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2D solutions to the compressible solar wind flow near a
reconnection site at the dayside magnetopause

Abstract Magnetic reconnection plays a key role in the
transfer of momentum and energy in all applications of
space plasma physics. The main physical property of
the onset of the process is a breakdown of the frozen-
in condition for the solar wind magnetic field. When
leaving the Sun, the solar wind has infinite conductivity,
i.e. there is no diffusion of field lines within the plasma.
Magnetic reconnection is a result of a local diffusion of
magnetic field lines, where in the present application,
the solar wind magnetic field interact with the terres-
trial magnetic field. The objective of the present study
is to investigate the behavior of the solar wind flow and
magnetic field in the vicinity of a location where mag-
netic reconnection occurs at the outer boundary of the
Earth’s magnetic field - the magnetopause. We do not
focus on the process itself, but on its implications on the
plasma properties during the transition from the mag-
netosheath region to the magnetosphere. The plasma is
considered to have a variable density and is described by
the Magneto Hydro Dynamic (MHD) Equations, includ-
ing non-ideal effects such as viscosity and resistivity.
Treating the transition layer at the magnetopause bound-
ary as very thin, the governing equations can be solved
approximately by the use of an ordinary perturbation
technique, with expansions in orders of large Reynolds
and Lundquist numbers. The analysis results in equa-
tions describing the plasma properties in the magneto-
pause transition layer. Analytical solutions have been ob-
tained. These are however only valid in a region close to
the reconnection site. In order to extend the region we
use FEMLAB to solve the equations.
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1 Introduction

Magnetic reconnection is the main mechanism for the
transfer of momentum and energy in all plasma physi-
cal applications. It was until the beginning of the 1960’s
when the theory of magnetic reconnection was presented,
a riddle how magnetic energy was transformed to ki-
netic energy. Since the onset of the theory of magnetic
reconnection a lot of questions has been answered. This
topic has though gone through a journey where it at some
times reached almost mythical proportions, to the posi-
tion it has today, where much of the research has its focus
on the main onset mechanisms. Whether reconnection
do occur or not, is not anymore a victim of the debate.
Rather the implications of the process on the plasma
properties.

Throughout the years it has been made an enormous
amount of work treating this topic. In recent years, i.e.
during the last decade much of the work has its focus
on satellite data analysis, numerical analysis and MHD
simulations. This due to the fast increase in computer ca-
pacity. In these works a usual simplifying approximation
is to treat the plasma as incompressible.

The present work is an extension of the two-dimensional
analysis made by [7], which in turn is a development
of the ideas presented by [5], treating an incompress-
ible study of the interaction between the solar wind and
the terrestrial magnetopause. There, magnetic reconnec-
tion is assumed to occur at an arbitrary point in a re-
gion stretching from the sub-solar point to the north. The
main issue of the present study is not the reconnection
process itself, but rather the implications of it; how the
plasma properties such as the magnetic field and plasma
velocity develops during the transition from the magne-
tosheath to the magnetosphere.

The plasma motion is described by the MHD equa-
tion of motion, together with the continuity equation,
while the induction equation and the solenoidal prop-
erties of the magnetic field govern the magnetic field.
We use a curvilinear coordinate system with the common
used labels for the coordinate axis, i.e.z being the tan-
gential component along the magnetopause surface and
x the normal component. See Fig. 1.

The current transition layer is treated as very thin,
allowing us to solve the governing equations approxi-
mately by the use of an ordinary perturbation expansion
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Fig. 1 The curvilinear coordinate system. The conventional coor-
dinate system in space physics is used, i.e.x pointing normal to
the magnetopause surface and thez-component lying in the tan-
gential direction of the magnetopause. This means that at the sub-
solar pointx points towards the sun andz towards the geographical
north. The coordinate-system with origin at the center of the Earth
is used for the development of the parabolical unit vectors (û, v̂
and φ̂ ) in terms of the curvilinear coordinatesx, y, andz. Here
r(z) = p · ρ−γ = constant (p is the pressure,ρ the density, andγ
the specific heat ratio), for two dimensions [4], and for three di-
mensional axisymmetryr(z) is the distance in the figure. From [5]
and [6].

