, i.e., the
undeformed mesh at the start of the solution is used
as the background mesh for solving the increment in
displacements.

By default, MESHUPDATE = ORIGINAL.
The benefits of using the original mesh are:
• Moving mesh equations are only factorized once at the
beginning of the analysis when they are solved using
the sparse solver. If the current mesh is used, the equa-
tions have to be factorized at each time step, which is
expensive, especially for large CFD meshes.

• The mesh returns back to its original state for cyclic
problems (not guarenteed when the current mesh is

 , . 99

    /

used).
• Conditioning of the coefficient matrix tends to be better
when the original mesh is used for the background mesh.

The benefit of using the current mesh is that it is more
robust for certain problems with non-convex fluid domains.
This option should only be used if the original mesh option
is unsuccessful.

3.4.3 The Solving Domain

If the solving domain is subdivided into smaller domains by
lines (in 2D) or surfaces (in 3D), each of the subdomains
are solved separately by the Laplacian procedure, and the
moving nodes will not cross the subdomain boundaries.
It is important to note that the Laplacian solution cannot
guarantee a valid fluid mesh, especially when the solving do-
main is non-convex and the mesh undergoes compression.
In Euclidean space, an object is convex if a line joining any
two interior points remains in the domain. Examples of
a convex and non-convex domain are given in Figure 3.3.
Figure 3.4 (panel a) shows a case where the element inverts
under compression in a non-convex domain.

a)

b)

Figure 3.3: Convex (panel
a), and non-convex (panel b)
domains. Note in b), a line-
segment exists outside the
non-convex set.

unacceptable
element

sub-domains

a)

b)

Figure 3.4: Element deformation
in non-convex (panel a) and
convex (panel b) fluid domains.

From a mathematical point of view, the closer the domain
is to convex, the greater chance the mesh will converge
under compressive mesh movement. Hence, the best
strategy for mesh control is to divide the computational
domain into multiple convex-like subdomains, and then
solve the Laplace equation on these subdomains. The
deformed element would then be acceptable, as shown in
Figure 3.4 (panel b).

100   

   

3.4.4 Choice of Background Mesh and Subdomains

An illustrative example showing different moving mesh
results under a combination of the options discussed pre-
viously is given in the following section. Consider the
non-convex domain in Figure 3.5; it is compressed by a
right-side moving boundary, which may be a moving wall
or an FSI interface. The figure shows the undeformed
mesh, and the whole fluid domain (non-convex) is the ALE
solving domain.
The right-side wall is a moving boundary, prescribed to
translate in the left direction by 90% of the top side length.
The background mesh is MESHUPDATE = ORIGINAL.

Figure 3.5: Undeformed, non-
convex mesh. The right side wall
is a moving boundary, prescribed
to translate in the left direction
by 90% of the top side length.

Figure 3.6 (panel a) shows element overlap when the
boundary moves 80% of its displacement, demonstrating
that the Laplacian equation of a non-convex domain may
not result in a valid mesh.
A valid mesh results when the background mesh option
is switched to MESHUPDATE = CURRENT, as shown in Fig-
ure 3.6 (panel b).

a) b)MESHUPDATE = MESHUPDATE =
ORIGINAL CURRENT

Figure 3.6: Moving mesh results
using original (panel a) and
current (panel b) background
meshes. Using the current mesh
with this non-convex domain
results in a valid mesh.

Using MESHUPDATE = CURRENT when dealing with non-
convex domains may solve certain problems that MESHUPDATE
= ORIGINAL cannot. However, if the motion is periodic,

 , . 101

    /

using a current mesh cannot guarantee a cyclic mesh. (A
cyclic mesh is one that returns to its original topology under
a periodic motion). As a second example, the same model
is given a periodic boundary motion, and the right wall dis-
placement is set to be 80% of the top side length, allowing a
valid mesh for both background mesh options. An overlay
of mesh results are plotted in Figure 3.7.

Figure 3.7: Overlay of cyclic
Original (gray) and Current
(magenta) meshes. Using the
current mesh does not guarantee
a cyclic mesh when a periodic
mesh motion is imposed.

a)

b)

Figure 3.8: Moving mesh results
using convex sub-domains and
original background mesh. The
geometry is first subdivided
into convex subdomains shown
in panel a). Using the original
mesh as the background mesh
recovers the mesh shown in
panel b).

In a third example, the fluid domain is divided into two
convex domains, as shown in Figure 3.8 (panel a). Here,
the Laplacian equation is solved within each subdomain
based on their respective boundaries. Allowing the moving
distance of the wall to be more than 90% of the top side
length, and by using the MESHUPDATE = ORIGINAL, the mesh
is perfectly cyclic after several periods of motion. The
results are given in Figure 3.8 (panel b).
In summary, the first choice for a background mesh should
be the (default) original mesh. The fluid domain should
also be divided into multiple convex-like subdomiains for
which the Laplace equation is more likely to yield valid
meshes. The MESHUPDATE = CURRENT option may be used to
solve difficult non-convex domain problems for which the
original mesh is unsuccessful.

102   

 

3.5 ALE Conditions

The Laplace procedure for arbitrary moving meshes typi-
cally performs well for small dispalcement problems. How-
ever, the Laplace procedure alone may not adequately con-
trol mesh quality in large displacement problems. ADINA
provides additional ALE conditions to enhance moving
mesh quality for problems involving large displacements.

3.5.1 Leader-Follower Constraints

Consider the example given in Figure 3.9. Here, the center
block is moving circularly. The ALE domain is subdi-
vided into eight convex subdomains. Running first with
MESHUPDATE = ORIGINAL, the mesh fails (Figure 3.10, panel
a). Switching to MESHUPDATE = CURRENT, the simulation
successfully completes the first cycle, but the mesh crashes
in its second cycle. As shown in Figure 3.10 (panel b), the
mesh quality becomes progressively poor. This example
shows that, even with all subdomains being convex, the
mesh may still fail if the displacement is large. Recall that
in the Laplacian procedure, the interior mesh is solved after
the boundaries are determined. These boundaries can be
controlled by Leader-Follower constraints to improve the
mesh outcome.

Figure 3.9: Circularly orbiting
block with convex subdomains.

a) b)MESHUPDATE = ORIGINAL MESHUPDATE = CURRENT
Figure 3.10: Original (panel a)
and Current (panel b) moving
mesh results. Both background
meshes eventually fail, despite
having the ALE domain divided
into convex subdomains.

Consider a moving ball as shown in Figure 3.11 (panel
a). Because there are no moving conditions on the outer
boundary of the domain, the element becomes highly
distorted as the ball translates to the right. Here, point 2 is
fixed, and the line 1-2 becomes largely skewed. If we force

 , . 103

    /

point 2 to follow point 1, then the line 1-2 will not skew,
and the element will retain its quality, as shown in panel b).
In this case, point 1 is the deemed the leader, and point 2
the follower.

a)

b)

leader
follower

1 1

2 2

1 1

2

Figure 3.11: Translating ball
with Leader-Follower con-
straints.

In the previous circularly moving block example, we can
set Leader-Follower pairs to maintain the mesh quality as
the block displaces. Figure 3.12 (panel a) shows the eight
Leader-Follower pairs. Note that each leader point, as
denoted by ”L”, is situated on a moving wall. Note also
that there are two follower points per leader. It is permitted
to have more than one follower per leader, but not more
than one leader per follower. Additionally, a point assigned
as a follower cannot also be assigned as a leader. In this
example, the original mesh is selected as the background
mesh. Figure 3.12 (panel b) shows the resulting mesh.

a) b)

L1 L2

L3 L4

F1 F2

F3

F4F3

F1 F2

F4

Figure 3.12: Circularly moving
block with assigned Leader-
Follower pairs. Note there are
two followers assigned for each
leader, as shown in panel a).
The original mesh is selected as
the background mesh, with the
results presented in panel b).