in terms of large Reynolds (R) and Lundqvist (Lu) num-
bers, where

R=
vA ·RE

ν
(1)

and

Lu =
vA ·RE

η
. (2)

RE is the Earth radius andvA the Alfvén velocity of
the tangential magnetic field component at a given ref-
erence point.ν is the viscosity of the plasma, andη the
magnetic diffusivity. Since the plasma is mainly colli-
sionless, viscosity and resistivity are not appropriate ina
classical sense. We can though treat them as anomalous
transport coefficients. The kinematic viscosity and diffu-
sivity are estimated to be of the same order (= 1013cm2/s)
[1] [3].

2 Governing equations and method of solution

The equations governing the plasma motion and mag-
netic field are the steady MHD equation of motion, the
induction equation, the solenoidal property of the mag-
netic field, and the continuity equation

ρ(u ·∇)u = µ∇2u−∇P+
1
µ0

(B ·∇)B (3a)

∂B
∂ t

= ∇× (u×B)+
1

µ0σ
∇2B (3b)

∇ ·B = 0 (3c)

∇ · (ρu) = 0 (3d)

where P is the total pressure

P= p+
B2

2µ0
(4)

andρ = ρ(x,z). Considering a two dimensional steady
flow, we let

u = uxx̂+uzẑ (5a)

B = Bxx̂+Bzẑ. (5b)

The transition layer separating the magnetosheath plasma
from the magnetosphere plasma is assumed thin, soδ ∗ is
introduced as a characteristic thickness. The length scale
in the main flow direction(z) is taken asL. One choice
of L being the Earth radiusRE. A small parameterδ

δ =
δ ∗

RE
≪ 1 (6)

is chosen.
An order of magnitude estimate shows that as in or-

dinary boundary layer theory the thickness scales as

δ = O(R− 1
2 ). (7)

2.1 The DeHoffmann-Teller frame of reference and the
fast variableξ

The absolute velocity, now denotedu∗z, is divided into
a DeHoffmann-Teller velocityUHT anduz, the velocity
with respect to the DeHoffmann-Teller frame of refer-
ence [2],

u∗z = uz+UHT . (8)

In the DeHoffmann-Teller frame they-component of the
electric field is zero, implying that particles do not change
their kinetic energy when passing through the current
sheet from one side to the other. In this frame of ref-
erence the plasma properties are the same in the magne-
tosheath and the boundary layer, except for the magnetic
field and the direction of the plasma flow.

Recalling that

∂
∂x

= O(R
1
2 ) (9)



we introduce the new fast variableξ

ξ = R
1
2 ·x. (10)

This gives

∂
∂x

= R
1
2

∂
∂ ξ

(11a)

∂ 2

∂x2 = R
∂ 2

∂ ξ 2 . (11b)

UHT is chosen such that

Ey +UHT ·Bξ = 0 (12)

whereEy for two dimensions can be verified to be con-
stant.

2.2 The perturbation expansion

In order to have a possibility to let the normal compo-
nents of the magnetic field and velocity to be small, they
are assumed to be of orderO(R− 1

4 ). This means that in
the limit of largeR, they are always larger than the order-
ing of the current sheet thickness of orderO(R− 1

2 ). The
following ansatz for the perturbation expansion leads to
no inconsistencies, and results in a sequence of equations
to different separate order.

uξ = R− 1
4 ·u(0)

ξ +R− 1
2 ·u(1)

ξ + ... (13a)

uz = UHT +u(0)
z +R− 1

4 ·u(1)
z + ... (13b)

Bξ = R− 1
4 ·B(0)

ξ +R− 1
2 ·B(1)

ξ + ... (13c)

Bz = B(0)
z +R− 1

4 ·B(1)
z + ... (13d)

ρ(ξ ,z) = ρ(0)(z)+R− 1
4 ·ρ(1)(ξ ,z)+ ... (13e)

Ey = R− 1
4 ·E(0)

y +R− 1
2 ·E(1)

y + ... (13f)

Since we consider a resolution of a rotational discontinu-
ity the density is to the lowest order constant across the
transition layer. The Lundqvist number is assumed to be
of the same order as the Reynolds number.