104   

 

3.5.2 Types of Leader-Followers

The Leader-Follower pair is assigned to the two end points
a moving mesh boundary line. The leader must be located
on a physically moving boundary (i.e., a moving wall, a
fluid-structure interface, or a free surface). The follower
can be on the boundary of the fluid domain, or it can be an
internal point. The displacement of the moving boundary
determines the displacement of the leader. The displace-
ment of the leader, in turn, determines the displacement
of the follower. There are three options when deciding the
type of Leader-Follower pair, and these are application-
dependent. Each type is an option in the LEADER-FOLLOWER
command.

follower

follower
leader

Figure 3.13: Parallel type
Leader-Follower constraint.
The follower first displaces with
the leader and then is projected
back onto the wall.

follower leader

Figure 3.14: Closest type
Leader-Follower constraint.

• TYPE = PARALLEL: The follower first displaces with the
leader, and then the follower is projected back onto the
wall along the wall normal, as illustrated in Figure 3.13.
If the follower is not on a wall boundary, FSI boundary,
or slipping boundary, its motion is completely deter-
mined by its leader, and the Leader-Follower type can
only be TYPE = PARALLEL. This is the default setting.

• TYPE = CLOSEST: The follower will move to the locally
closest location to the leader on the wall or slipping
boundary, as a illustrated in Figure 3.14. If there are
multiple closest points, the program picks the first one as
the follower’s location point.

• TYPE = CONE: The follower is located on a wall or slip-
ping boundary at the locally closest location to the leader
within a conical search domain. The leader defines the
apex of the conical domain, and the cone axis is normal
to the leader boundary. The cone angle is a user-specified
variable. If a zero cone angle is specified, the Leader-
Follower vector is normal to the leader boundary.

3.5.3 Slipping Boundary

If the follower point is not on a wall or FSI boundary, its
motion is unconstrained, and only TYPE = PARALLEL can
be used. A slipping boundary can be used to constrain the
motion of the follower so that it may only move along that
boundary. Consider the example given in Figure 3.15. An
oscillating airfoil inside a channel is studied.

 , . 105

    /

To preserve the mesh quality, leader points are assigned
at the left and right tips of the airfoil, and the respective
followers are assigned at the left boundary (inlet) and right
boundary (outlet). Because there is no wall condition at the
outlet of the domain, the follower will move according to
its leader, as shown in Figure 3.16 (panel a). Note how the
outlet boundary curves inward.

Figure 3.15: Airfoil with rule-
based, undeformed mesh. The
leader points are shown in green,
and their respective followers are
shown in blue.

To maintain the outlet boundary shape, a slipping boundary
can be defined along this line. In this case, nodes can
only move along its original shape (a straight line), thus
preserving the geometry. Figure 3.16 (panel b) shows the
results with a defined slipping boundary on the outlet.

a) b) Figure 3.16: Moving mesh
results of airfoil without (panel
a) and with (panel b) a slipping
boundary. With a slipping
boundary defined, nodes along
the outlet are constrained to
move only along the outlet
boundary, thus preserving the
shape of that edge.

For 2D cases, slipping boundaries are lines/edges or ele-
ment edge sets. In 3D, slipping boundaries are surfaces/-
faces or element face sets.

106   

 

3.5.4 Extended Wall

In some cases, the flow domain will expand due to a mov-
ing boundary. If this expansion has to follow a certain
geometric shape, the Extended Wall may be needed. Fig-
ure 3.17 gives a sample problem. Here, the FSI boundary
(highlighted in red) translates, following the extended wall.
The subdivided wall is shown in orange.

FSI boundary

Wall

Figure 3.17: FSI extended wall
problem. Here, the FSI bound-
ary (shown in red) translates
following the extended wall
(shown in orange).

When defining an extended wall, it is important to remem-
ber to discretize the line by subdividing it. Otherwise, the
curved extended wall will act as a straight line between the
starting and ending points. Figure 3.18 shows the moving
mesh after defining the Extended Wall and setting the
appropriate subdivisions.

a)

b)

Figure 3.18: Moving mesh
results for extended wall FSI
problem. An invalid mesh results
without line subdivision on
the extended wall, as shown in
panel a). The corner node of
the undeformed mesh follows
the subdivided line, as shown in
panel b).

 , . 107

4 Fast Graphics Mode

Both Linux and Windows versions of the AUI support Fast
Graphics Mode (FGM) visualizations.
FGM takes advantage of powerful graphics cards, resulting
in high performance graphical rendering and manipulation.
FGM also offers a wide variety of visualization enhance-
ments. In addition, user interactions within FGM are more
intuitive and natural.
Of course, the standard mode visualization style is also
available and remains unchanged.
Vector graphics snapshots are not available in FGM.

4.1 Hardware Requirements

Fast Graphics Mode requires a medium range graphic card.
The minimum requirements are:
• OpenGL 3.3 compatible graphic card
• 1 GB on board video memory
• 64-bit Linux or Windows (Vista or later) operating
system

The following graphics cards have been tested:
• NVIDIA Quadro NVS 295
• NVIDIA Quadro 410
• NVIDIA Quadro 600
• NVIDIA Quadro K2000
• AMD FirePro V4900
Intel graphics cards are not compatible with FGM.

108

 

For best performance, upgrading to the latest vendor-
supplied graphics card drivers is highly recommended.

4.2 Activating FGM

To run FGM, the Graphics System must be set to OpenGL
(use Edit → Graphics System to select OpenGL).
When FGM is available, the Fast Graphics icon is
ungrayed. Clicking this icon enables the FGM. To disable
FGM and return to standard mode, click the Fast Graphics
icon again.

4.3 General FGM Settings

As with standard mode graphics, FGM allows viewport
customization. Users may adjust these settings to suit their
preferences.

4.3.1 Projections

FGM can display either an orthographic (parallel) or a
perspective projection. To select a projection, right-click in
the graphics window, then choose Fast Graphics → View
→ Parallel or View → Perspective, as desired.

Figure 4.1: Parallel (left) and
Perspective projection (right) of
a body.

In Parallel mode, the model is displayed with all points
projected along lines parallel to their positions on the

 , . 109

  

screen. In Parallel mode, three-dimensional models appear
to lack depth.
In Perspective mode, the model is displayed in a more
natural fashion. Objects further from the camera appear
smaller than those nearer.

4.3.2 Coordinate axes

FGM’s coordinate axes have been enhanced. The new axes
are located at the bottom left corner of the graphics window.

To toggle the visualization of the axes:
1. Right-click in the graphics window and choose Fast

Graphics → Configuration.
2. Select the Viewport tab.
3. In the Viewport box, check/uncheck the Show Axes

option.

4.3.3 Scene bounding box

The scene bounding box option draws a box around the
entire model. This box is useful to show the limits of the
model. The scene bounding box is used by a number of
features to let the user activate or define a working plane.
To toggle the scene bounding box:
1. Right-click in the graphics window and choose Fast

Graphics → Configuration.
2. Select the Viewport tab.
3. In the Viewport box, check/uncheck the Scene BBox

option.

4.3.4 Background

To customize the background:
1. Right-click in the graphics window and choose Fast

Graphics → Background.

110   

 

2. Select a background type (see below)
Solid: Works in the same way as the background in the
standard mode. Select the background color using the Top
field.
Ramp: Creates a vertical gradation between the Top color
and the Bottom color.
File: Allows an existing image file to be used. Use the File
field to choose the image file. The image file must be in the
.tga file format.

4.4 Scene Rendering

Fast Graphics Mode offers enhanced flexibility over stan-
dard mode when rendering scenes. Thus, the user can more
easily explore the model during pre- and post-processing.

4.4.1 Original and deformed meshes

When plotted together in standard mode, the deformed
mesh obscures the original mesh.

Figure 4.2: Original and de-
formed mesh renderings.

In FGM, the Translucency feature (see page 133) can be
used to control the level of transparency of the original
mesh. Note that although both meshes are displayed,
selections can only be made in the deformed mesh.

4.4.2 Geometry and original meshes

When plotted together in standard mode, the original mesh
always obscures the geometry.

Figure 4.3: Geometry and
original mesh.In FGM, the Translucency feature can be used to control

the level of transparency of the geometry, see above. How-
ever, selections can only be made on the mesh, not on the
geometry.

4.4.3 Pattern lines

FGM introduces a new type of representation named
Pattern Lines. These lines use a texture when drawing thick

 , . 111

  

lines.
The types of geometries represented with Pattern Lines are:
• Contact surfaces.
• Fluid structure boundaries.
• Gluemesh surfaces.

Figure 4.4: Representation of
contact surfaces using pattern
lines.

To change the current pattern:
1. Right-click in the graphics window and choose Fast

Graphics → Configuration.
2. Select the Pattern Lines tab.
3. Select the desired pattern.
4. Check the Enabled field for each channel for which the

color should be customized. Other channels use the base
color.

5. Select a color to apply to each channel using the corre-
sponding button.

6. Select the transparency level by changing its Alpha value.
A value of 0 disables the channel.

The colors in the patterns can be changed by changing the
colors associated with the channels. By default, channel 0 is
red, channel 1 is green and channel 2 is blue.

112   

 

4.4.4 Labels

Entity Labels are objects represented as a text that maintain
an orientation and size on the screen. Examples of Entity
Labels are point labels, node labels, etc.
In standard mode, a large number of objects is both compu-
tationally expensive and can obscure the plot. FGM solves
both problems by using adaptive occlusion. Labels in FGM
are grouped in node boxes.1 Each node box is a bounding 1 Node boxes are not to be con-

fused with finite element nodes.box that holds a set of labels that are within the node box
boundary. The size of each node box is calculated based on
the distance between labels and number of labels per node
box.
To change the current Label visualization:
1. Right-click in the graphics window and choose Fast

Graphics → Configuration.
2. Select the Labels tab.
3. change the desired values (see below).

Figure 4.5: From left to right:
absolute threshold values 0, 5,
and 10.

Threshold: Controls the maximum number of labels that
can be inside a node box. A high number of labels per
node box will increment the node box size and reduce the
total number of labels displayed. Threshold values can be
absolute or percentage.
Distance: Controls if a node box is active or not based on
the distance to the camera. Node boxes out of range are
represented by a single label.
Density: When a node box is active (within distance

 , . 113

  

range), Density controls how many labels are displayed.

Figure 4.6: Left: Density 0,
Distance 0; Right: Density 1,
Distance 1.

Setting Distance and Density to zero will display all labels.
Selected Labels are always visualized.

114   

 

4.5 Navigation Tools

Fast Graphics Mode offers its own navigation interface and
associated tools for visually exploring the model. Users can
select to use FGM’s navigation interface and tools by:
1. Right-clicking in the graphics window and choose Fast

Graphics → Configuration.
2. Selecting the Shortcut Keys tab.
3. Unchecking the Standard box.

4.5.1 FGM navigation interface

FGM’s navigation interface helps users interact with the
scene more intuitively. It has been optimized for fast re-
sponse. As a result, the display quality will be affected dur-
ing navigation. All navigation operations applied inside the
FGM view will not modify the current view configuration
in standard mode. Because of this, navigation operations do
not support the standard Undo/Redo command.

4.5.2 Hot navigation tool

FGM’s navigation interface uses hot navigation keys but-
tons to activate interface tools. The advantage of using
these keys is that the view can be manipulated at any time
without leaving the current tool/mode. To deactivate a tool,
simply release the key.

Table 4.1: Hot navigation tool
keys

F2 Zoom View Tool
F3 Pan View Tool
F4 Orbit View Tool
I Zoom Region Tool
J Unzoom All Oneshot
Q Zoom Selection Oneshot

4.5.3 Orbit view tool

The orbit view tool rotates the current view about a fixed
pivot point. To activate the orbit view tool, click the Dy-
namic Rotate (XY) icon or press and hold F4 .
After the orbit view tool is activated, the Navigation Track-
ball is displayed on the screen. The mouse cursor will
change to show the function of the action available for the
trackball area where the cursor is. The trackball interface is
divided into four action zones:

 , . 115

  

a) Inside the circle, any drag action over this zone will act
like the standard Dynamic Rotate (XY) icon.

b) Outside the circle, the drag actions over this zone will act
like the standard Dynamic Rotate (Z) icon.

c) On vertical lines, the rotation will be limited to the Y
axis of the screen only.

d) On horizontal lines, the rotation will be limited to the X
axis of the screen only.

To rotate the view:
1. Select the desired rotation type by positioning the cursor

over one of the four action zones.
2. Press the left mouse button and while it is pressed, drag

the cursor in the desired direction of rotation.
3. Release the left mouse button.
The orbit tool uses the Navigation pivot point (see page
119) as the center of rotation.
It is possible to rotate the model about the model’s X, Y ,
or Z axes by holding down left Ctrl while dragging the
trackball.
a) Click on a vertical line to rotate about the model’s X axis
b) Click on the circle to rotate about the model’s Y axis.
c) Click on a horizontal line to rotate about the model’s Z

axis
To cancel the current rotation action, right-click without
releasing the left mouse button.
The rotation increment can be adjusted using the Angle
snap mode (see page 127).
To exit the Orbit tool when using the Dynamic Rotation
(XY) icon, press Esc , or single click on the screen, or click
an icon such as the Pick, Pan, Dynamic Rotate (Z) or
Dynamic Resize.
The Orbit Tool supports Double click and go (see page
119).

116   

 

4.5.4 Camera spin mode

In Camera Spin Mode, the camera rotates around the
model.
To activate Camera Spin Mode, release the left mouse
button while moving the mouse. The faster the mouse is
moving, the faster the spin. To exit Camera Spin Mode,
press the left mouse button or exit the Orbit View Tool.

4.5.5 Pan view tool

To pan the view in the XY plane of the screen:
1. Click the Dynamic Pan icon or press and hold F3 .
2. Press the left mouse button and while it is pressed, drag

the cursor in the desired direction.
3. Release the left mouse button.
It is possible to cancel the current Pan action by right-
clicking without release the left mouse button.
Moving the view using the Pan View tool changes the
Navigation pivot point.
The displacement factor is proportional to the distance of
the camera from the navigation pivot point. The Pan View
Tool might not work correctly when the camera is very
close to the navigation pivot point. In this case, click the
Unzoom All icon to restore the view.
To exit the Pan View Tool while using the Dynamic Pan
icon, press Esc , or single click on the screen, or click an icon
such as the Pick, Dynamic Rotate (XY), Dynamic Rotate
(Z), or Dynamic Resize.

4.5.6 Zoom view tool

The Zoom View tool zooms into and out of the view. Its
behavior is similar to the standard Dynamic Resize.
To zoom the view:
1. Click the Dynamic Resize icon, or press and hold F2 .
2. Press the left mouse button and while it is pressed, drag

 , . 117

  

the cursor up and down until the desired zoom level is
reached.

3. Release the left mouse button.
It is also possible to zoom by using the mouse wheel.
The zoom factor is proportional to the distance of the cam-
era from the Navigation pivot point. If the camera is very
close to the navigation pivot point, the Zoom View Tool
might not work correctly. In that case, click the Unzoom
All icon to restore the view.
It is possible to cancel the current zoom action by right-
clicking without releasing the left mouse button (however
not when zooming using the mouse wheel).
To exit the Zoom View Tool when using the Dynamic
Resize icon, press Esc , or single click on the screen, or click
an icon such as the Pick, Dynamic Rotate (XY), Dynamic
Rotate (Z), or Pan.