Applying (13) to (3) results together with the relation
between the Alfvén velocity and the speed of sound

B(0)
ξ

2

µ0ρ(0)
<<

γ · p(0)

ρ(0)
(14)

in the equation describing the plasma behavior in the
magnetopause current sheet

(

1+ρ(0) R
Lu

)

∂ 2u(0)
z

∂ ξ 2 +
∂u(0)

z

∂ ξ

[

2ξ
1

r(z)
d
dz

(r(z)

ρ(0)UHT)−
1

r(z)
d(r(z)ρ(0))

dz

∫ ξ

−∞
u(0)

z dξ
]

−

2ρ(0)UHT
∂u(0)

z

∂z
−ρ(0)UHT

dUHT

dz
−

∂P
∂z

+

u(0)
z

2 dρ(0)

dz
+

1
2

u(0)
z UHT

dρ(0)

dz
= 0. (15)

The DeHoffmann-Teller velocity is different north and
south of the reconnection point, resulting in one equation
for each case.

3 Solutions

In order to solve (15) we use FEMLAB1 and its PDE-
General form application, which in addition to the coef-
ficient form, is better suited for nonlinear problems. We
begin though with the analysis resulting in the expres-
sions for the plasma properties (i.e. velocity and density)
at the outer magnetopause boundary.

3.1 Plasma properties at the outer magnetopause
boundary

The expressions for the density and velocity variation at
the outer magnetopause boundary are based on simula-
tion studies of a gas-dynamic flow around an obstacle.
Since not including a magnetic field, these results are not
ideal for the present application. Still, they can be used
as a working hypothesis.

3.1.1 Density variation

From [7] the variation of the density along the magne-
topause is given by

ρ(u) = 1.509·exp
(

1−
u

Rmp

)

(16)

whereu is a parabolical coordinate, andRmp the stand-
off distance to the magnetopause. By applying a Tay-
lor expansion at the reconnection site (u = u0) and using
the relation between the curvilinear coordinateZ and the
parabolical coordinateu

u−u0 =
2

Rmp

√

u0

1+u0
·Z (17)

we obtain an expression for the density on the form

ρ(Z) = A+B ·Z+C ·Z2 +D ·Z3. (18)

1 FEMLAB 3.1i, is used in this analysis



In order to extend the solution domain we consider a
higher order expansion up toO(Z3), in comparison to the
theoretical analysis which only treat up to orderO(Z).
A-D are constants whose numerical value is determined
by u0 andRmp. We consider the reconnection site to be
located at twoRE from the sub-solar point. This corre-
sponds tou0 = 0.13, given by the relation

Z(u) =
Rmp

2

∫ u

u0

√

1+u
u

du (19)

from [5]. Rmp= 10 is a standard value, and used in every
case in this study.

3.1.2 The DeHoffmann-Teller velocity

In accordance to the 2D and 3D study [6] and [7], the
plasma velocity and magnetic field along the magnetopause
are given by

U∗
z = 2.89·MARmp· ln

(

1+

√

2u
Rmp

)

(20a)

B∗
z = −Rmp

√

u
u+1

. (20b)

whereMA is the local Alfvénic Mach number at the re-
connection site

MA =
V∞

ρ∞
ρ

√

µ0ρ(0)

Bim f
x

. (21)

HereV∞ andρ∞ are the velocity and density in the un-
shocked solar wind. North and south of a reconnection
point the relation between the velocities and the mag-
netic field are

U∗
z = B∗

z +UN
HT (22a)

U∗
z = US

HT −B∗
z. (22b)

Index N and S corresponds to north and south respec-
tively. By expanding the terms in a Taylor series as in
the case for the density, we obtain expressions for the
DeHoffmann-Teller velocities of the same character as
(18).

3.1.3 The pressure gradient and magnetopause radius
of curvature

By studying thez-component of the inviscid limit (i. e.
R → ∞, ∂

∂x → ∞) of the MHD equation of motion we
have

−
∂P
∂z

= ρ ·U∗
z

dU∗
z

dz
−B∗

z
dB∗

z

dz
(23)

whereρ,U∗
z andB∗

z are according to (18) and (20). The
magnetopause radius of curvature is according to [5]

r(z) = Rmp
√

u. (24)

As for the previous quantities we use a Taylor expansion
at the reconnection site together with (17).