4.5.7 Zoom region tool

The Zoom Region tool zooms into a region of the screen.
The behavior is similar to the standard Zoom icon.
To zoom into a region of the screen:
1. Click the Zoom icon or press and release I .
2. Left-click and drag the Zoom region rectangle as de-

sired.
3. Release the left mouse button.
To exit the Zoom View tool, press Esc , or click an icon
such as the Pick, Dynamic Rotate (XY), Dynamic Rotate
(Z) or Pan icons.
The Zoom Region Tool will change the Navigation pivot
point. Because the Zoom Region Tool changes the navi-
gation pivot point, perspective projections might become
imprecise. In that case, use the Pan View tool and the
Zoom View tool instead.

118   

 

4.5.8 Unzoom all oneshot

This option centers all visible objects in the view by calculat-
ing the best zoom factor.
To Unzoom All, click the Unzoom All icon or press and
release J . This action will move the navigation pivot point
to the center of the scene.

4.5.9 Zoom selection oneshot

Apply a Zoom All action to the selected area of the model
(see Selection Tools on page 123 for instructions about
selecting regions of the model). This tool is useful for
navigating to a selected area within the model.
To Zoom Select, press and release Q . This action will
change the Navigation pivot point.

4.5.10 Double click and go

Double-clicking in the graphics window moves the clicked
point to the center of the screen. This also changes the
Navigation pivot point. If the double click was made on a
three-dimensional model or Scene bounding box, the three
coordinates of the navigation pivot point will be updated
– otherwise only the two coordinates corresponding to the
screen’s XY system will be modified.

4.5.11 Navigation pivot point

Usually, the navigation pivot point is positioned at the
center of the screen and does not change after a navigation
command. The Orbit view tool uses this point as center of
rotation. The Pan view tool and Zoom view tool use the
navigation pivot point to calculate the factor of transfor-
mation to apply to the action. This factor varies depending
on the distance between the Camera and the navigation
pivot point. Small distances cause small offset values. It is
possible to modify the navigation pivot point as discussed
above, or by using the Navigation pivot point tool (see page
128).

 , . 119

  

4.6 Visualization Tools

Fast Graphics Mode lets users display portions of the
model using any combination of Hide and Unhide com-
mands. Note that only meshplots can be hidden. Also,
hidden geometry cannot be selected directly with selection
tools (Region Selection, etc).

4.6.1 Hide selection

Hides the current selection. This tool is useful when you
want to exclude from the rendering certain parts of a model
without altering the current zone. To hide a selection,
press and release H , or right-click in the graphics window
and choose Fast Graphics → Display → Hide Selection.
Hidden geometry cannot be selected.

4.6.2 Unhide all

Makes visible all previously hidden geometry. To unhide
all the hidden geometry, press and release Ctrl +H , or right-
click in the graphics window and choose Fast Graphics →
Display → Unhide All.

4.6.3 Hide invert

Hides everything that is visible and unhides everything that
is hidden. To unhide all the hidden geometry, right-click in
the graphics window and choose Fast Graphics → Display
→ Invert.

4.6.4 Hide unselected

Hides everything that is not selected. To hide all the uns-
elected geometry, right-click in the graphics window and
choose Fast Graphics → Display → Hide Unselected.

120   

 

4.7 Visualization Objects

Fast Graphics Mode allows the user to view internal parts
of the model through the familiar cutting plane and cutting
volumes. The orientation of the cutting plane or volume can
be defined interactively, using the mouse.

4.7.1 Cutting plane

Cutting planes temporarily slice away a portion of the
model. Sliced objects will be not affected by selection tools.

To create a cutting plane:
1. Activate the cutting plane tool by pressing and releasing T

or clicking on the Cutting Plane icon .

2. Move the mouse over the model or Scene bounding box
to select the initial plane position and orientation.

3. Left click to create the plane.
4. Manipulate the plane using the Manipulators (see page

126).
5. To add a new cutting plane, press + , then repeat steps 2

to 4. Up to four planes can be defined.
6. Press Esc to finish using the tool.
The created cutting planes will remain active until they are
disabled. The sliced surface will be represented in one of
the planes colors (yellow, red, green, blue). It is possible to
not render the sliced surface, by disabling the Cap sections
option (see page 122)
To remove the cutting planes, click on the Cutting Plane
icon , or press and release T .

The direction of a cutting plane can be reversed by right
clicking on the plane.
All cutting planes are removed automatically upon return-
ing to standard mode.

 , . 121

  

4.7.2 Cutting volume

The Cutting Volume tool temporarily excludes from the
scene a portion of a model that lies inside or outside of a
volume shape. Objects affected by the volume will be not
selected by selection tools.
The available cutting volumes are:
• Box
• Sphere
• Cylinder
To create a cutting volume:
1. Click on the Cutting Box, Cutting Sphere or Cutting

Cylinder icon.
2. Manipulate the volume using the Manipulators (see page

126).
3. Press Esc to finish using the tool.
The created cutting volume is active until it is disabled. The
sliced surface is represented in yellow. It is possible to not
render the sliced surfaces, by disabling Cap sections.
To remove a cutting volume, click on the active cutting
volume icon. The cutting volume will be removed automati-
cally upon returning to standard mode.
The direction of the volume section can be reversed by right
clicking while defining the volume. In reverse mode, the
volume will be painted in red and all the elements outside
the volume will be affected.

4.7.3 Cap sections

The Cap Sections option controls the representation of the
sliced surface resulting from Cutting Planes or Volumes.
By default, Cap Sections are enabled. To toggle the Cap
Sections option:
1. Right-click in the graphics window and choose Fast

Graphics → Configuration.
2. Select the Viewport Tab.

122   

 

3. In the Viewport group, check/uncheck the Cap Section
box.

4.7.4 Known issues

Shell elements drawn in midsurface depiction are not
drawn correctly. Open or flipped surfaces are not displayed
correctly when rendering the cap surface.

4.8 Selection Tools

Fast Graphics Mode allows users to select model entities in
a variety of ways.

4.8.1 Locator action

Query: The Query icon lets you select objects within the
mesh plots, such as elements and nodes. Information is
displayed about the selection in the Message Window.
Pick: In standard mode, the Pick icon lets you select mesh
plots and annotations such as band tables.
Dialog box selection: Pressing the P key, or double-
clicking in a cyan column of a dialog box.

4.8.2 Region selection

The region selection tools allow you to select one or more
objects by defining an outline or area. The type of created
region depends on the current region type.
• Rectangular Region.
• Circular Region.
• Lasso Region.
Use Tab to switch between region types. The default region
type is a rectangular region. The Query icon and Pick icon
only work with a rectangular region.
To select using a rectangle:

 , . 123

  

1. Activate a region selection tool.
2. If the rectangular region is not active, use Tab to switch

between region types until the rectangular region is active.
The cursor changes to .

3. Drag in the view, then release the mouse. The first loca-
tion you click is one corner of the rectangle, and where
you release the mouse defines the opposite corner.

To cancel the selection, right click before you release the
mouse. Press Esc to finish using the Region Tool.
To select using a circle:
1. Activate a region selection tool.
2. If the circular region is not active, use Tab to switch

between region types until the circular region is active.
The cursor changes to .

3. Drag in the view, then release the mouse. The first loca-
tion you click is the center of the circle, where you release
the mouse defines the circle radius.

To cancel the selection, right click before you release the
mouse. Press Esc to finish using the Region Tool.
To select using a lasso:
1. Activatate a region selection tool.
2. If the lasso region is not active, use Tab to switch between

region types until the lasso region is active. The cursor
changes to .

3. Left-click to define the first segment point.
4. Move the mouse and left-click to define the second

segment point. Repeat steps 3 to 4 as needed.
5. Complete the region by left-clicking without moving the

mouse.
To cancel the selection, right click before you release the
mouse. Press Esc to finish using the Region Tool.
If you hold down Shift while selecting a region, the selected
objects are added to the current selection. If you hold down
Ctrl , the selected objects are removed from the current
selection.
Click Esc to finish using the Region Selection tool.

124   

 

4.8.3 Deep selection

Deep selection allows the user to select objects obscured by
other objects.
By default, deep selection is disabled. To enable/disable
deep selection, right-click in the graphics window and
choose Fast Graphics → Selection → Deep Selection.

4.9 Selection Representation

In standard mode, the selected items are ‘highlighted.’
FGM represents selected items in different ways depending
on the item type. Selected items are represented in the
defined selection color and are not obscured by other items.

 , . 125

  

4.9.1 Selection silhouette

Shows a black silhouette around the current selection.
To toggle the visualization of the Selection Silhouette:
1. Right-click in the graphics window and choose Fast

Graphics → Configuration.
2. Check/Uncheck the Selection Silhouette option.

4.9.2 Selection box

Shows a box bounding the current selection.
To toggle the visualization of the Selection Box:
1. Right-click in the graphics window and choose Fast

Graphics → Configuration.
2. Check/Uncheck the Selection Box option.

4.10 Manipulators

Manipulators transform one or more objects when the
mouse is dragged. Manipulators appear when one or more
Visualization Objects are created (see page 121) and a
transformation tool is active.

Figure 4.7: Move (left) and
rotate (right) manipulators.4.10.1 Move manipulator

TheMove Manipulator moves one or more objects when
the mouse is dragged. To use the Move Manipulator:
1. Choose an axis by positioning the mouse over one of

the three axes of the Axes icon. The axis turns yellow to
indicate that it is active.

2. Drag the mouse to move the selection along that axis
Choose an axis by first positioning the mouse over any axis
of the icon, then dragging the mouse to move the selection
along that axis. When you position the mouse over any axis,
it turns yellow to indicate that it is active.

126   

 

4.10.2 Rotate manipulator

The Rotate Manipulator lets you choose a plane of rotation
when rotating a selection with the mouse. Choose a plane
of rotation by first positioning the mouse over any plane of
the icon, then dragging the mouse to rotate the selection in
that plane. When you position the mouse over a plane of
rotation, it turns yellow to indicate that it is active. The Ro-
tate Manipulator uses Angle snap mode to set the rotation
increment.

4.11 Snap Mode

Snap Mode sets rotation and scaling increments to a given
value.

4.11.1 Angle snap mode

Use this mode to set the incremental rotation to be applied
to a number of features. To toggle Angle Snap, click the
Angle Snap icon .
To change the incremental angle of rotation:
1. Click the down arrow to the right of the Angle Snap

Icon.
2. Enter the desired snap increment into the dialog box, and

click OK.
The default rotation snap angle is 10 degrees.

4.11.2 Scaling snap mode

The Scaling Snap Mode controls the percent of increment
to be applied to a number of features. For example, the
Scale Manipulator uses Scaling Snap.
To toggle Scaling Snap, click the Scaling Snap icon .
To change the scaling increment:
1. Click the down arrow to the right of the Scaling Snap

icon.

 , . 127

  

2. Enter the desired snap increment into the dialog box, and
click OK.

4.12 Transform Tools

As with the standard graphics mode, all objects displayed
in the FGM viewport can be arbitrarily transformed (e.g.,
scaled and/or rotated).

4.12.1 Navigation pivot point tool

FGM uses the Navigation pivot point (see page 119) as a
reference position to calculate a number of features related
with the view. Users can move the navigation pivot point
via the Navigation Pivot Point Tool.
To move the navigation pivot point using this tool:
1. Activate the tool by pressing Insert .
2. Use the Move manipulator to move the navigation pivot

point.
3. Press Enter to apply the change to the view.
It is possible to cancel the current translation by clicking
on the right mouse button without releasing the left mouse
button.
To deactivate the tool, press Esc , or activate a different
tool.2 2 If you deactivate the tool

without applying the changes
by pressing Enter the navigation
pivot point will not be modified.4.12.2 2D transform

Any annotation in the graphics window can be moved or
scaled.
To transform a selected annotation:
1. Select the annotation to be transformed using the Pick

icon.
2. Right-click in the graphics window and choose Fast

Graphics →Transform →Move or Scale.
3. Click and Drag the mouse.

128   

 

4. Repeat steps 2 and 3, as necessary.
5. Exit the tool pressing Esc or changing the tool.
Alternatively it is possiblee to activate 2D Transform Move
or 2D Transform Scale using the assigned key shortcut (see
Fast Graphics Options-Shortcuts). It is possible to cancel
the current transform by clicking on the right mouse button
while holding the left mouse button.
The scale increment can be set by activating the Scaling
snap mode (see page 127). The 2D Transform tool is only
available when the FGM navigation interface option (see
page 115) is disabled.

 , . 129

  

4.13 Visual Appearance and Effects

Fast Graphics Mode offers several features for controlling
the appearance of shapes and surfaces. These capabilities
can be used to generate more realistic visual representations
of complex models.

4.13.1 Surface smooth

Figure 4.8: Smoothing applied
with values of 0, 15, and 30,
from left to right.

Smoothing blends the shading at the edges between adja-
cent faces based on the angle to produce the appearance
of a smooth surface. The advantage of this technique is
that smooth surfaces are generated without increasing the
surface density (using, for example, the Surface Depiction
dialog box).
To change the smooth angle:
1. Right-click in the graphics window and choose Fast

Graphics → Configuration.
2. Select the Advanced Tab.
3. Change the Surface Smooth value.
By default, the smooth angle is 15 degrees.

4.13.2 Shading

FGM offers several shaders. By default, FGM uses Gouraud
shading. To select a shader:

130   

   

1. Right-click in the graphics window and choose Fast
Graphics → Shader.

2. Choose the desired shader.
Gouraud: The Gouraud shader calculates the color for
each vertex (per-vertex shading) and associates the color
with that vertex. The colors are then interpolated across
the face of the polygon to produce a smooth effect. The
final quality of the represented surface depends on the face
density.
The shader properties used for the lighting are Ambient,
Diffuse, Specular and Emissive colors.

Figure 4.9: Gouraud shading.

Figure 4.10: Gouraud-Lambert
shading.

Figure 4.11: Lambert shading.

Figure 4.12: Flat shading.

Gouraud-Lambert: Like Gouraud, the Gouraud-Lambert
shader calculates the lighting calculations per-vertex, but
the Gourand-Lambert shader does not apply the specular
component. The lighting calculation for this shader is
similar to that used in the standard UI.
Gouraud-Lambert is the simplest and fastest shader. Its
lighting properties are Ambient, Diffuse, and Emissive
colors.
Lambert: The Lambert shader represents matte surfaces
with no specular highlights. The lighting calculation is
performed per pixel.
The shader properties used for the lighting are Ambient,
Diffuse and Emissive colors.
Flat: The Flat shader calculates the lighting on each face
independently of its neighbors, so that there is no variation
of color across the face, causing each polygon to have a
flat appearance. This can help visualize element faces in a
complex mesh.
The properties used for the lighting are Ambient, Diffuse,
Specular and Emissive colors.

 , . 131

  

Blinn: This shader is particularly effective at simulating
metallic surfaces (e.g., brass or copper) which typically have
soft specular characteristics.

Figure 4.13: Blinn shading.

Phong: The Phong shader mimics glossy surfaces with a
hard specular highlight.

Figure 4.14: Phong shading.

Image Based Lighting (IBL): IBL uses an environment
texture to illuminate the scene.

Figure 4.15: Image based light-
ing shading.

Environment: This shader effective simulates environmen-
tal reflections on polished metallic surfaces.

Figure 4.16: Environment
shading.

Wireframe: This shader simply represents surface facets as
white with red edges.
Gooch: Gooch (cool to warm) shading is a type of non-
realistic lighting.

132   

 

4.13.3 Translucency

FGM introduces translucency for visualizing the interior of
a solid. To toggle translucency, click the Cull Front Faces
icon .

Figure 4.17: Translucent render-
ing.

To configure the translucency:
1. Right-click in the graphics window and choose Fast

Graphics → Configuration.
2. Select the Advanced tab.
3. Choose a Method in the Translucency Method field (see

below for choices)
Average: This is the default translucency mode; it offers
good performance and moderate quality.

Figure 4.18: Average translu-
cency method.