3.2 Solving methodology

In the FEMLAB - PDE General Form tool, the basic sta-
tionary equation is of the form

∇ ·Γ = F (25)

whereΓ andF are vectors such that

Γ =













Γ1

...

Γn













(26a)

F =













F1

...

Fn













(26b)

for an equation system withn dependent variables. The
procedure for solving (15) is straightforward. In order to
include the integral term
∫ ξ

−∞
u(0)

z dξ (27)

we introduce a new variablev = v(ξ ,Z) such that

∂v
∂ ξ

= u(0)
z . (28)

This results in
∫ ξ

−∞
u(0)

z dξ = v(ξ ,Z). (29)

In FEMLAB u(0)
z and v are represented byu1 and u2

respectively. Furthermore,ξ andz are represented byx
andy in the actual geometry. The derivatives are denoted
with ux anduy. (15) is then expressed inΓ andF such
that

Γ1 = (1+ρ(0)) ·u1x x̂

Γ2 = 0 (30a)

F1 = −
[

2x ·
1

r(z)
d
dz

(r(z)ρ(0)UHT)−

1
r(z)

d
dz

(r(z)ρ(0)) ·u2

]

·u1x +2ρ(0)UHT ·u1y +

ρ(0)UHT
dUHT

dz
+

dP
dz

−
dρ(0)

dz
·u2

1−

1
2

u1UHT
dρ(0)

dz
(30b)

F2 = u1−u2x. (30c)



We consider a geometry in form of a rectangle where
−5 ≤ x ≤ 5, 0≤ yN ≤ 1.5 and−1.5 ≤ yS ≤ 0. N and
S represents as earlier north and south of the reconnec-
tion site respectively.x andy corresponds toξ andZ in
the analysis. The actual boundary conditions are homo-
geneous Neumann conditions foru1 at all sides except
for y = 0, where we have a start condition of the form

u1 = C1 ·erf(α ·x) (31)

whereC1 is a constant whose numerical value is ob-
tained by asymptotic matching of the magnetic field [7].
In order to have a transition of the magnetic field in ac-
cordance with the structure indicated by the theoretical
analysis, we treat the case whereα = 5.u2 = 0 atx=−5,
while it satisfies homogeneous Neumann conditions at
the other boundaries.

4 Results

In this section we present the solutions to (15) obtained
with FEMLAB. Following parameter values are consid-
ered:

V∞ = 300 km/s (32a)

ρ∞ = 5 cm−3 (32b)

Bim f
x = 18 nT (32c)

Rmp = 10. (32d)

In order to compare with the analytical solutions [7],
we consider the cross-sectional plots at different loca-
tions. Since we with FEMLAB can include higher or-
der terms in the expansions of each quantity, the region
where the solutions are valid is extended. In this study
zmax/min. =±1.5 (positive sign corresponding to north of
the reconnection site), which should be compared with
the analytical solutions wherezstretches to roughly±0.5.
The development of the magnetic field north of the re-
connection site is viewed in Fig. 2.

The structural behavior is in analogy with the re-
sults in [7]. Still, the development differs for the two ap-
proaches due to a smaller region where the analytical so-
lutions are valid. For smallz the analytical solution satis-
fies the numerical solution. See Fig. 3 for corresponding
development south of the reconnection point.

For this case the magnetic field experiences the same
development structure up toz≈ 0.5 as north of the re-
connection point. Thereafter the deviation is more sig-
nificant. North of the reconnection site the plasma veloc-
ity and magnetic field increases faster due to a positive
gradient. This property should reasonably play a crucial
role for the evolution of respective quantity. For the cor-
responding behavior of the total velocity (U∗) north of
the reconnection site, see Fig. 4.