Fast: This mode offers the best performance but lowest
quality. It is useful for complex scenes where performance is
required.

Figure 4.19: Fast translucency
method.

XRay: Similar to Average in performance, this method
imitates an X-ray film of the object.

Figure 4.20: XRay translucency
method.

Dual Peeling: Dual peeling is the slowest method of
representation and requires more graphical processing unit
(GPU) memory.

Figure 4.21: Dual Peeling
translucency method.

4.14 Advanced Configuration

VSync instructs the graphics card how to synchronize its
actions with the monitor. That means the graphics card
can swap its frame buffer and send a new frame to the
monitor only when the monitor is ready to redraw a new
screen. This affects the framerate, or the number of frames
per second.
To change the Vertical Sync:
1. Right-click in the graphics window and choose Fast

Graphics → Configuration.
2. Select the Advanced tab.
3. In the Visualization box, make a selection (see below).
On: When VSync is enabled, the graphics card is in-
structed to wait for the monitor to signal when it’s ready for

 , . 133

  

a new frame before supplying a single whole frame. The
first noticeable impact is that framerate is limited to the
monitor’s current refresh rate. For example, if the moni-
tor’s refresh rate is 60Hz, the frame rate cannot exceed 60
frames per second.
Off: When VSync is disabled, the framerate can be greater
but the ‘Tearing’ effect might appear.
Auto: When Auto is chosen, VSync will only be enabled
whenever the framerate exceeds the refresh rate. If the
framerate falls below the refresh rate, VSync is instantly
disabled.

134   



4.15 Animation

ADINA FGM implements a new method of representing
pre-generated animations. Unlike the standard mode,
FGM allows the manipulation of the camera in real time.
It is possible to save and load the animation independently
from the database. Depending on the type of solution and
the number of steps, the required memory will be different.

4.15.1 Visualization

FGM can reproduce only animations generated while in
FGM, any animation generated and stored in the database
using the standard mode won’t be compatible.
To Playback an animation:
1. Load a pre saved animation (see below) or generate a new

animation using the AUI interface.
2. The Time Slider (horizontal scroll bar) will be visible.
3. Press Play icon in the FGM toolbar to see the anima-

tion.
4. Click Stop icon to end the animation playback.
5. Use the Time Slider (Horizontal scroll bar) to go to

different steps.
In case of a solution with multiple mesh plots, only the ani-
mation of the active will be played, it is possible to change
the active mesh plot while reproducing the animation by
picking a different mesh plot. During the reproduction
of an animation it is possible to change the location and
orientation of the camera by using any Navigation Tools,
note that Particle Selection and Query will be disabled.
To customize:
1. With a loaded animation Open the Reproduction Config

by pressing the arrow icon next to the Stop icon.
2. Select the desired reproduction mode by checking One-

Way, Two-Way or none.
3. Adjust the reproduction speed clicking on the Speed

combo-box and selection one of the options.

 , . 135

  

4. Click the OK button to apply the changes and close the
dialog.

Note: It is possible to change the speed of reproduction of
the animation by pressing Page Up and Page Down.
One-Way Reproduction: The loaded animation will be
played in a loop going in one direction from beginning to
the end.
Two-Way Reproduction: The animation will be played in
a loop from begin to end and reverse.

4.15.2 Save & Load

Animation files generated while in FGM mode, are inde-
pendent of the database and can be visualized without the
need to have a database loaded. To save an animation:
1. While in FGM, generate a animation using one of the

standard method.
2. Select File → Fast Graphics → Save Animation (ani)

from the main menu.
3. The FGM Save Dialog will be open, select the folder to

save the animation.
4. Enter the name of the animation file name.
5. Press the Save button.
An informative message will be shown in the message
dialog.
To load an animation:
1. Select File → Fast Graphics → Load Animation (ani).
2. The FGM Load Dialog will be open, select the anima-

tion file to be loaded.
3. Press the Open button.
An informative message will be shown in the message
dialog. The loaded animation can now be played.

136   

5 Differences in default solver settings for
ADINA and SOL 601/701

Below is a complete list of the differences in default solver
settings for ADINA and SOL 601/701.

5.1 Implicit Time Integration Method

The implicit time integration method for implicit dynamic
analysis, low-speed dynamics, and the stabilized total-load-
application (TLA-S) procedure is different for ADINA and
SOL 601/701.
• ADINA Solver: Uses the Bathe implicit time integra-
tion method by default.

• SOL 601/701 Solver: Uses the Newmark implicit time
integration method by default.

The below Tech Brief shows examples where the Bathe
method leads to stable and accurate solutions and the
Newmark method fails.
Implicit Time Integration —What Can Go Wrong

5.2 Incompatible Modes Formulation

The use of the incompatible modes formulation for 4-node
2D-solid elements, 8-node 3D-solid elements, and 4-node
shell elements is different for ADINA and SOL 601/701.
• ADINA Solver: Does not use the incompatible modes
formulation by default.

137

http://www.adina.com/newsgH101.shtml

         /

• SOL 601/701 Solver: Uses the incompatible modes
formulation by default.

The below Tech Brief shows a surprising unphysical buck-
ling mode that can occur when the incompatible modes
formulation is used in geometrically nonlinear analysis. For
this reason, the incompatible modes formulation must be
used with great care in nonlinear analysis.
Surprises in Analyses with Incompatible Modes Elements

5.3 Mixed (u/p) Formulation

The use of the mixed (u/p) formulation for material models
is different for ADINA and SOL 601/701.
• ADINA Solver: Uses the mixed (u/p) formulation
by default for all rubber material models and for ALL
elastic-plastic material models.

• SOL 601/701 Solver: Uses the mixed (u/p) formulation
by default for all rubber material models and for the
plastic-bilinear and plastic-multilinear material models.

5.4 Through-Thickness Integration Order for Shell Elements

The through-thickness (t−) direction integration order for
shell elements is different for ADINA and SOL 601/701.
• ADINA Solver: Uses 2-point Gauss integration by
default for single-layer shell elements, and 2-point Gauss
integration for each layer for multi-layer shell elements.

• SOL 601/701 Solver: Uses, for the below material
models, 5-point Newton-Cotes integration by default for
single-layer shell elements, and 3-point Newton-Cotes
integration for each layer for multi-layer shell elements.

1. Plastic-bilinear.
2. Plastic-multilinear.
3. Nonlinear elastic.
4. SMA
5. Thermo-plastic

138   

http://www.adina.com/newsgH147.shtml

    

6. Plastic creep multilinear.

5.5 Strain Increments in Viscoelastic Materials

The number of subdivisions of strain increments used in the
integration of stresses for viscoelastic materials is different
for ADINA and SOL 601/701.
• ADINA Solver: Uses 10 subdivisions of strain incre-
ments by default in the integration of stresses for vis-
coelastic materials (MATERIAL VISCOELASTIC NSUBD=10).

• SOL 601/701 Solver: Uses 1 strain increment by default
in the integration of stresses for viscoelastic materials
(MATERIAL VISCOELASTIC NSUBD=1).

 , . 139

         /

140   

Topic Index

ADINA-M, 11, 13
AUI native geometry, 11
Automatic grading, 25, 53

Background Mesh, 99
current, 99
original, 99

Background scheme, 110
Body cleanup, 17
Boolean operations, 13
Bounding box, 110

Camera spin, 117
Cap sections, 122
Congruence, 14
Coordinate axes, 110
Cracks, 81
Curvature-based sizing, 28, 53
Cutting
plane, 121
volume, 122

Cyclic symmetry, 86

De-featuring, 17
Discretization error, 28
Double click and go, 119

Elements
3d plane stress, 71
bricks, 37, 73
duplicate, 89
hexahedral, 37, 73
higher-order, 67
Jacobian ratio, 91
layers, 62
membrane, 71
minimum and maximum corner

angle, 91
prismatic, 70
pyramid, 64, 65, 70, 71

quadrilateral, 54
quality, 66, 90
re-meshing, 90
sliver, 90, 91
tetrahedral, 58, 71
unique labels, 90
wedge, 70

Eliminating edges, 20
Entity Labels, 113
Extended Wall, 107

Face linking, 14, 65, 67, 68, 71, 77
Fast graphics mode, 108

rendering, 111
Fatigue, 71
FGM navigation interface, 115
Fluid mesh (see also Meshing, CFD),

32, 89
Fracture, 81
Framerate, 133

Geometry
extrusion, 12
revolve, 12
sweep, 12
transformations, 12

Growth rate, 51, 59

Hide
invert, 120
selection, 120
unselected, 120

Hot navigation tool
keys, 115

Implicit time integration, 137
Importing geometry, 13
Incompatible modes formulation, 137
Inflation layer (see also Meshing,

boundary layer), 55

Internal angle deviation, 66

Labels, 113
Leader-Followers, 103
closest, 105
cone, 105
parallel, 105

Locator
dialog box selection, 123
pick, 123
query, 123

Lofting, 13

Manipulator
move, 126
rotate, 127

Mesh quality checks, 90
Mesh Solver, 98

FD-SOLVER, 98
SPARSE, 98

Meshing
advancing front method, 49
all-hexahedral, 20, 73
all-quadrilateral, 34, 54
attaching, 79
biasing, 22
boundary layer, 46, 55, 68, 71
CFD, 32, 55, 67, 68, 89
coarsening, 90
collapsed elements, 43
compatibility, 89
congruence, 14, 77
converting, 84, 87
copying, 84

triangulations, 86
Delaunay method, 49, 50
density gradient, 51, 59
detaching, 80
element layers, 62
element quality, 66

141

 

fracture, 81
free-form, 49, 58, 71

body face, 57
grading, 22
growth rate, 59
hybrid advancing front/Delaunay

method, 58
importing, 79
joining, 79
lofted, 45
mapped, 32
body face, 39

mid-node placement, 39, 57
mixed, 58, 64
higher-order elements, 67

moving, 95
non-uniform, 22
re-meshing, 90
refinement, 22, 51, 61
refining, 90
revolved, 42
skin, 71
splitting, 81
swept, 42
tetrahedral, 20, 58, 71
triangulation, 71

Mixed formulation, 138

Navigation hot-keys, 115
Navigation pivot point, 117, 119
tool, 128

Nodes
checking coincidence, 77
coincidence, 14, 15, 77, 82, 84

equivalence, 77, 82, 84
mid-face, 68
mid-side, 68

OP2 format, 90
OpenCascade, 11, 13
Orbit view, 115

Panning, 117
Parasolid, 11, 13
Partitioning, 13
Pattern lines, 111
Point size, 24
Projection

Parallel, 110
Perspective, 110

Re-meshing elements, 90
Region selection, 123
Regular subdivisions, 33, 35

Sectioning, 13
Selection (also see Locator), 123

deep selection, 125
Selection Representation, 125
box, 126
silhouette, 126

Separating meshes (see also Meshing,
detaching), 80

Shading, 130
algorithms/methods, 131

Size functions, 30, 53
Slipping Boundary, 106
Smoothing, 130

Snap
angle, 127
scaling, 127

SOL 601/701, 137
Solvers, 137
Spin mode, 117
Standard mode (graphics), 108
STL

conversion, 20
format, 19

Subdivision grading/biasing, 22
Subdomain, 100

convex, 100
nonconvex, 100

Substructuring, 86

Tearing, 134
Through-thickness integration order

for shells, 138, 139
Transforming annotations, 128
Translucency, 133
Triangulations, 86

U/P formulation, 138
Unhide, 120
Unzoom, 119

Vertical sync, 133

Zoom, 117
region, 118
selection, 119
view, 117

142   

Command Index

BCELL, 21
BHEXA, 19, 20, 73–75

SIZE, 73, 74
BLTABLE-2D, 46, 47, 55, 56

N-LAYER, 55
THICK-FIRST, 55
THICK-TOTAL, 55

BLTABLE-3D, 68, 69
BODY BLOCK, 13
BODY CYLINDER, 13
BODY DEFEATURE, 17
BODY INTERSECT, 13
BODY LOFTED, 13, 45
BODY MERGE, 13, 14, 18

MERGE-IMPRINT, 14
BODY PARTITION, 13
BODY PROJECT, 16, 17
BODY REVOLVED, 13, 42–45
BODY SECTION, 13
BODY SHEET, 14
BODY SUBTRACT, 13
BODY SWEEP, 13, 42, 43, 45
BODY TRANSFORMED, 85, 86

NCOPY, 86
TRANSFORMATION, 86

BODY-CLEANUP, 17, 18
SIZE, 17

BODY-DISCREP, 19, 72–75
BODY-DSCADAP, 20, 72, 73
BODY-RESTORE, 18
CONTROL

COMPATIBLE-MESH, 89
DUPLICATE, 89, 90
ELEMENT-LABEL, 90

CONVERT-STL, 20, 72–75
PCCANG, 20

COORDINATES
POINT, 11

COPY-MESH-BODY, 84–86
TRANSFORMATION, 85

COPY-TRIANGULATION, 71, 86, 87
TRANSFORMATION, 87

DELETE
BODY-DISCREP, 72, 74

EGROUP
SHELL, 33–36
THREEDSOLID, 37, 39

ELEMENTSET
OPTION, 82, 83

FACELINK, 15, 16, 48, 77
FEPROGRAM

PROGRAM, 90
GBCELL, 21
GBODY, 19, 20, 28–30, 58, 60, 68, 72,

73, 85, 86
3DBLTABLE, 68–70
AUTO-GRADING, 25–27, 61
BOUNDARY-METHOD, 61
BREFINE, 61
DANGMAXB, 66
DANGMAXC, 66
DANGMAXD, 66
DENSITY-FACTOR, 59, 60
EVEN, 65, 66
GEO-ERROR, 28, 29, 61, 62
GRID, 59
MESHING, 45, 58, 64, 67, 71
METHOD, 58, 60, 61
MIDFACENODES, 68
MIDNODES, 68
MIN-SIZE, 28, 29, 61
NCOINCIDE, 77–80, 82
NCTOLERANCE, 77
NLAYER, 62, 63
NODES, 58, 64, 65, 67–69, 71, 72
NOPTI, 59
PREFSHAPE, 68–70
PYRAMIDS, 25, 28, 30, 61, 62, 64, 65,

67, 70, 71
REFINE, 59–61

SAMPLING, 28, 29, 61
SIMULATE, 26–30, 61
SIZE-FUNCTION, 30, 31, 61

GELEM, 93, 94
PYRAMIDS, 93
TYPE, 93, 94

GFACE, 28, 30, 31, 46, 47, 49, 68
2DBLTABLE, 49, 55, 56
AUTO-GRADING, 53
DENSITY-FACTOR, 51–53, 55
EVEN, 54
GEO-ERROR, 53
MESHING, 40
METHOD, 49, 50, 55
MIDNODES, 39–41, 57, 58
MIN-SIZE, 53
NCOINCIDE, 77
NODES, 44, 49, 56
PREFSHAPE, 49, 54–56
REFINE, 51–53
SAMPLING, 53
SIMULATE, 53, 54
SIZE-FUNCTION, 53

GLINE, 11
GLOFTED, 45–48

DELETE-FACE-ELEMENT, 47
NDIV, 45, 48
NODES, 48
PREFSHAPE, 45, 46
RATIO, 45

GPOINT, 11
GSURFACE, 33

DEGENERATE, 34–36
MESHING, 32–34
NCOINCIDE, 78
NODES, 33–36
PATTERN, 34

GVOLUME, 12, 36
DEGENERATE, 38, 39
NCOINCIDE, 77

143

 