The evolution of the total velocity for positivez fol-
lows the same pattern the analytical results do for small
z. However with a slight modification in the structure of

ξ

B(0)
z

z= 0

z= 1.5

Fig. 2 Evolution of the magnetic field (B(0)
z ) north (positivez) of

the reconnection site when the plasma travels through the magne-
topause boundary. Positiveξ corresponds to the outer region, i.e.
the magnetosheath. Negativeξ correspondingly represents the in-
ner region, i.e. the magnetosphere. Respective curve represent the
development at different locations (z= 0,z= 0.1,z= 0.2, z= 0.3,
z = 0.5, z = 0.8, z = 1 andz = 1.5) from the reconnection site
(z= 0). The analytical solutions [7] are valid toz≈ 0.5.
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Fig. 3 Evolution of the magnetic field (B(0)
z ) south (negativez) of

the reconnection site when the plasma travels through the magne-
topause boundary. As for the case north of the reconnection point,
positiveξ corresponds to the outer region and negativeξ the inner
region. The development of the magnetic field is viewed at fol-
lowing locations:z= 0, z= −0.1, z= −0.2, z= −0.3, z= −0.5,
z= −0.8, z= −1 andz= −1.5.

the solution. The deviation from the start condition at
the reconnection site, is more distinct for growingz. The
distribution of the total velocity south of the reconnec-
tion site is showed in Fig. 5.

As for the previous case north of the reconnection
site, the theoretical result is in coherence with the present
one. The total velocity develops continuously forz ≥
0.525. Comparing the development of respective total
velocity, we notice a discontinuous behavior at the re-
connection site (z = 0). This due to the DeHoffmann-
Teller velocity (UHT ) which is not well defined at this
point.



ξ
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z= 1.5

Fig. 4 Development of the total velocity (U∗ = u(0)
z +UHTN ) north

of the reconnection point. As earlier the respective curvesrepre-
sents the development at different locations (z= 0,z= 0.1,z= 0.2,
z= 0.3, z= 0.5, z= 0.8, z= 1 andz= 1.5) from the reconnection
site (z= 0).
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Fig. 5 Development of the total velocity (U∗ = u(0)
z +UHTS) south

of the reconnection point. Comparing the development of respec-
tive total velocity, we notice a discontinuous behavior at the recon-
nection site (z= 0). This due to the DeHoffmann-Teller velocity
(UHT ) which is not well defined at this point. South of the recon-
nection pointz is negative. Following locations are considered:
z= 0, z= −0.1, z= −0.2, z= −0.3, z= −0.5, z= −0.8, z= −1
andz= −1.5.

5 Summary

This work treat the interaction between the solar wind
and the outermost layer of the terrestrial magnetic field
- the magnetopause. Magnetic reconnection is a process
of certain interest. It is supposed to occur in a region
stretching from the sub-solar point to the north. The fo-
cus does not lie in the process itself, but on its impli-
cations on the plasma behavior in the vicinity of a lo-
cation where reconnection is initiated. We consider a
plasma with variable density. The transition layer sep-
arating plasma from the magnetosheath- and the magne-
tosphere region is viewed as a large amplitude Alfvén
wave. Thereby the only effect is a rotation of the mag-

netic field during the transition from the magnetosheath
to the magnetosphere. Thus the density can be treated
to be the same at the immediate sides of the magne-
topause boundary. Viscosity and resistivity are included
as non-ideal effects. In order to solve the the magneto-
hydrodynamic equations which govern the plasma flow
and magnetic field, we use an ordinary perturbation tech-
nique with expansion in large Reynolds and Lundqvist
numbers. This results in equations describing the plasma
properties north and south of a location where reconnec-
tion occurs. In order to solve these equations and to ex-
tend the region where the solution is valid in addition to
previous theoretical work, we use FEMLAB. The results
are compared with the analytical solutions. It is shown
that the structural behavior is the same as for the analyt-
ical solutions for small distances away from the recon-
nection site. However, the magnetic field and total ve-
locity develops differently for large distances away from
the reconnection site. A comparison with the analytical
solutions for the case of an incompressible solar wind
plasma, also shows a deviation in the behavior when
moving further away from the reconnection site. Even
in this case the difference is clearly visible for larger dis-
tances.
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ate Thesis. Luleå, Sweden(2005).