NODES, 37, 39
IMPORT-EXTERNAL, 79
IMPORTIGES, 13
LEADER-FOLLOWER, 105

TYPE, 105
LINE, 11
LOAD-STL, 19, 72, 74

NCTOLERANCE, 19
RIDGEANG, 19

LOADIGES, 13
LOADSOLID, 75
MASTER, 99

MESHUPDATE, 99, 101–103
MESH-CONVERT, 87, 88

ELEMENT-TYPE, 88
GROUP, 88

MESH-DETACH, 80, 83
SEARCH, 80

MESH-JOIN, 79, 80
ACTION, 79
SEARCH, 79

MESH-QUALITY, 90, 91, 93, 94
CANGMAX, 91, 92
CANGMIN, 91, 92
METRIC, 90
SAVETO, 93
TYPE, 90, 91

MESH-SPLIT, 81, 82
BOUNDARY-SPLIT, 81
GTYPE, 81, 82

NASTRAN-ADINA, 21, 79, 97
BCELL, 21
ELFACESET, 97

NODE-SNAP, 11
OUTER-ITERATION, 98

MS-SOLVER, 98
POINT-SIZE, 24, 25, 30

INPUT, 24, 25
OPTION, 24, 25, 30

POINT, 11
BETWEEN, 11
CENTER, 11
NODE, 11

REM-EDGE, 17
REM-FACE, 17
SIZE-FUNCTION, 30, 31

AXIS, 30, 31
BOUNDS, 30
COMBINE, 30
DISTANCE, 30
HEX, 30
PLANE, 30
POINT, 30
SIZE, 30

STL
ANGLE, 20
ELIM-EDGES-ANGLE, 20, 21, 74
ELIM-EDGE, 20, 74, 75

SUBDIVIDE, 72, 74
BODY, 22, 71, 73

CBIAS, 22, 23
EDGE, 22, 71, 73
FACE, 22, 23, 71, 73
LINE, 11, 22
MAX-SIZE, 23
MODEL, 24
MODE, 22–24
PROGRESS, 23
RATIO, 22, 23
SURFACE, 22
VOLUME, 22

SURFACE, 12
EXTRUDE, 12
FACE, 12
GRID, 12
PATCH, 12
REVOLVED, 12
TRANSFORMED, 12
VERTEX, 12

TOLERANCES GEOMETRIC, 77
TRANSFORMATION, 84, 85

ROTATION, 84
TRANSLATION, 84

VOLUME BODY, 12
VOLUME EXTRUDE, 12
VOLUME REVOLVED, 12
VOLUME SWEEP, 12
VOLUME TRANSFORMED, 12
VOLUME VERTEX, 12

144   

	ADINA System 9.6 Release Notes
	ADINA Handbook
	Copyright
	Table of Contents
	Introduction
	1 Geometry Definition and Manipulation
	1.1 AUI Native Geometry
	1.2 Bodies
	1.2.1 Face-linking
	1.2.2 De-featuring and body cleanup

	1.3 STL Bodies
	1.3.1 Creating an STL body from an STL file
	1.3.2 Converting a Parasolid body into an STL body
	1.3.3 Eliminating edges from STL bodies
	1.3.4 Boundary cells

	2 Meshing
	2.1 Mesh Size Control
	2.1.1 Subdivision
	2.1.2 Point size
	2.1.3 Automatic grading
	2.1.4 Curvature-based sizing
	2.1.5 Size functions

	2.2 Mapped Meshing
	2.2.1 Surface meshing
	2.2.2 Volume meshing
	2.2.3 Body face meshing
	2.2.4 Sweep and revolved meshing
	2.2.5 Lofted meshing

	2.3 Body Face Free-Form Meshing
	2.3.1 Triangular meshing
	2.3.2 Quadrilateral meshing
	2.3.3 Boundary layer meshing
	2.3.4 Mid-side node placement

	2.4 Body Free-Form Meshing
	2.4.1 Tetrahedral meshing
	2.4.2 Mixed meshing
	2.4.3 Boundary layer meshing
	2.4.4 Skin of elements on 3D-solid mesh

	2.5 STL Body Free-Form Meshing
	2.5.1 Tetrahedral meshing
	2.5.2 All-hexahedral meshing

	2.6 Nodal Coincidence
	2.6.1 Nodal coincidence checking during meshing
	2.6.2 Joining and detaching meshes
	2.6.3 Splitting meshes
	2.6.4 Checking for coincidence

	2.7 Copying and Converting Meshes
	2.7.1 Copying meshes
	2.7.2 Copying triangulations
	2.7.3 Converting meshes

	2.8 Mesh Checking
	2.8.1 Fluid mesh compatibility
	2.8.2 Duplicate elements
	2.8.3 Unique element labels
	2.8.4 Mesh quality checks and re-meshing

	3 Moving Mesh in ADINA CFD/FSI
	3.1 Overview
	3.2 Basic Procedures
	3.3 Defining ALE Domain Geometry
	3.4 Solving the Moving Mesh
	3.4.1 Mesh Solver
	3.4.2 Background Mesh
	3.4.3 The Solving Domain
	3.4.4 Choice of Background Mesh and Subdomains

	3.5 ALE Conditions
	3.5.1 Leader-Follower Constraints
	3.5.2 Types of Leader-Followers
	3.5.3 Slipping Boundary
	3.5.4 Extended Wall

	4 Fast Graphics Mode
	4.1 Hardware Requirements
	4.2 Activating FGM
	4.3 General FGM Settings
	4.3.1 Projections
	4.3.2 Coordinate axes
	4.3.3 Scene bounding box
	4.3.4 Background

	4.4 Scene Rendering
	4.4.1 Original and deformed meshes
	4.4.2 Geometry and original meshes
	4.4.3 Pattern lines
	4.4.4 Labels

	4.5 Navigation Tools
	4.5.1 FGM navigation interface
	4.5.2 Hot navigation tool
	4.5.3 Orbit view tool
	4.5.4 Camera spin mode
	4.5.5 Pan view tool
	4.5.6 Zoom view tool
	4.5.7 Zoom region tool
	4.5.8 Unzoom all oneshot
	4.5.9 Zoom selection oneshot
	4.5.10 Double click and go
	4.5.11 Navigation pivot point

	4.6 Visualization Tools
	4.6.1 Hide selection
	4.6.2 Unhide all
	4.6.3 Hide invert
	4.6.4 Hide unselected

	4.7 Visualization Objects
	4.7.1 Cutting plane
	4.7.2 Cutting volume
	4.7.3 Cap sections
	4.7.4 Known issues

	4.8 Selection Tools
	4.8.1 Locator action
	4.8.2 Region selection
	4.8.3 Deep selection

	4.9 Selection Representation
	4.9.1 Selection silhouette
	4.9.2 Selection box

	4.10 Manipulators
	4.10.1 Move manipulator
	4.10.2 Rotate manipulator

	4.11 Snap Mode
	4.11.1 Angle snap mode
	4.11.2 Scaling snap mode

	4.12 Transform Tools
	4.12.1 Navigation pivot point tool
	4.12.2 2D transform

	4.13 Visual Appearance and Effects
	4.13.1 Surface smooth
	4.13.2 Shading
	4.13.3 Translucency

	4.14 Advanced Configuration
	4.15 Animation
	4.15.1 Visualization
	4.15.2 Save & Load

	5 Differences in default solver settings for ADINA and SOL 601/701
	5.1 Implicit Time Integration Method
	5.2 Incompatible Modes Formulation
	5.3 Mixed (u/p) Formulation
	5.4 Through-Thickness Integration Order for Shell Elements
	5.5 Strain Increments in Viscoelastic Materials

	Topic Index
	Command Index

	AUI Commands – Solids & Structures
	AUI Commands – Thermal
	AUI Commands – CFD & FSI
	AUI Commands – EM
	AUI Commands – Display Processing
	ADINA Primer
	ADINA TMG – Solids & Structures
	ADINA TMG – Thermal
	ADINA TMG – CFD & FSI
	ADINA TMG – EM
	ADINA Verification Manual
	ADINA-Nastran Interface Manual

